Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
switch.c
Go to the documentation of this file.
1 /*
2  * spu_switch.c
3  *
4  * (C) Copyright IBM Corp. 2005
5  *
6  * Author: Mark Nutter <[email protected]>
7  *
8  * Host-side part of SPU context switch sequence outlined in
9  * Synergistic Processor Element, Book IV.
10  *
11  * A fully premptive switch of an SPE is very expensive in terms
12  * of time and system resources. SPE Book IV indicates that SPE
13  * allocation should follow a "serially reusable device" model,
14  * in which the SPE is assigned a task until it completes. When
15  * this is not possible, this sequence may be used to premptively
16  * save, and then later (optionally) restore the context of a
17  * program executing on an SPE.
18  *
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2, or (at your option)
23  * any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34 
35 #include <linux/export.h>
36 #include <linux/errno.h>
37 #include <linux/hardirq.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/smp.h>
43 #include <linux/stddef.h>
44 #include <linux/unistd.h>
45 
46 #include <asm/io.h>
47 #include <asm/spu.h>
48 #include <asm/spu_priv1.h>
49 #include <asm/spu_csa.h>
50 #include <asm/mmu_context.h>
51 
52 #include "spufs.h"
53 
54 #include "spu_save_dump.h"
55 #include "spu_restore_dump.h"
56 
57 #if 0
58 #define POLL_WHILE_TRUE(_c) { \
59  do { \
60  } while (_c); \
61  }
62 #else
63 #define RELAX_SPIN_COUNT 1000
64 #define POLL_WHILE_TRUE(_c) { \
65  do { \
66  int _i; \
67  for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
68  cpu_relax(); \
69  } \
70  if (unlikely(_c)) yield(); \
71  else break; \
72  } while (_c); \
73  }
74 #endif /* debug */
75 
76 #define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c))
77 
78 static inline void acquire_spu_lock(struct spu *spu)
79 {
80  /* Save, Step 1:
81  * Restore, Step 1:
82  * Acquire SPU-specific mutual exclusion lock.
83  * TBD.
84  */
85 }
86 
87 static inline void release_spu_lock(struct spu *spu)
88 {
89  /* Restore, Step 76:
90  * Release SPU-specific mutual exclusion lock.
91  * TBD.
92  */
93 }
94 
95 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
96 {
97  struct spu_problem __iomem *prob = spu->problem;
98  u32 isolate_state;
99 
100  /* Save, Step 2:
101  * Save, Step 6:
102  * If SPU_Status[E,L,IS] any field is '1', this
103  * SPU is in isolate state and cannot be context
104  * saved at this time.
105  */
106  isolate_state = SPU_STATUS_ISOLATED_STATE |
107  SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
108  return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
109 }
110 
111 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
112 {
113  /* Save, Step 3:
114  * Restore, Step 2:
115  * Save INT_Mask_class0 in CSA.
116  * Write INT_MASK_class0 with value of 0.
117  * Save INT_Mask_class1 in CSA.
118  * Write INT_MASK_class1 with value of 0.
119  * Save INT_Mask_class2 in CSA.
120  * Write INT_MASK_class2 with value of 0.
121  * Synchronize all three interrupts to be sure
122  * we no longer execute a handler on another CPU.
123  */
124  spin_lock_irq(&spu->register_lock);
125  if (csa) {
126  csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
127  csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
128  csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
129  }
130  spu_int_mask_set(spu, 0, 0ul);
131  spu_int_mask_set(spu, 1, 0ul);
132  spu_int_mask_set(spu, 2, 0ul);
133  eieio();
134  spin_unlock_irq(&spu->register_lock);
135 
136  /*
137  * This flag needs to be set before calling synchronize_irq so
138  * that the update will be visible to the relevant handlers
139  * via a simple load.
140  */
141  set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
142  clear_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
143  synchronize_irq(spu->irqs[0]);
144  synchronize_irq(spu->irqs[1]);
145  synchronize_irq(spu->irqs[2]);
146 }
147 
148 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
149 {
150  /* Save, Step 4:
151  * Restore, Step 25.
152  * Set a software watchdog timer, which specifies the
153  * maximum allowable time for a context save sequence.
154  *
155  * For present, this implementation will not set a global
156  * watchdog timer, as virtualization & variable system load
157  * may cause unpredictable execution times.
158  */
159 }
160 
161 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
162 {
163  /* Save, Step 5:
164  * Restore, Step 3:
165  * Inhibit user-space access (if provided) to this
166  * SPU by unmapping the virtual pages assigned to
167  * the SPU memory-mapped I/O (MMIO) for problem
168  * state. TBD.
169  */
170 }
171 
172 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
173 {
174  /* Save, Step 7:
175  * Restore, Step 5:
176  * Set a software context switch pending flag.
177  * Done above in Step 3 - disable_interrupts().
178  */
179 }
180 
181 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
182 {
183  struct spu_priv2 __iomem *priv2 = spu->priv2;
184 
185  /* Save, Step 8:
186  * Suspend DMA and save MFC_CNTL.
187  */
188  switch (in_be64(&priv2->mfc_control_RW) &
189  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
190  case MFC_CNTL_SUSPEND_IN_PROGRESS:
191  POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
192  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
193  MFC_CNTL_SUSPEND_COMPLETE);
194  /* fall through */
195  case MFC_CNTL_SUSPEND_COMPLETE:
196  if (csa)
197  csa->priv2.mfc_control_RW =
198  in_be64(&priv2->mfc_control_RW) |
199  MFC_CNTL_SUSPEND_DMA_QUEUE;
200  break;
201  case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
202  out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
203  POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
204  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
205  MFC_CNTL_SUSPEND_COMPLETE);
206  if (csa)
207  csa->priv2.mfc_control_RW =
208  in_be64(&priv2->mfc_control_RW) &
209  ~MFC_CNTL_SUSPEND_DMA_QUEUE &
210  ~MFC_CNTL_SUSPEND_MASK;
211  break;
212  }
213 }
214 
215 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
216 {
217  struct spu_problem __iomem *prob = spu->problem;
218 
219  /* Save, Step 9:
220  * Save SPU_Runcntl in the CSA. This value contains
221  * the "Application Desired State".
222  */
223  csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
224 }
225 
226 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
227 {
228  /* Save, Step 10:
229  * Save MFC_SR1 in the CSA.
230  */
231  csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
232 }
233 
234 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
235 {
236  struct spu_problem __iomem *prob = spu->problem;
237 
238  /* Save, Step 11:
239  * Read SPU_Status[R], and save to CSA.
240  */
241  if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
242  csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
243  } else {
244  u32 stopped;
245 
246  out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
247  eieio();
248  POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
249  SPU_STATUS_RUNNING);
250  stopped =
251  SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
252  SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
253  if ((in_be32(&prob->spu_status_R) & stopped) == 0)
254  csa->prob.spu_status_R = SPU_STATUS_RUNNING;
255  else
256  csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
257  }
258 }
259 
260 static inline void save_mfc_stopped_status(struct spu_state *csa,
261  struct spu *spu)
262 {
263  struct spu_priv2 __iomem *priv2 = spu->priv2;
264  const u64 mask = MFC_CNTL_DECREMENTER_RUNNING |
265  MFC_CNTL_DMA_QUEUES_EMPTY;
266 
267  /* Save, Step 12:
268  * Read MFC_CNTL[Ds]. Update saved copy of
269  * CSA.MFC_CNTL[Ds].
270  *
271  * update: do the same with MFC_CNTL[Q].
272  */
273  csa->priv2.mfc_control_RW &= ~mask;
274  csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask;
275 }
276 
277 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
278 {
279  struct spu_priv2 __iomem *priv2 = spu->priv2;
280 
281  /* Save, Step 13:
282  * Write MFC_CNTL[Dh] set to a '1' to halt
283  * the decrementer.
284  */
285  out_be64(&priv2->mfc_control_RW,
286  MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
287  eieio();
288 }
289 
290 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
291 {
292  /* Save, Step 14:
293  * Read PPE Timebase High and Timebase low registers
294  * and save in CSA. TBD.
295  */
296  csa->suspend_time = get_cycles();
297 }
298 
299 static inline void remove_other_spu_access(struct spu_state *csa,
300  struct spu *spu)
301 {
302  /* Save, Step 15:
303  * Remove other SPU access to this SPU by unmapping
304  * this SPU's pages from their address space. TBD.
305  */
306 }
307 
308 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
309 {
310  struct spu_problem __iomem *prob = spu->problem;
311 
312  /* Save, Step 16:
313  * Restore, Step 11.
314  * Write SPU_MSSync register. Poll SPU_MSSync[P]
315  * for a value of 0.
316  */
317  out_be64(&prob->spc_mssync_RW, 1UL);
318  POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
319 }
320 
321 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
322 {
323  /* Save, Step 17:
324  * Restore, Step 12.
325  * Restore, Step 48.
326  * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
327  * Then issue a PPE sync instruction.
328  */
329  spu_tlb_invalidate(spu);
330  mb();
331 }
332 
333 static inline void handle_pending_interrupts(struct spu_state *csa,
334  struct spu *spu)
335 {
336  /* Save, Step 18:
337  * Handle any pending interrupts from this SPU
338  * here. This is OS or hypervisor specific. One
339  * option is to re-enable interrupts to handle any
340  * pending interrupts, with the interrupt handlers
341  * recognizing the software Context Switch Pending
342  * flag, to ensure the SPU execution or MFC command
343  * queue is not restarted. TBD.
344  */
345 }
346 
347 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
348 {
349  struct spu_priv2 __iomem *priv2 = spu->priv2;
350  int i;
351 
352  /* Save, Step 19:
353  * If MFC_Cntl[Se]=0 then save
354  * MFC command queues.
355  */
356  if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
357  for (i = 0; i < 8; i++) {
358  csa->priv2.puq[i].mfc_cq_data0_RW =
359  in_be64(&priv2->puq[i].mfc_cq_data0_RW);
360  csa->priv2.puq[i].mfc_cq_data1_RW =
361  in_be64(&priv2->puq[i].mfc_cq_data1_RW);
362  csa->priv2.puq[i].mfc_cq_data2_RW =
363  in_be64(&priv2->puq[i].mfc_cq_data2_RW);
364  csa->priv2.puq[i].mfc_cq_data3_RW =
365  in_be64(&priv2->puq[i].mfc_cq_data3_RW);
366  }
367  for (i = 0; i < 16; i++) {
368  csa->priv2.spuq[i].mfc_cq_data0_RW =
369  in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
370  csa->priv2.spuq[i].mfc_cq_data1_RW =
371  in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
372  csa->priv2.spuq[i].mfc_cq_data2_RW =
373  in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
374  csa->priv2.spuq[i].mfc_cq_data3_RW =
375  in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
376  }
377  }
378 }
379 
380 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
381 {
382  struct spu_problem __iomem *prob = spu->problem;
383 
384  /* Save, Step 20:
385  * Save the PPU_QueryMask register
386  * in the CSA.
387  */
388  csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
389 }
390 
391 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
392 {
393  struct spu_problem __iomem *prob = spu->problem;
394 
395  /* Save, Step 21:
396  * Save the PPU_QueryType register
397  * in the CSA.
398  */
399  csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
400 }
401 
402 static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
403 {
404  struct spu_problem __iomem *prob = spu->problem;
405 
406  /* Save the Prxy_TagStatus register in the CSA.
407  *
408  * It is unnecessary to restore dma_tagstatus_R, however,
409  * dma_tagstatus_R in the CSA is accessed via backing_ops, so
410  * we must save it.
411  */
412  csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
413 }
414 
415 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
416 {
417  struct spu_priv2 __iomem *priv2 = spu->priv2;
418 
419  /* Save, Step 22:
420  * Save the MFC_CSR_TSQ register
421  * in the LSCSA.
422  */
423  csa->priv2.spu_tag_status_query_RW =
424  in_be64(&priv2->spu_tag_status_query_RW);
425 }
426 
427 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
428 {
429  struct spu_priv2 __iomem *priv2 = spu->priv2;
430 
431  /* Save, Step 23:
432  * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
433  * registers in the CSA.
434  */
435  csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
436  csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
437 }
438 
439 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
440 {
441  struct spu_priv2 __iomem *priv2 = spu->priv2;
442 
443  /* Save, Step 24:
444  * Save the MFC_CSR_ATO register in
445  * the CSA.
446  */
447  csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
448 }
449 
450 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
451 {
452  /* Save, Step 25:
453  * Save the MFC_TCLASS_ID register in
454  * the CSA.
455  */
456  csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
457 }
458 
459 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
460 {
461  /* Save, Step 26:
462  * Restore, Step 23.
463  * Write the MFC_TCLASS_ID register with
464  * the value 0x10000000.
465  */
466  spu_mfc_tclass_id_set(spu, 0x10000000);
467  eieio();
468 }
469 
470 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
471 {
472  struct spu_priv2 __iomem *priv2 = spu->priv2;
473 
474  /* Save, Step 27:
475  * Restore, Step 14.
476  * Write MFC_CNTL[Pc]=1 (purge queue).
477  */
478  out_be64(&priv2->mfc_control_RW,
479  MFC_CNTL_PURGE_DMA_REQUEST |
480  MFC_CNTL_SUSPEND_MASK);
481  eieio();
482 }
483 
484 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
485 {
486  struct spu_priv2 __iomem *priv2 = spu->priv2;
487 
488  /* Save, Step 28:
489  * Poll MFC_CNTL[Ps] until value '11' is read
490  * (purge complete).
491  */
492  POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
493  MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
494  MFC_CNTL_PURGE_DMA_COMPLETE);
495 }
496 
497 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
498 {
499  /* Save, Step 30:
500  * Restore, Step 18:
501  * Write MFC_SR1 with MFC_SR1[D=0,S=1] and
502  * MFC_SR1[TL,R,Pr,T] set correctly for the
503  * OS specific environment.
504  *
505  * Implementation note: The SPU-side code
506  * for save/restore is privileged, so the
507  * MFC_SR1[Pr] bit is not set.
508  *
509  */
510  spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
511  MFC_STATE1_RELOCATE_MASK |
512  MFC_STATE1_BUS_TLBIE_MASK));
513 }
514 
515 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
516 {
517  struct spu_problem __iomem *prob = spu->problem;
518 
519  /* Save, Step 31:
520  * Save SPU_NPC in the CSA.
521  */
522  csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
523 }
524 
525 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
526 {
527  struct spu_priv2 __iomem *priv2 = spu->priv2;
528 
529  /* Save, Step 32:
530  * Save SPU_PrivCntl in the CSA.
531  */
532  csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
533 }
534 
535 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
536 {
537  struct spu_priv2 __iomem *priv2 = spu->priv2;
538 
539  /* Save, Step 33:
540  * Restore, Step 16:
541  * Write SPU_PrivCntl[S,Le,A] fields reset to 0.
542  */
543  out_be64(&priv2->spu_privcntl_RW, 0UL);
544  eieio();
545 }
546 
547 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
548 {
549  struct spu_priv2 __iomem *priv2 = spu->priv2;
550 
551  /* Save, Step 34:
552  * Save SPU_LSLR in the CSA.
553  */
554  csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
555 }
556 
557 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
558 {
559  struct spu_priv2 __iomem *priv2 = spu->priv2;
560 
561  /* Save, Step 35:
562  * Restore, Step 17.
563  * Reset SPU_LSLR.
564  */
565  out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
566  eieio();
567 }
568 
569 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
570 {
571  struct spu_priv2 __iomem *priv2 = spu->priv2;
572 
573  /* Save, Step 36:
574  * Save SPU_Cfg in the CSA.
575  */
576  csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
577 }
578 
579 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
580 {
581  /* Save, Step 37:
582  * Save PM_Trace_Tag_Wait_Mask in the CSA.
583  * Not performed by this implementation.
584  */
585 }
586 
587 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
588 {
589  /* Save, Step 38:
590  * Save RA_GROUP_ID register and the
591  * RA_ENABLE reigster in the CSA.
592  */
593  csa->priv1.resource_allocation_groupID_RW =
594  spu_resource_allocation_groupID_get(spu);
595  csa->priv1.resource_allocation_enable_RW =
596  spu_resource_allocation_enable_get(spu);
597 }
598 
599 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
600 {
601  struct spu_problem __iomem *prob = spu->problem;
602 
603  /* Save, Step 39:
604  * Save MB_Stat register in the CSA.
605  */
606  csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
607 }
608 
609 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
610 {
611  struct spu_problem __iomem *prob = spu->problem;
612 
613  /* Save, Step 40:
614  * Save the PPU_MB register in the CSA.
615  */
616  csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
617 }
618 
619 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
620 {
621  struct spu_priv2 __iomem *priv2 = spu->priv2;
622 
623  /* Save, Step 41:
624  * Save the PPUINT_MB register in the CSA.
625  */
626  csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
627 }
628 
629 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
630 {
631  struct spu_priv2 __iomem *priv2 = spu->priv2;
632  u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
633  int i;
634 
635  /* Save, Step 42:
636  */
637 
638  /* Save CH 1, without channel count */
639  out_be64(&priv2->spu_chnlcntptr_RW, 1);
640  csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
641 
642  /* Save the following CH: [0,3,4,24,25,27] */
643  for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
644  idx = ch_indices[i];
645  out_be64(&priv2->spu_chnlcntptr_RW, idx);
646  eieio();
647  csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
648  csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
649  out_be64(&priv2->spu_chnldata_RW, 0UL);
650  out_be64(&priv2->spu_chnlcnt_RW, 0UL);
651  eieio();
652  }
653 }
654 
655 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
656 {
657  struct spu_priv2 __iomem *priv2 = spu->priv2;
658  int i;
659 
660  /* Save, Step 43:
661  * Save SPU Read Mailbox Channel.
662  */
663  out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
664  eieio();
665  csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
666  for (i = 0; i < 4; i++) {
667  csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
668  }
669  out_be64(&priv2->spu_chnlcnt_RW, 0UL);
670  eieio();
671 }
672 
673 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
674 {
675  struct spu_priv2 __iomem *priv2 = spu->priv2;
676 
677  /* Save, Step 44:
678  * Save MFC_CMD Channel.
679  */
680  out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
681  eieio();
682  csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
683  eieio();
684 }
685 
686 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
687 {
688  struct spu_priv2 __iomem *priv2 = spu->priv2;
689  u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
690  u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
691  u64 idx;
692  int i;
693 
694  /* Save, Step 45:
695  * Reset the following CH: [21, 23, 28, 30]
696  */
697  for (i = 0; i < 4; i++) {
698  idx = ch_indices[i];
699  out_be64(&priv2->spu_chnlcntptr_RW, idx);
700  eieio();
701  out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
702  eieio();
703  }
704 }
705 
706 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
707 {
708  struct spu_priv2 __iomem *priv2 = spu->priv2;
709 
710  /* Save, Step 46:
711  * Restore, Step 25.
712  * Write MFC_CNTL[Sc]=0 (resume queue processing).
713  */
714  out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
715 }
716 
717 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
718  unsigned int *code, int code_size)
719 {
720  /* Save, Step 47:
721  * Restore, Step 30.
722  * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
723  * register, then initialize SLB_VSID and SLB_ESID
724  * to provide access to SPU context save code and
725  * LSCSA.
726  *
727  * This implementation places both the context
728  * switch code and LSCSA in kernel address space.
729  *
730  * Further this implementation assumes that the
731  * MFC_SR1[R]=1 (in other words, assume that
732  * translation is desired by OS environment).
733  */
734  spu_invalidate_slbs(spu);
735  spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
736 }
737 
738 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
739 {
740  /* Save, Step 48:
741  * Restore, Step 23.
742  * Change the software context switch pending flag
743  * to context switch active. This implementation does
744  * not uses a switch active flag.
745  *
746  * Now that we have saved the mfc in the csa, we can add in the
747  * restart command if an exception occurred.
748  */
749  if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags))
750  csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND;
751  clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
752  mb();
753 }
754 
755 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
756 {
757  unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
758  CLASS1_ENABLE_STORAGE_FAULT_INTR;
759 
760  /* Save, Step 49:
761  * Restore, Step 22:
762  * Reset and then enable interrupts, as
763  * needed by OS.
764  *
765  * This implementation enables only class1
766  * (translation) interrupts.
767  */
768  spin_lock_irq(&spu->register_lock);
769  spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
770  spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
771  spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
772  spu_int_mask_set(spu, 0, 0ul);
773  spu_int_mask_set(spu, 1, class1_mask);
774  spu_int_mask_set(spu, 2, 0ul);
775  spin_unlock_irq(&spu->register_lock);
776 }
777 
778 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
779  unsigned int ls_offset, unsigned int size,
780  unsigned int tag, unsigned int rclass,
781  unsigned int cmd)
782 {
783  struct spu_problem __iomem *prob = spu->problem;
784  union mfc_tag_size_class_cmd command;
785  unsigned int transfer_size;
786  volatile unsigned int status = 0x0;
787 
788  while (size > 0) {
789  transfer_size =
790  (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
791  command.u.mfc_size = transfer_size;
792  command.u.mfc_tag = tag;
793  command.u.mfc_rclassid = rclass;
794  command.u.mfc_cmd = cmd;
795  do {
796  out_be32(&prob->mfc_lsa_W, ls_offset);
797  out_be64(&prob->mfc_ea_W, ea);
798  out_be64(&prob->mfc_union_W.all64, command.all64);
799  status =
800  in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
801  if (unlikely(status & 0x2)) {
802  cpu_relax();
803  }
804  } while (status & 0x3);
805  size -= transfer_size;
806  ea += transfer_size;
807  ls_offset += transfer_size;
808  }
809  return 0;
810 }
811 
812 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
813 {
814  unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
815  unsigned int ls_offset = 0x0;
816  unsigned int size = 16384;
817  unsigned int tag = 0;
818  unsigned int rclass = 0;
819  unsigned int cmd = MFC_PUT_CMD;
820 
821  /* Save, Step 50:
822  * Issue a DMA command to copy the first 16K bytes
823  * of local storage to the CSA.
824  */
825  send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
826 }
827 
828 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
829 {
830  struct spu_problem __iomem *prob = spu->problem;
831 
832  /* Save, Step 51:
833  * Restore, Step 31.
834  * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
835  * point address of context save code in local
836  * storage.
837  *
838  * This implementation uses SPU-side save/restore
839  * programs with entry points at LSA of 0.
840  */
841  out_be32(&prob->spu_npc_RW, 0);
842  eieio();
843 }
844 
845 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
846 {
847  struct spu_problem __iomem *prob = spu->problem;
848  union {
849  u64 ull;
850  u32 ui[2];
851  } addr64;
852 
853  /* Save, Step 52:
854  * Restore, Step 32:
855  * Write SPU_Sig_Notify_1 register with upper 32-bits
856  * of the CSA.LSCSA effective address.
857  */
858  addr64.ull = (u64) csa->lscsa;
859  out_be32(&prob->signal_notify1, addr64.ui[0]);
860  eieio();
861 }
862 
863 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
864 {
865  struct spu_problem __iomem *prob = spu->problem;
866  union {
867  u64 ull;
868  u32 ui[2];
869  } addr64;
870 
871  /* Save, Step 53:
872  * Restore, Step 33:
873  * Write SPU_Sig_Notify_2 register with lower 32-bits
874  * of the CSA.LSCSA effective address.
875  */
876  addr64.ull = (u64) csa->lscsa;
877  out_be32(&prob->signal_notify2, addr64.ui[1]);
878  eieio();
879 }
880 
881 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
882 {
883  unsigned long addr = (unsigned long)&spu_save_code[0];
884  unsigned int ls_offset = 0x0;
885  unsigned int size = sizeof(spu_save_code);
886  unsigned int tag = 0;
887  unsigned int rclass = 0;
888  unsigned int cmd = MFC_GETFS_CMD;
889 
890  /* Save, Step 54:
891  * Issue a DMA command to copy context save code
892  * to local storage and start SPU.
893  */
894  send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
895 }
896 
897 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
898 {
899  struct spu_problem __iomem *prob = spu->problem;
900 
901  /* Save, Step 55:
902  * Restore, Step 38.
903  * Write PPU_QueryMask=1 (enable Tag Group 0)
904  * and issue eieio instruction.
905  */
906  out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
907  eieio();
908 }
909 
910 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
911 {
912  struct spu_problem __iomem *prob = spu->problem;
913  u32 mask = MFC_TAGID_TO_TAGMASK(0);
914  unsigned long flags;
915 
916  /* Save, Step 56:
917  * Restore, Step 39.
918  * Restore, Step 39.
919  * Restore, Step 46.
920  * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
921  * or write PPU_QueryType[TS]=01 and wait for Tag Group
922  * Complete Interrupt. Write INT_Stat_Class0 or
923  * INT_Stat_Class2 with value of 'handled'.
924  */
925  POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
926 
927  local_irq_save(flags);
928  spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
929  spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
930  local_irq_restore(flags);
931 }
932 
933 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
934 {
935  struct spu_problem __iomem *prob = spu->problem;
936  unsigned long flags;
937 
938  /* Save, Step 57:
939  * Restore, Step 40.
940  * Poll until SPU_Status[R]=0 or wait for SPU Class 0
941  * or SPU Class 2 interrupt. Write INT_Stat_class0
942  * or INT_Stat_class2 with value of handled.
943  */
944  POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
945 
946  local_irq_save(flags);
947  spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
948  spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
949  local_irq_restore(flags);
950 }
951 
952 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
953 {
954  struct spu_problem __iomem *prob = spu->problem;
955  u32 complete;
956 
957  /* Save, Step 54:
958  * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
959  * context save succeeded, otherwise context save
960  * failed.
961  */
962  complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
963  SPU_STATUS_STOPPED_BY_STOP);
964  return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
965 }
966 
967 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
968 {
969  /* Restore, Step 4:
970  * If required, notify the "using application" that
971  * the SPU task has been terminated. TBD.
972  */
973 }
974 
975 static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
976  struct spu *spu)
977 {
978  struct spu_priv2 __iomem *priv2 = spu->priv2;
979 
980  /* Restore, Step 7:
981  * Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
982  * the queue and halt the decrementer.
983  */
984  out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
985  MFC_CNTL_DECREMENTER_HALTED);
986  eieio();
987 }
988 
989 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
990  struct spu *spu)
991 {
992  struct spu_priv2 __iomem *priv2 = spu->priv2;
993 
994  /* Restore, Step 8:
995  * Restore, Step 47.
996  * Poll MFC_CNTL[Ss] until 11 is returned.
997  */
998  POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
999  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
1000  MFC_CNTL_SUSPEND_COMPLETE);
1001 }
1002 
1003 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1004 {
1005  struct spu_problem __iomem *prob = spu->problem;
1006 
1007  /* Restore, Step 9:
1008  * If SPU_Status[R]=1, stop SPU execution
1009  * and wait for stop to complete.
1010  *
1011  * Returns 1 if SPU_Status[R]=1 on entry.
1012  * 0 otherwise
1013  */
1014  if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1015  if (in_be32(&prob->spu_status_R) &
1016  SPU_STATUS_ISOLATED_EXIT_STATUS) {
1017  POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1018  SPU_STATUS_RUNNING);
1019  }
1020  if ((in_be32(&prob->spu_status_R) &
1021  SPU_STATUS_ISOLATED_LOAD_STATUS)
1022  || (in_be32(&prob->spu_status_R) &
1023  SPU_STATUS_ISOLATED_STATE)) {
1024  out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1025  eieio();
1026  POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1027  SPU_STATUS_RUNNING);
1028  out_be32(&prob->spu_runcntl_RW, 0x2);
1029  eieio();
1030  POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1031  SPU_STATUS_RUNNING);
1032  }
1033  if (in_be32(&prob->spu_status_R) &
1034  SPU_STATUS_WAITING_FOR_CHANNEL) {
1035  out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1036  eieio();
1037  POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1038  SPU_STATUS_RUNNING);
1039  }
1040  return 1;
1041  }
1042  return 0;
1043 }
1044 
1045 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1046 {
1047  struct spu_problem __iomem *prob = spu->problem;
1048 
1049  /* Restore, Step 10:
1050  * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1051  * release SPU from isolate state.
1052  */
1053  if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1054  if (in_be32(&prob->spu_status_R) &
1055  SPU_STATUS_ISOLATED_EXIT_STATUS) {
1056  spu_mfc_sr1_set(spu,
1057  MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1058  eieio();
1059  out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1060  eieio();
1061  POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1062  SPU_STATUS_RUNNING);
1063  }
1064  if ((in_be32(&prob->spu_status_R) &
1065  SPU_STATUS_ISOLATED_LOAD_STATUS)
1066  || (in_be32(&prob->spu_status_R) &
1067  SPU_STATUS_ISOLATED_STATE)) {
1068  spu_mfc_sr1_set(spu,
1069  MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1070  eieio();
1071  out_be32(&prob->spu_runcntl_RW, 0x2);
1072  eieio();
1073  POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1074  SPU_STATUS_RUNNING);
1075  }
1076  }
1077 }
1078 
1079 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1080 {
1081  struct spu_priv2 __iomem *priv2 = spu->priv2;
1082  u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1083  u64 idx;
1084  int i;
1085 
1086  /* Restore, Step 20:
1087  */
1088 
1089  /* Reset CH 1 */
1090  out_be64(&priv2->spu_chnlcntptr_RW, 1);
1091  out_be64(&priv2->spu_chnldata_RW, 0UL);
1092 
1093  /* Reset the following CH: [0,3,4,24,25,27] */
1094  for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1095  idx = ch_indices[i];
1096  out_be64(&priv2->spu_chnlcntptr_RW, idx);
1097  eieio();
1098  out_be64(&priv2->spu_chnldata_RW, 0UL);
1099  out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1100  eieio();
1101  }
1102 }
1103 
1104 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1105 {
1106  struct spu_priv2 __iomem *priv2 = spu->priv2;
1107  u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1108  u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1109  u64 idx;
1110  int i;
1111 
1112  /* Restore, Step 21:
1113  * Reset the following CH: [21, 23, 28, 29, 30]
1114  */
1115  for (i = 0; i < 5; i++) {
1116  idx = ch_indices[i];
1117  out_be64(&priv2->spu_chnlcntptr_RW, idx);
1118  eieio();
1119  out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1120  eieio();
1121  }
1122 }
1123 
1124 static inline void setup_spu_status_part1(struct spu_state *csa,
1125  struct spu *spu)
1126 {
1127  u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1128  u32 status_I = SPU_STATUS_INVALID_INSTR;
1129  u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1130  u32 status_S = SPU_STATUS_SINGLE_STEP;
1131  u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1132  u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1133  u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1134  u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1135  u32 status_code;
1136 
1137  /* Restore, Step 27:
1138  * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1139  * instruction sequence to the end of the SPU based restore
1140  * code (after the "context restored" stop and signal) to
1141  * restore the correct SPU status.
1142  *
1143  * NOTE: Rather than modifying the SPU executable, we
1144  * instead add a new 'stopped_status' field to the
1145  * LSCSA. The SPU-side restore reads this field and
1146  * takes the appropriate action when exiting.
1147  */
1148 
1149  status_code =
1150  (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1151  if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1152 
1153  /* SPU_Status[P,I]=1 - Illegal Instruction followed
1154  * by Stop and Signal instruction, followed by 'br -4'.
1155  *
1156  */
1157  csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1158  csa->lscsa->stopped_status.slot[1] = status_code;
1159 
1160  } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1161 
1162  /* SPU_Status[P,H]=1 - Halt Conditional, followed
1163  * by Stop and Signal instruction, followed by
1164  * 'br -4'.
1165  */
1166  csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1167  csa->lscsa->stopped_status.slot[1] = status_code;
1168 
1169  } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1170 
1171  /* SPU_Status[S,P]=1 - Stop and Signal instruction
1172  * followed by 'br -4'.
1173  */
1174  csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1175  csa->lscsa->stopped_status.slot[1] = status_code;
1176 
1177  } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1178 
1179  /* SPU_Status[S,I]=1 - Illegal instruction followed
1180  * by 'br -4'.
1181  */
1182  csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1183  csa->lscsa->stopped_status.slot[1] = status_code;
1184 
1185  } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1186 
1187  /* SPU_Status[P]=1 - Stop and Signal instruction
1188  * followed by 'br -4'.
1189  */
1190  csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1191  csa->lscsa->stopped_status.slot[1] = status_code;
1192 
1193  } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1194 
1195  /* SPU_Status[H]=1 - Halt Conditional, followed
1196  * by 'br -4'.
1197  */
1198  csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1199 
1200  } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1201 
1202  /* SPU_Status[S]=1 - Two nop instructions.
1203  */
1204  csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1205 
1206  } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1207 
1208  /* SPU_Status[I]=1 - Illegal instruction followed
1209  * by 'br -4'.
1210  */
1211  csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1212 
1213  }
1214 }
1215 
1216 static inline void setup_spu_status_part2(struct spu_state *csa,
1217  struct spu *spu)
1218 {
1219  u32 mask;
1220 
1221  /* Restore, Step 28:
1222  * If the CSA.SPU_Status[I,S,H,P,R]=0 then
1223  * add a 'br *' instruction to the end of
1224  * the SPU based restore code.
1225  *
1226  * NOTE: Rather than modifying the SPU executable, we
1227  * instead add a new 'stopped_status' field to the
1228  * LSCSA. The SPU-side restore reads this field and
1229  * takes the appropriate action when exiting.
1230  */
1231  mask = SPU_STATUS_INVALID_INSTR |
1232  SPU_STATUS_SINGLE_STEP |
1233  SPU_STATUS_STOPPED_BY_HALT |
1234  SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1235  if (!(csa->prob.spu_status_R & mask)) {
1236  csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1237  }
1238 }
1239 
1240 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1241 {
1242  /* Restore, Step 29:
1243  * Restore RA_GROUP_ID register and the
1244  * RA_ENABLE reigster from the CSA.
1245  */
1246  spu_resource_allocation_groupID_set(spu,
1247  csa->priv1.resource_allocation_groupID_RW);
1248  spu_resource_allocation_enable_set(spu,
1249  csa->priv1.resource_allocation_enable_RW);
1250 }
1251 
1252 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1253 {
1254  unsigned long addr = (unsigned long)&spu_restore_code[0];
1255  unsigned int ls_offset = 0x0;
1256  unsigned int size = sizeof(spu_restore_code);
1257  unsigned int tag = 0;
1258  unsigned int rclass = 0;
1259  unsigned int cmd = MFC_GETFS_CMD;
1260 
1261  /* Restore, Step 37:
1262  * Issue MFC DMA command to copy context
1263  * restore code to local storage.
1264  */
1265  send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1266 }
1267 
1268 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1269 {
1270  /* Restore, Step 34:
1271  * If CSA.MFC_CNTL[Ds]=1 (decrementer was
1272  * running) then adjust decrementer, set
1273  * decrementer running status in LSCSA,
1274  * and set decrementer "wrapped" status
1275  * in LSCSA.
1276  */
1277  if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1278  cycles_t resume_time = get_cycles();
1279  cycles_t delta_time = resume_time - csa->suspend_time;
1280 
1281  csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1282  if (csa->lscsa->decr.slot[0] < delta_time) {
1283  csa->lscsa->decr_status.slot[0] |=
1284  SPU_DECR_STATUS_WRAPPED;
1285  }
1286 
1287  csa->lscsa->decr.slot[0] -= delta_time;
1288  } else {
1289  csa->lscsa->decr_status.slot[0] = 0;
1290  }
1291 }
1292 
1293 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1294 {
1295  /* Restore, Step 35:
1296  * Copy the CSA.PU_MB data into the LSCSA.
1297  */
1298  csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1299 }
1300 
1301 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1302 {
1303  /* Restore, Step 36:
1304  * Copy the CSA.PUINT_MB data into the LSCSA.
1305  */
1306  csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1307 }
1308 
1309 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1310 {
1311  struct spu_problem __iomem *prob = spu->problem;
1312  u32 complete;
1313 
1314  /* Restore, Step 40:
1315  * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1316  * context restore succeeded, otherwise context restore
1317  * failed.
1318  */
1319  complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1320  SPU_STATUS_STOPPED_BY_STOP);
1321  return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1322 }
1323 
1324 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1325 {
1326  struct spu_priv2 __iomem *priv2 = spu->priv2;
1327 
1328  /* Restore, Step 41:
1329  * Restore SPU_PrivCntl from the CSA.
1330  */
1331  out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1332  eieio();
1333 }
1334 
1335 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1336 {
1337  struct spu_problem __iomem *prob = spu->problem;
1338  u32 mask;
1339 
1340  /* Restore, Step 42:
1341  * If any CSA.SPU_Status[I,S,H,P]=1, then
1342  * restore the error or single step state.
1343  */
1344  mask = SPU_STATUS_INVALID_INSTR |
1345  SPU_STATUS_SINGLE_STEP |
1346  SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1347  if (csa->prob.spu_status_R & mask) {
1348  out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1349  eieio();
1350  POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1351  SPU_STATUS_RUNNING);
1352  }
1353 }
1354 
1355 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1356 {
1357  struct spu_problem __iomem *prob = spu->problem;
1358  u32 mask;
1359 
1360  /* Restore, Step 43:
1361  * If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1362  * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1363  * then write '00' to SPU_RunCntl[R0R1] and wait
1364  * for SPU_Status[R]=0.
1365  */
1366  mask = SPU_STATUS_INVALID_INSTR |
1367  SPU_STATUS_SINGLE_STEP |
1368  SPU_STATUS_STOPPED_BY_HALT |
1369  SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1370  if (!(csa->prob.spu_status_R & mask)) {
1371  out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1372  eieio();
1373  POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1374  SPU_STATUS_RUNNING);
1375  out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1376  eieio();
1377  POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1378  SPU_STATUS_RUNNING);
1379  }
1380 }
1381 
1382 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1383 {
1384  unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1385  unsigned int ls_offset = 0x0;
1386  unsigned int size = 16384;
1387  unsigned int tag = 0;
1388  unsigned int rclass = 0;
1389  unsigned int cmd = MFC_GET_CMD;
1390 
1391  /* Restore, Step 44:
1392  * Issue a DMA command to restore the first
1393  * 16kb of local storage from CSA.
1394  */
1395  send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1396 }
1397 
1398 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1399 {
1400  struct spu_priv2 __iomem *priv2 = spu->priv2;
1401 
1402  /* Restore, Step 47.
1403  * Write MFC_Cntl[Sc,Sm]='1','0' to suspend
1404  * the queue.
1405  */
1406  out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1407  eieio();
1408 }
1409 
1410 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1411 {
1412  /* Restore, Step 49:
1413  * Write INT_MASK_class0 with value of 0.
1414  * Write INT_MASK_class1 with value of 0.
1415  * Write INT_MASK_class2 with value of 0.
1416  * Write INT_STAT_class0 with value of -1.
1417  * Write INT_STAT_class1 with value of -1.
1418  * Write INT_STAT_class2 with value of -1.
1419  */
1420  spin_lock_irq(&spu->register_lock);
1421  spu_int_mask_set(spu, 0, 0ul);
1422  spu_int_mask_set(spu, 1, 0ul);
1423  spu_int_mask_set(spu, 2, 0ul);
1424  spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
1425  spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
1426  spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
1427  spin_unlock_irq(&spu->register_lock);
1428 }
1429 
1430 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1431 {
1432  struct spu_priv2 __iomem *priv2 = spu->priv2;
1433  int i;
1434 
1435  /* Restore, Step 50:
1436  * If MFC_Cntl[Se]!=0 then restore
1437  * MFC command queues.
1438  */
1439  if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1440  for (i = 0; i < 8; i++) {
1441  out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1442  csa->priv2.puq[i].mfc_cq_data0_RW);
1443  out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1444  csa->priv2.puq[i].mfc_cq_data1_RW);
1445  out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1446  csa->priv2.puq[i].mfc_cq_data2_RW);
1447  out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1448  csa->priv2.puq[i].mfc_cq_data3_RW);
1449  }
1450  for (i = 0; i < 16; i++) {
1451  out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1452  csa->priv2.spuq[i].mfc_cq_data0_RW);
1453  out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1454  csa->priv2.spuq[i].mfc_cq_data1_RW);
1455  out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1456  csa->priv2.spuq[i].mfc_cq_data2_RW);
1457  out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1458  csa->priv2.spuq[i].mfc_cq_data3_RW);
1459  }
1460  }
1461  eieio();
1462 }
1463 
1464 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1465 {
1466  struct spu_problem __iomem *prob = spu->problem;
1467 
1468  /* Restore, Step 51:
1469  * Restore the PPU_QueryMask register from CSA.
1470  */
1471  out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1472  eieio();
1473 }
1474 
1475 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1476 {
1477  struct spu_problem __iomem *prob = spu->problem;
1478 
1479  /* Restore, Step 52:
1480  * Restore the PPU_QueryType register from CSA.
1481  */
1482  out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1483  eieio();
1484 }
1485 
1486 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1487 {
1488  struct spu_priv2 __iomem *priv2 = spu->priv2;
1489 
1490  /* Restore, Step 53:
1491  * Restore the MFC_CSR_TSQ register from CSA.
1492  */
1493  out_be64(&priv2->spu_tag_status_query_RW,
1494  csa->priv2.spu_tag_status_query_RW);
1495  eieio();
1496 }
1497 
1498 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1499 {
1500  struct spu_priv2 __iomem *priv2 = spu->priv2;
1501 
1502  /* Restore, Step 54:
1503  * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1504  * registers from CSA.
1505  */
1506  out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1507  out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1508  eieio();
1509 }
1510 
1511 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1512 {
1513  struct spu_priv2 __iomem *priv2 = spu->priv2;
1514 
1515  /* Restore, Step 55:
1516  * Restore the MFC_CSR_ATO register from CSA.
1517  */
1518  out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1519 }
1520 
1521 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1522 {
1523  /* Restore, Step 56:
1524  * Restore the MFC_TCLASS_ID register from CSA.
1525  */
1526  spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1527  eieio();
1528 }
1529 
1530 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1531 {
1532  u64 ch0_cnt, ch0_data;
1533  u64 ch1_data;
1534 
1535  /* Restore, Step 57:
1536  * Set the Lock Line Reservation Lost Event by:
1537  * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1538  * 2. If CSA.SPU_Channel_0_Count=0 and
1539  * CSA.SPU_Wr_Event_Mask[Lr]=1 and
1540  * CSA.SPU_Event_Status[Lr]=0 then set
1541  * CSA.SPU_Event_Status_Count=1.
1542  */
1543  ch0_cnt = csa->spu_chnlcnt_RW[0];
1544  ch0_data = csa->spu_chnldata_RW[0];
1545  ch1_data = csa->spu_chnldata_RW[1];
1546  csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1547  if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1548  (ch1_data & MFC_LLR_LOST_EVENT)) {
1549  csa->spu_chnlcnt_RW[0] = 1;
1550  }
1551 }
1552 
1553 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1554 {
1555  /* Restore, Step 58:
1556  * If the status of the CSA software decrementer
1557  * "wrapped" flag is set, OR in a '1' to
1558  * CSA.SPU_Event_Status[Tm].
1559  */
1560  if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
1561  return;
1562 
1563  if ((csa->spu_chnlcnt_RW[0] == 0) &&
1564  (csa->spu_chnldata_RW[1] & 0x20) &&
1565  !(csa->spu_chnldata_RW[0] & 0x20))
1566  csa->spu_chnlcnt_RW[0] = 1;
1567 
1568  csa->spu_chnldata_RW[0] |= 0x20;
1569 }
1570 
1571 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1572 {
1573  struct spu_priv2 __iomem *priv2 = spu->priv2;
1574  u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1575  int i;
1576 
1577  /* Restore, Step 59:
1578  * Restore the following CH: [0,3,4,24,25,27]
1579  */
1580  for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1581  idx = ch_indices[i];
1582  out_be64(&priv2->spu_chnlcntptr_RW, idx);
1583  eieio();
1584  out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1585  out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1586  eieio();
1587  }
1588 }
1589 
1590 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1591 {
1592  struct spu_priv2 __iomem *priv2 = spu->priv2;
1593  u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1594  u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1595  u64 idx;
1596  int i;
1597 
1598  /* Restore, Step 60:
1599  * Restore the following CH: [9,21,23].
1600  */
1601  ch_counts[0] = 1UL;
1602  ch_counts[1] = csa->spu_chnlcnt_RW[21];
1603  ch_counts[2] = 1UL;
1604  for (i = 0; i < 3; i++) {
1605  idx = ch_indices[i];
1606  out_be64(&priv2->spu_chnlcntptr_RW, idx);
1607  eieio();
1608  out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1609  eieio();
1610  }
1611 }
1612 
1613 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1614 {
1615  struct spu_priv2 __iomem *priv2 = spu->priv2;
1616 
1617  /* Restore, Step 61:
1618  * Restore the SPU_LSLR register from CSA.
1619  */
1620  out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1621  eieio();
1622 }
1623 
1624 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1625 {
1626  struct spu_priv2 __iomem *priv2 = spu->priv2;
1627 
1628  /* Restore, Step 62:
1629  * Restore the SPU_Cfg register from CSA.
1630  */
1631  out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1632  eieio();
1633 }
1634 
1635 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1636 {
1637  /* Restore, Step 63:
1638  * Restore PM_Trace_Tag_Wait_Mask from CSA.
1639  * Not performed by this implementation.
1640  */
1641 }
1642 
1643 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1644 {
1645  struct spu_problem __iomem *prob = spu->problem;
1646 
1647  /* Restore, Step 64:
1648  * Restore SPU_NPC from CSA.
1649  */
1650  out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1651  eieio();
1652 }
1653 
1654 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1655 {
1656  struct spu_priv2 __iomem *priv2 = spu->priv2;
1657  int i;
1658 
1659  /* Restore, Step 65:
1660  * Restore MFC_RdSPU_MB from CSA.
1661  */
1662  out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1663  eieio();
1664  out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1665  for (i = 0; i < 4; i++) {
1666  out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1667  }
1668  eieio();
1669 }
1670 
1671 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1672 {
1673  struct spu_problem __iomem *prob = spu->problem;
1674  u32 dummy = 0;
1675 
1676  /* Restore, Step 66:
1677  * If CSA.MB_Stat[P]=0 (mailbox empty) then
1678  * read from the PPU_MB register.
1679  */
1680  if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1681  dummy = in_be32(&prob->pu_mb_R);
1682  eieio();
1683  }
1684 }
1685 
1686 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1687 {
1688  struct spu_priv2 __iomem *priv2 = spu->priv2;
1689  u64 dummy = 0UL;
1690 
1691  /* Restore, Step 66:
1692  * If CSA.MB_Stat[I]=0 (mailbox empty) then
1693  * read from the PPUINT_MB register.
1694  */
1695  if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1696  dummy = in_be64(&priv2->puint_mb_R);
1697  eieio();
1698  spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1699  eieio();
1700  }
1701 }
1702 
1703 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1704 {
1705  /* Restore, Step 69:
1706  * Restore the MFC_SR1 register from CSA.
1707  */
1708  spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1709  eieio();
1710 }
1711 
1712 static inline void set_int_route(struct spu_state *csa, struct spu *spu)
1713 {
1714  struct spu_context *ctx = spu->ctx;
1715 
1716  spu_cpu_affinity_set(spu, ctx->last_ran);
1717 }
1718 
1719 static inline void restore_other_spu_access(struct spu_state *csa,
1720  struct spu *spu)
1721 {
1722  /* Restore, Step 70:
1723  * Restore other SPU mappings to this SPU. TBD.
1724  */
1725 }
1726 
1727 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1728 {
1729  struct spu_problem __iomem *prob = spu->problem;
1730 
1731  /* Restore, Step 71:
1732  * If CSA.SPU_Status[R]=1 then write
1733  * SPU_RunCntl[R0R1]='01'.
1734  */
1735  if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1736  out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1737  eieio();
1738  }
1739 }
1740 
1741 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1742 {
1743  struct spu_priv2 __iomem *priv2 = spu->priv2;
1744 
1745  /* Restore, Step 72:
1746  * Restore the MFC_CNTL register for the CSA.
1747  */
1748  out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1749  eieio();
1750 
1751  /*
1752  * The queue is put back into the same state that was evident prior to
1753  * the context switch. The suspend flag is added to the saved state in
1754  * the csa, if the operational state was suspending or suspended. In
1755  * this case, the code that suspended the mfc is responsible for
1756  * continuing it. Note that SPE faults do not change the operational
1757  * state of the spu.
1758  */
1759 }
1760 
1761 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1762 {
1763  /* Restore, Step 73:
1764  * Enable user-space access (if provided) to this
1765  * SPU by mapping the virtual pages assigned to
1766  * the SPU memory-mapped I/O (MMIO) for problem
1767  * state. TBD.
1768  */
1769 }
1770 
1771 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1772 {
1773  /* Restore, Step 74:
1774  * Reset the "context switch active" flag.
1775  * Not performed by this implementation.
1776  */
1777 }
1778 
1779 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1780 {
1781  /* Restore, Step 75:
1782  * Re-enable SPU interrupts.
1783  */
1784  spin_lock_irq(&spu->register_lock);
1785  spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1786  spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1787  spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1788  spin_unlock_irq(&spu->register_lock);
1789 }
1790 
1791 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1792 {
1793  /*
1794  * Combined steps 2-18 of SPU context save sequence, which
1795  * quiesce the SPU state (disable SPU execution, MFC command
1796  * queues, decrementer, SPU interrupts, etc.).
1797  *
1798  * Returns 0 on success.
1799  * 2 if failed step 2.
1800  * 6 if failed step 6.
1801  */
1802 
1803  if (check_spu_isolate(prev, spu)) { /* Step 2. */
1804  return 2;
1805  }
1806  disable_interrupts(prev, spu); /* Step 3. */
1807  set_watchdog_timer(prev, spu); /* Step 4. */
1808  inhibit_user_access(prev, spu); /* Step 5. */
1809  if (check_spu_isolate(prev, spu)) { /* Step 6. */
1810  return 6;
1811  }
1812  set_switch_pending(prev, spu); /* Step 7. */
1813  save_mfc_cntl(prev, spu); /* Step 8. */
1814  save_spu_runcntl(prev, spu); /* Step 9. */
1815  save_mfc_sr1(prev, spu); /* Step 10. */
1816  save_spu_status(prev, spu); /* Step 11. */
1817  save_mfc_stopped_status(prev, spu); /* Step 12. */
1818  halt_mfc_decr(prev, spu); /* Step 13. */
1819  save_timebase(prev, spu); /* Step 14. */
1820  remove_other_spu_access(prev, spu); /* Step 15. */
1821  do_mfc_mssync(prev, spu); /* Step 16. */
1822  issue_mfc_tlbie(prev, spu); /* Step 17. */
1823  handle_pending_interrupts(prev, spu); /* Step 18. */
1824 
1825  return 0;
1826 }
1827 
1828 static void save_csa(struct spu_state *prev, struct spu *spu)
1829 {
1830  /*
1831  * Combine steps 19-44 of SPU context save sequence, which
1832  * save regions of the privileged & problem state areas.
1833  */
1834 
1835  save_mfc_queues(prev, spu); /* Step 19. */
1836  save_ppu_querymask(prev, spu); /* Step 20. */
1837  save_ppu_querytype(prev, spu); /* Step 21. */
1838  save_ppu_tagstatus(prev, spu); /* NEW. */
1839  save_mfc_csr_tsq(prev, spu); /* Step 22. */
1840  save_mfc_csr_cmd(prev, spu); /* Step 23. */
1841  save_mfc_csr_ato(prev, spu); /* Step 24. */
1842  save_mfc_tclass_id(prev, spu); /* Step 25. */
1843  set_mfc_tclass_id(prev, spu); /* Step 26. */
1844  save_mfc_cmd(prev, spu); /* Step 26a - moved from 44. */
1845  purge_mfc_queue(prev, spu); /* Step 27. */
1846  wait_purge_complete(prev, spu); /* Step 28. */
1847  setup_mfc_sr1(prev, spu); /* Step 30. */
1848  save_spu_npc(prev, spu); /* Step 31. */
1849  save_spu_privcntl(prev, spu); /* Step 32. */
1850  reset_spu_privcntl(prev, spu); /* Step 33. */
1851  save_spu_lslr(prev, spu); /* Step 34. */
1852  reset_spu_lslr(prev, spu); /* Step 35. */
1853  save_spu_cfg(prev, spu); /* Step 36. */
1854  save_pm_trace(prev, spu); /* Step 37. */
1855  save_mfc_rag(prev, spu); /* Step 38. */
1856  save_ppu_mb_stat(prev, spu); /* Step 39. */
1857  save_ppu_mb(prev, spu); /* Step 40. */
1858  save_ppuint_mb(prev, spu); /* Step 41. */
1859  save_ch_part1(prev, spu); /* Step 42. */
1860  save_spu_mb(prev, spu); /* Step 43. */
1861  reset_ch(prev, spu); /* Step 45. */
1862 }
1863 
1864 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1865 {
1866  /*
1867  * Perform steps 46-57 of SPU context save sequence,
1868  * which save regions of the local store and register
1869  * file.
1870  */
1871 
1872  resume_mfc_queue(prev, spu); /* Step 46. */
1873  /* Step 47. */
1874  setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
1875  set_switch_active(prev, spu); /* Step 48. */
1876  enable_interrupts(prev, spu); /* Step 49. */
1877  save_ls_16kb(prev, spu); /* Step 50. */
1878  set_spu_npc(prev, spu); /* Step 51. */
1879  set_signot1(prev, spu); /* Step 52. */
1880  set_signot2(prev, spu); /* Step 53. */
1881  send_save_code(prev, spu); /* Step 54. */
1882  set_ppu_querymask(prev, spu); /* Step 55. */
1883  wait_tag_complete(prev, spu); /* Step 56. */
1884  wait_spu_stopped(prev, spu); /* Step 57. */
1885 }
1886 
1887 static void force_spu_isolate_exit(struct spu *spu)
1888 {
1889  struct spu_problem __iomem *prob = spu->problem;
1890  struct spu_priv2 __iomem *priv2 = spu->priv2;
1891 
1892  /* Stop SPE execution and wait for completion. */
1893  out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1894  iobarrier_rw();
1895  POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1896 
1897  /* Restart SPE master runcntl. */
1898  spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1899  iobarrier_w();
1900 
1901  /* Initiate isolate exit request and wait for completion. */
1902  out_be64(&priv2->spu_privcntl_RW, 4LL);
1903  iobarrier_w();
1904  out_be32(&prob->spu_runcntl_RW, 2);
1905  iobarrier_rw();
1906  POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1907  & SPU_STATUS_STOPPED_BY_STOP));
1908 
1909  /* Reset load request to normal. */
1910  out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1911  iobarrier_w();
1912 }
1913 
1919 static void stop_spu_isolate(struct spu *spu)
1920 {
1921  struct spu_problem __iomem *prob = spu->problem;
1922 
1923  if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1924  /* The SPU is in isolated state; the only way
1925  * to get it out is to perform an isolated
1926  * exit (clean) operation.
1927  */
1928  force_spu_isolate_exit(spu);
1929  }
1930 }
1931 
1932 static void harvest(struct spu_state *prev, struct spu *spu)
1933 {
1934  /*
1935  * Perform steps 2-25 of SPU context restore sequence,
1936  * which resets an SPU either after a failed save, or
1937  * when using SPU for first time.
1938  */
1939 
1940  disable_interrupts(prev, spu); /* Step 2. */
1941  inhibit_user_access(prev, spu); /* Step 3. */
1942  terminate_spu_app(prev, spu); /* Step 4. */
1943  set_switch_pending(prev, spu); /* Step 5. */
1944  stop_spu_isolate(spu); /* NEW. */
1945  remove_other_spu_access(prev, spu); /* Step 6. */
1946  suspend_mfc_and_halt_decr(prev, spu); /* Step 7. */
1947  wait_suspend_mfc_complete(prev, spu); /* Step 8. */
1948  if (!suspend_spe(prev, spu)) /* Step 9. */
1949  clear_spu_status(prev, spu); /* Step 10. */
1950  do_mfc_mssync(prev, spu); /* Step 11. */
1951  issue_mfc_tlbie(prev, spu); /* Step 12. */
1952  handle_pending_interrupts(prev, spu); /* Step 13. */
1953  purge_mfc_queue(prev, spu); /* Step 14. */
1954  wait_purge_complete(prev, spu); /* Step 15. */
1955  reset_spu_privcntl(prev, spu); /* Step 16. */
1956  reset_spu_lslr(prev, spu); /* Step 17. */
1957  setup_mfc_sr1(prev, spu); /* Step 18. */
1958  spu_invalidate_slbs(spu); /* Step 19. */
1959  reset_ch_part1(prev, spu); /* Step 20. */
1960  reset_ch_part2(prev, spu); /* Step 21. */
1961  enable_interrupts(prev, spu); /* Step 22. */
1962  set_switch_active(prev, spu); /* Step 23. */
1963  set_mfc_tclass_id(prev, spu); /* Step 24. */
1964  resume_mfc_queue(prev, spu); /* Step 25. */
1965 }
1966 
1967 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1968 {
1969  /*
1970  * Perform steps 26-40 of SPU context restore sequence,
1971  * which restores regions of the local store and register
1972  * file.
1973  */
1974 
1975  set_watchdog_timer(next, spu); /* Step 26. */
1976  setup_spu_status_part1(next, spu); /* Step 27. */
1977  setup_spu_status_part2(next, spu); /* Step 28. */
1978  restore_mfc_rag(next, spu); /* Step 29. */
1979  /* Step 30. */
1980  setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
1981  set_spu_npc(next, spu); /* Step 31. */
1982  set_signot1(next, spu); /* Step 32. */
1983  set_signot2(next, spu); /* Step 33. */
1984  setup_decr(next, spu); /* Step 34. */
1985  setup_ppu_mb(next, spu); /* Step 35. */
1986  setup_ppuint_mb(next, spu); /* Step 36. */
1987  send_restore_code(next, spu); /* Step 37. */
1988  set_ppu_querymask(next, spu); /* Step 38. */
1989  wait_tag_complete(next, spu); /* Step 39. */
1990  wait_spu_stopped(next, spu); /* Step 40. */
1991 }
1992 
1993 static void restore_csa(struct spu_state *next, struct spu *spu)
1994 {
1995  /*
1996  * Combine steps 41-76 of SPU context restore sequence, which
1997  * restore regions of the privileged & problem state areas.
1998  */
1999 
2000  restore_spu_privcntl(next, spu); /* Step 41. */
2001  restore_status_part1(next, spu); /* Step 42. */
2002  restore_status_part2(next, spu); /* Step 43. */
2003  restore_ls_16kb(next, spu); /* Step 44. */
2004  wait_tag_complete(next, spu); /* Step 45. */
2005  suspend_mfc(next, spu); /* Step 46. */
2006  wait_suspend_mfc_complete(next, spu); /* Step 47. */
2007  issue_mfc_tlbie(next, spu); /* Step 48. */
2008  clear_interrupts(next, spu); /* Step 49. */
2009  restore_mfc_queues(next, spu); /* Step 50. */
2010  restore_ppu_querymask(next, spu); /* Step 51. */
2011  restore_ppu_querytype(next, spu); /* Step 52. */
2012  restore_mfc_csr_tsq(next, spu); /* Step 53. */
2013  restore_mfc_csr_cmd(next, spu); /* Step 54. */
2014  restore_mfc_csr_ato(next, spu); /* Step 55. */
2015  restore_mfc_tclass_id(next, spu); /* Step 56. */
2016  set_llr_event(next, spu); /* Step 57. */
2017  restore_decr_wrapped(next, spu); /* Step 58. */
2018  restore_ch_part1(next, spu); /* Step 59. */
2019  restore_ch_part2(next, spu); /* Step 60. */
2020  restore_spu_lslr(next, spu); /* Step 61. */
2021  restore_spu_cfg(next, spu); /* Step 62. */
2022  restore_pm_trace(next, spu); /* Step 63. */
2023  restore_spu_npc(next, spu); /* Step 64. */
2024  restore_spu_mb(next, spu); /* Step 65. */
2025  check_ppu_mb_stat(next, spu); /* Step 66. */
2026  check_ppuint_mb_stat(next, spu); /* Step 67. */
2027  spu_invalidate_slbs(spu); /* Modified Step 68. */
2028  restore_mfc_sr1(next, spu); /* Step 69. */
2029  set_int_route(next, spu); /* NEW */
2030  restore_other_spu_access(next, spu); /* Step 70. */
2031  restore_spu_runcntl(next, spu); /* Step 71. */
2032  restore_mfc_cntl(next, spu); /* Step 72. */
2033  enable_user_access(next, spu); /* Step 73. */
2034  reset_switch_active(next, spu); /* Step 74. */
2035  reenable_interrupts(next, spu); /* Step 75. */
2036 }
2037 
2038 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2039 {
2040  int rc;
2041 
2042  /*
2043  * SPU context save can be broken into three phases:
2044  *
2045  * (a) quiesce [steps 2-16].
2046  * (b) save of CSA, performed by PPE [steps 17-42]
2047  * (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2048  *
2049  * Returns 0 on success.
2050  * 2,6 if failed to quiece SPU
2051  * 53 if SPU-side of save failed.
2052  */
2053 
2054  rc = quiece_spu(prev, spu); /* Steps 2-16. */
2055  switch (rc) {
2056  default:
2057  case 2:
2058  case 6:
2059  harvest(prev, spu);
2060  return rc;
2061  break;
2062  case 0:
2063  break;
2064  }
2065  save_csa(prev, spu); /* Steps 17-43. */
2066  save_lscsa(prev, spu); /* Steps 44-53. */
2067  return check_save_status(prev, spu); /* Step 54. */
2068 }
2069 
2070 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2071 {
2072  int rc;
2073 
2074  /*
2075  * SPU context restore can be broken into three phases:
2076  *
2077  * (a) harvest (or reset) SPU [steps 2-24].
2078  * (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2079  * (c) restore CSA [steps 41-76], performed by PPE.
2080  *
2081  * The 'harvest' step is not performed here, but rather
2082  * as needed below.
2083  */
2084 
2085  restore_lscsa(next, spu); /* Steps 24-39. */
2086  rc = check_restore_status(next, spu); /* Step 40. */
2087  switch (rc) {
2088  default:
2089  /* Failed. Return now. */
2090  return rc;
2091  break;
2092  case 0:
2093  /* Fall through to next step. */
2094  break;
2095  }
2096  restore_csa(next, spu);
2097 
2098  return 0;
2099 }
2100 
2108 int spu_save(struct spu_state *prev, struct spu *spu)
2109 {
2110  int rc;
2111 
2112  acquire_spu_lock(spu); /* Step 1. */
2113  rc = __do_spu_save(prev, spu); /* Steps 2-53. */
2114  release_spu_lock(spu);
2115  if (rc != 0 && rc != 2 && rc != 6) {
2116  panic("%s failed on SPU[%d], rc=%d.\n",
2117  __func__, spu->number, rc);
2118  }
2119  return 0;
2120 }
2122 
2132 int spu_restore(struct spu_state *new, struct spu *spu)
2133 {
2134  int rc;
2135 
2136  acquire_spu_lock(spu);
2137  harvest(NULL, spu);
2138  spu->slb_replace = 0;
2139  rc = __do_spu_restore(new, spu);
2140  release_spu_lock(spu);
2141  if (rc) {
2142  panic("%s failed on SPU[%d] rc=%d.\n",
2143  __func__, spu->number, rc);
2144  }
2145  return rc;
2146 }
2148 
2149 static void init_prob(struct spu_state *csa)
2150 {
2151  csa->spu_chnlcnt_RW[9] = 1;
2152  csa->spu_chnlcnt_RW[21] = 16;
2153  csa->spu_chnlcnt_RW[23] = 1;
2154  csa->spu_chnlcnt_RW[28] = 1;
2155  csa->spu_chnlcnt_RW[30] = 1;
2156  csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2157  csa->prob.mb_stat_R = 0x000400;
2158 }
2159 
2160 static void init_priv1(struct spu_state *csa)
2161 {
2162  /* Enable decode, relocate, tlbie response, master runcntl. */
2163  csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2164  MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2165  MFC_STATE1_PROBLEM_STATE_MASK |
2166  MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2167 
2168  /* Enable OS-specific set of interrupts. */
2169  csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2170  CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2171  CLASS0_ENABLE_SPU_ERROR_INTR;
2172  csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2173  CLASS1_ENABLE_STORAGE_FAULT_INTR;
2174  csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2175  CLASS2_ENABLE_SPU_HALT_INTR |
2176  CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2177 }
2178 
2179 static void init_priv2(struct spu_state *csa)
2180 {
2181  csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2182  csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2183  MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2184  MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2185 }
2186 
2198 int spu_init_csa(struct spu_state *csa)
2199 {
2200  int rc;
2201 
2202  if (!csa)
2203  return -EINVAL;
2204  memset(csa, 0, sizeof(struct spu_state));
2205 
2206  rc = spu_alloc_lscsa(csa);
2207  if (rc)
2208  return rc;
2209 
2210  spin_lock_init(&csa->register_lock);
2211 
2212  init_prob(csa);
2213  init_priv1(csa);
2214  init_priv2(csa);
2215 
2216  return 0;
2217 }
2218 
2219 void spu_fini_csa(struct spu_state *csa)
2220 {
2221  spu_free_lscsa(csa);
2222 }