Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tick-broadcast.c
Go to the documentation of this file.
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <[email protected]>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 
22 #include "tick-internal.h"
23 
24 /*
25  * Broadcast support for broken x86 hardware, where the local apic
26  * timer stops in C3 state.
27  */
28 
29 static struct tick_device tick_broadcast_device;
30 /* FIXME: Use cpumask_var_t. */
31 static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
32 static DECLARE_BITMAP(tmpmask, NR_CPUS);
33 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34 static int tick_broadcast_force;
35 
36 #ifdef CONFIG_TICK_ONESHOT
37 static void tick_broadcast_clear_oneshot(int cpu);
38 #else
39 static inline void tick_broadcast_clear_oneshot(int cpu) { }
40 #endif
41 
42 /*
43  * Debugging: see timer_list.c
44  */
45 struct tick_device *tick_get_broadcast_device(void)
46 {
47  return &tick_broadcast_device;
48 }
49 
51 {
52  return to_cpumask(tick_broadcast_mask);
53 }
54 
55 /*
56  * Start the device in periodic mode
57  */
58 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
59 {
60  if (bc)
61  tick_setup_periodic(bc, 1);
62 }
63 
64 /*
65  * Check, if the device can be utilized as broadcast device:
66  */
67 int tick_check_broadcast_device(struct clock_event_device *dev)
68 {
69  if ((tick_broadcast_device.evtdev &&
70  tick_broadcast_device.evtdev->rating >= dev->rating) ||
71  (dev->features & CLOCK_EVT_FEAT_C3STOP))
72  return 0;
73 
74  clockevents_exchange_device(tick_broadcast_device.evtdev, dev);
75  tick_broadcast_device.evtdev = dev;
76  if (!cpumask_empty(tick_get_broadcast_mask()))
77  tick_broadcast_start_periodic(dev);
78  return 1;
79 }
80 
81 /*
82  * Check, if the device is the broadcast device
83  */
84 int tick_is_broadcast_device(struct clock_event_device *dev)
85 {
86  return (dev && tick_broadcast_device.evtdev == dev);
87 }
88 
89 /*
90  * Check, if the device is disfunctional and a place holder, which
91  * needs to be handled by the broadcast device.
92  */
93 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
94 {
95  unsigned long flags;
96  int ret = 0;
97 
98  raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
99 
100  /*
101  * Devices might be registered with both periodic and oneshot
102  * mode disabled. This signals, that the device needs to be
103  * operated from the broadcast device and is a placeholder for
104  * the cpu local device.
105  */
106  if (!tick_device_is_functional(dev)) {
107  dev->event_handler = tick_handle_periodic;
108  cpumask_set_cpu(cpu, tick_get_broadcast_mask());
109  tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
110  ret = 1;
111  } else {
112  /*
113  * When the new device is not affected by the stop
114  * feature and the cpu is marked in the broadcast mask
115  * then clear the broadcast bit.
116  */
117  if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
118  int cpu = smp_processor_id();
119 
120  cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
121  tick_broadcast_clear_oneshot(cpu);
122  }
123  }
124  raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
125  return ret;
126 }
127 
128 /*
129  * Broadcast the event to the cpus, which are set in the mask (mangled).
130  */
131 static void tick_do_broadcast(struct cpumask *mask)
132 {
133  int cpu = smp_processor_id();
134  struct tick_device *td;
135 
136  /*
137  * Check, if the current cpu is in the mask
138  */
139  if (cpumask_test_cpu(cpu, mask)) {
140  cpumask_clear_cpu(cpu, mask);
141  td = &per_cpu(tick_cpu_device, cpu);
142  td->evtdev->event_handler(td->evtdev);
143  }
144 
145  if (!cpumask_empty(mask)) {
146  /*
147  * It might be necessary to actually check whether the devices
148  * have different broadcast functions. For now, just use the
149  * one of the first device. This works as long as we have this
150  * misfeature only on x86 (lapic)
151  */
152  td = &per_cpu(tick_cpu_device, cpumask_first(mask));
153  td->evtdev->broadcast(mask);
154  }
155 }
156 
157 /*
158  * Periodic broadcast:
159  * - invoke the broadcast handlers
160  */
161 static void tick_do_periodic_broadcast(void)
162 {
163  raw_spin_lock(&tick_broadcast_lock);
164 
165  cpumask_and(to_cpumask(tmpmask),
166  cpu_online_mask, tick_get_broadcast_mask());
167  tick_do_broadcast(to_cpumask(tmpmask));
168 
169  raw_spin_unlock(&tick_broadcast_lock);
170 }
171 
172 /*
173  * Event handler for periodic broadcast ticks
174  */
175 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
176 {
177  ktime_t next;
178 
179  tick_do_periodic_broadcast();
180 
181  /*
182  * The device is in periodic mode. No reprogramming necessary:
183  */
184  if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
185  return;
186 
187  /*
188  * Setup the next period for devices, which do not have
189  * periodic mode. We read dev->next_event first and add to it
190  * when the event already expired. clockevents_program_event()
191  * sets dev->next_event only when the event is really
192  * programmed to the device.
193  */
194  for (next = dev->next_event; ;) {
195  next = ktime_add(next, tick_period);
196 
197  if (!clockevents_program_event(dev, next, false))
198  return;
199  tick_do_periodic_broadcast();
200  }
201 }
202 
203 /*
204  * Powerstate information: The system enters/leaves a state, where
205  * affected devices might stop
206  */
207 static void tick_do_broadcast_on_off(unsigned long *reason)
208 {
209  struct clock_event_device *bc, *dev;
210  struct tick_device *td;
211  unsigned long flags;
212  int cpu, bc_stopped;
213 
214  raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
215 
216  cpu = smp_processor_id();
217  td = &per_cpu(tick_cpu_device, cpu);
218  dev = td->evtdev;
219  bc = tick_broadcast_device.evtdev;
220 
221  /*
222  * Is the device not affected by the powerstate ?
223  */
224  if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
225  goto out;
226 
227  if (!tick_device_is_functional(dev))
228  goto out;
229 
230  bc_stopped = cpumask_empty(tick_get_broadcast_mask());
231 
232  switch (*reason) {
233  case CLOCK_EVT_NOTIFY_BROADCAST_ON:
234  case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
236  cpumask_set_cpu(cpu, tick_get_broadcast_mask());
237  if (tick_broadcast_device.mode ==
238  TICKDEV_MODE_PERIODIC)
240  }
241  if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
242  tick_broadcast_force = 1;
243  break;
244  case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
245  if (!tick_broadcast_force &&
247  cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
248  if (tick_broadcast_device.mode ==
249  TICKDEV_MODE_PERIODIC)
250  tick_setup_periodic(dev, 0);
251  }
252  break;
253  }
254 
255  if (cpumask_empty(tick_get_broadcast_mask())) {
256  if (!bc_stopped)
258  } else if (bc_stopped) {
259  if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
260  tick_broadcast_start_periodic(bc);
261  else
262  tick_broadcast_setup_oneshot(bc);
263  }
264 out:
265  raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
266 }
267 
268 /*
269  * Powerstate information: The system enters/leaves a state, where
270  * affected devices might stop.
271  */
272 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
273 {
274  if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
275  printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
276  "offline CPU #%d\n", *oncpu);
277  else
278  tick_do_broadcast_on_off(&reason);
279 }
280 
281 /*
282  * Set the periodic handler depending on broadcast on/off
283  */
284 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
285 {
286  if (!broadcast)
287  dev->event_handler = tick_handle_periodic;
288  else
289  dev->event_handler = tick_handle_periodic_broadcast;
290 }
291 
292 /*
293  * Remove a CPU from broadcasting
294  */
295 void tick_shutdown_broadcast(unsigned int *cpup)
296 {
297  struct clock_event_device *bc;
298  unsigned long flags;
299  unsigned int cpu = *cpup;
300 
301  raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
302 
303  bc = tick_broadcast_device.evtdev;
304  cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
305 
306  if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
307  if (bc && cpumask_empty(tick_get_broadcast_mask()))
309  }
310 
311  raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
312 }
313 
315 {
316  struct clock_event_device *bc;
317  unsigned long flags;
318 
319  raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
320 
321  bc = tick_broadcast_device.evtdev;
322  if (bc)
324 
325  raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
326 }
327 
329 {
330  struct clock_event_device *bc;
331  unsigned long flags;
332  int broadcast = 0;
333 
334  raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
335 
336  bc = tick_broadcast_device.evtdev;
337 
338  if (bc) {
339  clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
340 
341  switch (tick_broadcast_device.mode) {
342  case TICKDEV_MODE_PERIODIC:
343  if (!cpumask_empty(tick_get_broadcast_mask()))
344  tick_broadcast_start_periodic(bc);
345  broadcast = cpumask_test_cpu(smp_processor_id(),
347  break;
348  case TICKDEV_MODE_ONESHOT:
349  if (!cpumask_empty(tick_get_broadcast_mask()))
350  broadcast = tick_resume_broadcast_oneshot(bc);
351  break;
352  }
353  }
354  raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
355 
356  return broadcast;
357 }
358 
359 
360 #ifdef CONFIG_TICK_ONESHOT
361 
362 /* FIXME: use cpumask_var_t. */
363 static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
364 
365 /*
366  * Exposed for debugging: see timer_list.c
367  */
368 struct cpumask *tick_get_broadcast_oneshot_mask(void)
369 {
370  return to_cpumask(tick_broadcast_oneshot_mask);
371 }
372 
373 static int tick_broadcast_set_event(ktime_t expires, int force)
374 {
375  struct clock_event_device *bc = tick_broadcast_device.evtdev;
376 
377  if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
378  clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
379 
380  return clockevents_program_event(bc, expires, force);
381 }
382 
383 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
384 {
385  clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
386  return 0;
387 }
388 
389 /*
390  * Called from irq_enter() when idle was interrupted to reenable the
391  * per cpu device.
392  */
393 void tick_check_oneshot_broadcast(int cpu)
394 {
395  if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
396  struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
397 
398  clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
399  }
400 }
401 
402 /*
403  * Handle oneshot mode broadcasting
404  */
405 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
406 {
407  struct tick_device *td;
408  ktime_t now, next_event;
409  int cpu;
410 
411  raw_spin_lock(&tick_broadcast_lock);
412 again:
413  dev->next_event.tv64 = KTIME_MAX;
414  next_event.tv64 = KTIME_MAX;
415  cpumask_clear(to_cpumask(tmpmask));
416  now = ktime_get();
417  /* Find all expired events */
418  for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
419  td = &per_cpu(tick_cpu_device, cpu);
420  if (td->evtdev->next_event.tv64 <= now.tv64)
421  cpumask_set_cpu(cpu, to_cpumask(tmpmask));
422  else if (td->evtdev->next_event.tv64 < next_event.tv64)
423  next_event.tv64 = td->evtdev->next_event.tv64;
424  }
425 
426  /*
427  * Wakeup the cpus which have an expired event.
428  */
429  tick_do_broadcast(to_cpumask(tmpmask));
430 
431  /*
432  * Two reasons for reprogram:
433  *
434  * - The global event did not expire any CPU local
435  * events. This happens in dyntick mode, as the maximum PIT
436  * delta is quite small.
437  *
438  * - There are pending events on sleeping CPUs which were not
439  * in the event mask
440  */
441  if (next_event.tv64 != KTIME_MAX) {
442  /*
443  * Rearm the broadcast device. If event expired,
444  * repeat the above
445  */
446  if (tick_broadcast_set_event(next_event, 0))
447  goto again;
448  }
449  raw_spin_unlock(&tick_broadcast_lock);
450 }
451 
452 /*
453  * Powerstate information: The system enters/leaves a state, where
454  * affected devices might stop
455  */
456 void tick_broadcast_oneshot_control(unsigned long reason)
457 {
458  struct clock_event_device *bc, *dev;
459  struct tick_device *td;
460  unsigned long flags;
461  int cpu;
462 
463  /*
464  * Periodic mode does not care about the enter/exit of power
465  * states
466  */
467  if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
468  return;
469 
470  /*
471  * We are called with preemtion disabled from the depth of the
472  * idle code, so we can't be moved away.
473  */
474  cpu = smp_processor_id();
475  td = &per_cpu(tick_cpu_device, cpu);
476  dev = td->evtdev;
477 
478  if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
479  return;
480 
481  bc = tick_broadcast_device.evtdev;
482 
483  raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
484  if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
485  if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
486  cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
487  clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
488  if (dev->next_event.tv64 < bc->next_event.tv64)
489  tick_broadcast_set_event(dev->next_event, 1);
490  }
491  } else {
492  if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
493  cpumask_clear_cpu(cpu,
494  tick_get_broadcast_oneshot_mask());
495  clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
496  if (dev->next_event.tv64 != KTIME_MAX)
497  tick_program_event(dev->next_event, 1);
498  }
499  }
500  raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
501 }
502 
503 /*
504  * Reset the one shot broadcast for a cpu
505  *
506  * Called with tick_broadcast_lock held
507  */
508 static void tick_broadcast_clear_oneshot(int cpu)
509 {
510  cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
511 }
512 
513 static void tick_broadcast_init_next_event(struct cpumask *mask,
514  ktime_t expires)
515 {
516  struct tick_device *td;
517  int cpu;
518 
519  for_each_cpu(cpu, mask) {
520  td = &per_cpu(tick_cpu_device, cpu);
521  if (td->evtdev)
522  td->evtdev->next_event = expires;
523  }
524 }
525 
529 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
530 {
531  int cpu = smp_processor_id();
532 
533  /* Set it up only once ! */
534  if (bc->event_handler != tick_handle_oneshot_broadcast) {
535  int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
536 
537  bc->event_handler = tick_handle_oneshot_broadcast;
538 
539  /* Take the do_timer update */
540  tick_do_timer_cpu = cpu;
541 
542  /*
543  * We must be careful here. There might be other CPUs
544  * waiting for periodic broadcast. We need to set the
545  * oneshot_mask bits for those and program the
546  * broadcast device to fire.
547  */
548  cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
549  cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
550  cpumask_or(tick_get_broadcast_oneshot_mask(),
551  tick_get_broadcast_oneshot_mask(),
552  to_cpumask(tmpmask));
553 
554  if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
555  clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
556  tick_broadcast_init_next_event(to_cpumask(tmpmask),
558  tick_broadcast_set_event(tick_next_period, 1);
559  } else
560  bc->next_event.tv64 = KTIME_MAX;
561  } else {
562  /*
563  * The first cpu which switches to oneshot mode sets
564  * the bit for all other cpus which are in the general
565  * (periodic) broadcast mask. So the bit is set and
566  * would prevent the first broadcast enter after this
567  * to program the bc device.
568  */
569  tick_broadcast_clear_oneshot(cpu);
570  }
571 }
572 
573 /*
574  * Select oneshot operating mode for the broadcast device
575  */
576 void tick_broadcast_switch_to_oneshot(void)
577 {
578  struct clock_event_device *bc;
579  unsigned long flags;
580 
581  raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
582 
583  tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
584  bc = tick_broadcast_device.evtdev;
585  if (bc)
586  tick_broadcast_setup_oneshot(bc);
587 
588  raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
589 }
590 
591 
592 /*
593  * Remove a dead CPU from broadcasting
594  */
595 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
596 {
597  unsigned long flags;
598  unsigned int cpu = *cpup;
599 
600  raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
601 
602  /*
603  * Clear the broadcast mask flag for the dead cpu, but do not
604  * stop the broadcast device!
605  */
606  cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
607 
608  raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
609 }
610 
611 /*
612  * Check, whether the broadcast device is in one shot mode
613  */
614 int tick_broadcast_oneshot_active(void)
615 {
616  return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
617 }
618 
619 /*
620  * Check whether the broadcast device supports oneshot.
621  */
622 bool tick_broadcast_oneshot_available(void)
623 {
624  struct clock_event_device *bc = tick_broadcast_device.evtdev;
625 
626  return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
627 }
628 
629 #endif