Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pgtable.c
Go to the documentation of this file.
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation, version 2.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  * NON INFRINGEMENT. See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/highmem.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/spinlock.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/io.h>
27 #include <linux/vmalloc.h>
28 #include <linux/smp.h>
29 
30 #include <asm/pgtable.h>
31 #include <asm/pgalloc.h>
32 #include <asm/fixmap.h>
33 #include <asm/tlb.h>
34 #include <asm/tlbflush.h>
35 #include <asm/homecache.h>
36 
37 #define K(x) ((x) << (PAGE_SHIFT-10))
38 
39 /*
40  * The normal show_free_areas() is too verbose on Tile, with dozens
41  * of processors and often four NUMA zones each with high and lowmem.
42  */
43 void show_mem(unsigned int filter)
44 {
45  struct zone *zone;
46 
47  pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu"
48  " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu"
49  " pagecache:%lu swap:%lu\n",
50  (global_page_state(NR_ACTIVE_ANON) +
51  global_page_state(NR_ACTIVE_FILE)),
52  (global_page_state(NR_INACTIVE_ANON) +
53  global_page_state(NR_INACTIVE_FILE)),
54  global_page_state(NR_FILE_DIRTY),
55  global_page_state(NR_WRITEBACK),
56  global_page_state(NR_UNSTABLE_NFS),
57  global_page_state(NR_FREE_PAGES),
58  (global_page_state(NR_SLAB_RECLAIMABLE) +
59  global_page_state(NR_SLAB_UNRECLAIMABLE)),
60  global_page_state(NR_FILE_MAPPED),
61  global_page_state(NR_PAGETABLE),
62  global_page_state(NR_BOUNCE),
63  global_page_state(NR_FILE_PAGES),
65 
66  for_each_zone(zone) {
67  unsigned long flags, order, total = 0, largest_order = -1;
68 
69  if (!populated_zone(zone))
70  continue;
71 
72  spin_lock_irqsave(&zone->lock, flags);
73  for (order = 0; order < MAX_ORDER; order++) {
74  int nr = zone->free_area[order].nr_free;
75  total += nr << order;
76  if (nr)
77  largest_order = order;
78  }
79  spin_unlock_irqrestore(&zone->lock, flags);
80  pr_err("Node %d %7s: %lukB (largest %luKb)\n",
81  zone_to_nid(zone), zone->name,
82  K(total), largest_order ? K(1UL) << largest_order : 0);
83  }
84 }
85 
86 /*
87  * Associate a virtual page frame with a given physical page frame
88  * and protection flags for that frame.
89  */
90 static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
91 {
92  pgd_t *pgd;
93  pud_t *pud;
94  pmd_t *pmd;
95  pte_t *pte;
96 
97  pgd = swapper_pg_dir + pgd_index(vaddr);
98  if (pgd_none(*pgd)) {
99  BUG();
100  return;
101  }
102  pud = pud_offset(pgd, vaddr);
103  if (pud_none(*pud)) {
104  BUG();
105  return;
106  }
107  pmd = pmd_offset(pud, vaddr);
108  if (pmd_none(*pmd)) {
109  BUG();
110  return;
111  }
112  pte = pte_offset_kernel(pmd, vaddr);
113  /* <pfn,flags> stored as-is, to permit clearing entries */
114  set_pte(pte, pfn_pte(pfn, flags));
115 
116  /*
117  * It's enough to flush this one mapping.
118  * This appears conservative since it is only called
119  * from __set_fixmap.
120  */
122 }
123 
124 void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
125 {
126  unsigned long address = __fix_to_virt(idx);
127 
128  if (idx >= __end_of_fixed_addresses) {
129  BUG();
130  return;
131  }
132  set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
133 }
134 
149 void shatter_huge_page(unsigned long addr)
150 {
151  pgd_t *pgd;
152  pud_t *pud;
153  pmd_t *pmd;
154  unsigned long flags = 0; /* happy compiler */
155 #ifdef __PAGETABLE_PMD_FOLDED
156  struct list_head *pos;
157 #endif
158 
159  /* Get a pointer to the pmd entry that we need to change. */
160  addr &= HPAGE_MASK;
161  BUG_ON(pgd_addr_invalid(addr));
162  BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */
163  pgd = swapper_pg_dir + pgd_index(addr);
164  pud = pud_offset(pgd, addr);
165  BUG_ON(!pud_present(*pud));
166  pmd = pmd_offset(pud, addr);
167  BUG_ON(!pmd_present(*pmd));
168  if (!pmd_huge_page(*pmd))
169  return;
170 
171  spin_lock_irqsave(&init_mm.page_table_lock, flags);
172  if (!pmd_huge_page(*pmd)) {
173  /* Lost the race to convert the huge page. */
174  spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
175  return;
176  }
177 
178  /* Shatter the huge page into the preallocated L2 page table. */
180  get_prealloc_pte(pte_pfn(*(pte_t *)pmd)));
181 
182 #ifdef __PAGETABLE_PMD_FOLDED
183  /* Walk every pgd on the system and update the pmd there. */
184  spin_lock(&pgd_lock);
185  list_for_each(pos, &pgd_list) {
186  pmd_t *copy_pmd;
187  pgd = list_to_pgd(pos) + pgd_index(addr);
188  pud = pud_offset(pgd, addr);
189  copy_pmd = pmd_offset(pud, addr);
190  __set_pmd(copy_pmd, *pmd);
191  }
192  spin_unlock(&pgd_lock);
193 #endif
194 
195  /* Tell every cpu to notice the change. */
196  flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
197  cpu_possible_mask, NULL, 0);
198 
199  /* Hold the lock until the TLB flush is finished to avoid races. */
200  spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
201 }
202 
203 /*
204  * List of all pgd's needed so it can invalidate entries in both cached
205  * and uncached pgd's. This is essentially codepath-based locking
206  * against pageattr.c; it is the unique case in which a valid change
207  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
208  * vmalloc faults work because attached pagetables are never freed.
209  *
210  * The lock is always taken with interrupts disabled, unlike on x86
211  * and other platforms, because we need to take the lock in
212  * shatter_huge_page(), which may be called from an interrupt context.
213  * We are not at risk from the tlbflush IPI deadlock that was seen on
214  * x86, since we use the flush_remote() API to have the hypervisor do
215  * the TLB flushes regardless of irq disabling.
216  */
217 DEFINE_SPINLOCK(pgd_lock);
219 
220 static inline void pgd_list_add(pgd_t *pgd)
221 {
222  list_add(pgd_to_list(pgd), &pgd_list);
223 }
224 
225 static inline void pgd_list_del(pgd_t *pgd)
226 {
227  list_del(pgd_to_list(pgd));
228 }
229 
230 #define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
231 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
232 
233 static void pgd_ctor(pgd_t *pgd)
234 {
235  unsigned long flags;
236 
237  memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
238  spin_lock_irqsave(&pgd_lock, flags);
239 
240 #ifndef __tilegx__
241  /*
242  * Check that the user interrupt vector has no L2.
243  * It never should for the swapper, and new page tables
244  * should always start with an empty user interrupt vector.
245  */
247 #endif
248 
251  KERNEL_PGD_PTRS * sizeof(pgd_t));
252 
253  pgd_list_add(pgd);
254  spin_unlock_irqrestore(&pgd_lock, flags);
255 }
256 
257 static void pgd_dtor(pgd_t *pgd)
258 {
259  unsigned long flags; /* can be called from interrupt context */
260 
261  spin_lock_irqsave(&pgd_lock, flags);
262  pgd_list_del(pgd);
263  spin_unlock_irqrestore(&pgd_lock, flags);
264 }
265 
267 {
269  if (pgd)
270  pgd_ctor(pgd);
271  return pgd;
272 }
273 
274 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
275 {
276  pgd_dtor(pgd);
278 }
279 
280 
281 #define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
282 
283 struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address,
284  int order)
285 {
287  struct page *p;
288  int i;
289 
291  if (p == NULL)
292  return NULL;
293 
294  /*
295  * Make every page have a page_count() of one, not just the first.
296  * We don't use __GFP_COMP since it doesn't look like it works
297  * correctly with tlb_remove_page().
298  */
299  for (i = 1; i < order; ++i) {
300  init_page_count(p+i);
302  }
303 
304  pgtable_page_ctor(p);
305  return p;
306 }
307 
308 /*
309  * Free page immediately (used in __pte_alloc if we raced with another
310  * process). We have to correct whatever pte_alloc_one() did before
311  * returning the pages to the allocator.
312  */
313 void pgtable_free(struct mm_struct *mm, struct page *p, int order)
314 {
315  int i;
316 
317  pgtable_page_dtor(p);
318  __free_page(p);
319 
320  for (i = 1; i < order; ++i) {
321  __free_page(p+i);
323  }
324 }
325 
326 void __pgtable_free_tlb(struct mmu_gather *tlb, struct page *pte,
327  unsigned long address, int order)
328 {
329  int i;
330 
331  pgtable_page_dtor(pte);
332  tlb_remove_page(tlb, pte);
333 
334  for (i = 1; i < order; ++i) {
335  tlb_remove_page(tlb, pte + i);
337  }
338 }
339 
340 #ifndef __tilegx__
341 
342 /*
343  * FIXME: needs to be atomic vs hypervisor writes. For now we make the
344  * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
345  */
347  unsigned long addr, pte_t *ptep)
348 {
349 #if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
350 # error Code assumes HV_PTE "accessed" bit in second byte
351 #endif
352  u8 *tmp = (u8 *)ptep;
353  u8 second_byte = tmp[1];
354  if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
355  return 0;
356  tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
357  return 1;
358 }
359 
360 /*
361  * This implementation is atomic vs hypervisor writes, since the hypervisor
362  * always writes the low word (where "accessed" and "dirty" are) and this
363  * routine only writes the high word.
364  */
366  unsigned long addr, pte_t *ptep)
367 {
368 #if HV_PTE_INDEX_WRITABLE < 32
369 # error Code assumes HV_PTE "writable" bit in high word
370 #endif
371  u32 *tmp = (u32 *)ptep;
372  tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
373 }
374 
375 #endif
376 
377 pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
378 {
379  pgd_t *pgd;
380  pud_t *pud;
381  pmd_t *pmd;
382 
383  if (pgd_addr_invalid(addr))
384  return NULL;
385 
386  pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
387  pud = pud_offset(pgd, addr);
388  if (!pud_present(*pud))
389  return NULL;
390  pmd = pmd_offset(pud, addr);
391  if (pmd_huge_page(*pmd))
392  return (pte_t *)pmd;
393  if (!pmd_present(*pmd))
394  return NULL;
395  return pte_offset_kernel(pmd, addr);
396 }
397 
399 {
400  unsigned int width = smp_width;
401  int x = cpu % width;
402  int y = cpu / width;
403  BUG_ON(y >= smp_height);
404  BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
406  BUG_ON(!cpu_is_valid_lotar(cpu));
407  return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
408 }
409 
411 {
412  HV_LOTAR lotar = hv_pte_get_lotar(prot);
413  int x = HV_LOTAR_X(lotar);
414  int y = HV_LOTAR_Y(lotar);
415  BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
416  return x + y * smp_width;
417 }
418 
419 /*
420  * Convert a kernel VA to a PA and homing information.
421  */
422 int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
423 {
424  struct page *page = virt_to_page(va);
425  pte_t null_pte = { 0 };
426 
427  *cpa = __pa(va);
428 
429  /* Note that this is not writing a page table, just returning a pte. */
430  *pte = pte_set_home(null_pte, page_home(page));
431 
432  return 0; /* return non-zero if not hfh? */
433 }
435 
436 void __set_pte(pte_t *ptep, pte_t pte)
437 {
438 #ifdef __tilegx__
439  *ptep = pte;
440 #else
441 # if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
442 # error Must write the present and migrating bits last
443 # endif
444  if (pte_present(pte)) {
445  ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
446  barrier();
447  ((u32 *)ptep)[0] = (u32)(pte_val(pte));
448  } else {
449  ((u32 *)ptep)[0] = (u32)(pte_val(pte));
450  barrier();
451  ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
452  }
453 #endif /* __tilegx__ */
454 }
455 
456 void set_pte(pte_t *ptep, pte_t pte)
457 {
458  if (pte_present(pte) &&
459  (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) {
460  /* The PTE actually references physical memory. */
461  unsigned long pfn = pte_pfn(pte);
462  if (pfn_valid(pfn)) {
463  /* Update the home of the PTE from the struct page. */
464  pte = pte_set_home(pte, page_home(pfn_to_page(pfn)));
465  } else if (hv_pte_get_mode(pte) == 0) {
466  /* remap_pfn_range(), etc, must supply PTE mode. */
467  panic("set_pte(): out-of-range PFN and mode 0\n");
468  }
469  }
470 
471  __set_pte(ptep, pte);
472 }
473 
474 /* Can this mm load a PTE with cached_priority set? */
475 static inline int mm_is_priority_cached(struct mm_struct *mm)
476 {
477  return mm->context.priority_cached != 0;
478 }
479 
480 /*
481  * Add a priority mapping to an mm_context and
482  * notify the hypervisor if this is the first one.
483  */
484 void start_mm_caching(struct mm_struct *mm)
485 {
486  if (!mm_is_priority_cached(mm)) {
487  mm->context.priority_cached = -1UL;
488  hv_set_caching(-1UL);
489  }
490 }
491 
492 /*
493  * Validate and return the priority_cached flag. We know if it's zero
494  * that we don't need to scan, since we immediately set it non-zero
495  * when we first consider a MAP_CACHE_PRIORITY mapping.
496  *
497  * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
498  * since we're in an interrupt context (servicing switch_mm) we don't
499  * worry about it and don't unset the "priority_cached" field.
500  * Presumably we'll come back later and have more luck and clear
501  * the value then; for now we'll just keep the cache marked for priority.
502  */
503 static unsigned long update_priority_cached(struct mm_struct *mm)
504 {
505  if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
506  struct vm_area_struct *vm;
507  for (vm = mm->mmap; vm; vm = vm->vm_next) {
508  if (hv_pte_get_cached_priority(vm->vm_page_prot))
509  break;
510  }
511  if (vm == NULL)
512  mm->context.priority_cached = 0;
513  up_write(&mm->mmap_sem);
514  }
515  return mm->context.priority_cached;
516 }
517 
518 /* Set caching correctly for an mm that we are switching to. */
520 {
521  if (!mm_is_priority_cached(next)) {
522  /*
523  * If the new mm doesn't use priority caching, just see if we
524  * need the hv_set_caching(), or can assume it's already zero.
525  */
526  if (mm_is_priority_cached(prev))
527  hv_set_caching(0);
528  } else {
529  hv_set_caching(update_priority_cached(next));
530  }
531 }
532 
533 #if CHIP_HAS_MMIO()
534 
535 /* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
536 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
537  pgprot_t home)
538 {
539  void *addr;
540  struct vm_struct *area;
541  unsigned long offset, last_addr;
543 
544  /* Don't allow wraparound or zero size */
545  last_addr = phys_addr + size - 1;
546  if (!size || last_addr < phys_addr)
547  return NULL;
548 
549  /* Create a read/write, MMIO VA mapping homed at the requested shim. */
550  pgprot = PAGE_KERNEL;
551  pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
552  pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
553 
554  /*
555  * Mappings have to be page-aligned
556  */
557  offset = phys_addr & ~PAGE_MASK;
558  phys_addr &= PAGE_MASK;
559  size = PAGE_ALIGN(last_addr+1) - phys_addr;
560 
561  /*
562  * Ok, go for it..
563  */
564  area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
565  if (!area)
566  return NULL;
567  area->phys_addr = phys_addr;
568  addr = area->addr;
569  if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
570  phys_addr, pgprot)) {
571  remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr));
572  return NULL;
573  }
574  return (__force void __iomem *) (offset + (char *)addr);
575 }
577 
578 /* Unmap an MMIO VA mapping. */
579 void iounmap(volatile void __iomem *addr_in)
580 {
581  volatile void __iomem *addr = (volatile void __iomem *)
582  (PAGE_MASK & (unsigned long __force)addr_in);
583 #if 1
584  vunmap((void * __force)addr);
585 #else
586  /* x86 uses this complicated flow instead of vunmap(). Is
587  * there any particular reason we should do the same? */
588  struct vm_struct *p, *o;
589 
590  /* Use the vm area unlocked, assuming the caller
591  ensures there isn't another iounmap for the same address
592  in parallel. Reuse of the virtual address is prevented by
593  leaving it in the global lists until we're done with it.
594  cpa takes care of the direct mappings. */
595  read_lock(&vmlist_lock);
596  for (p = vmlist; p; p = p->next) {
597  if (p->addr == addr)
598  break;
599  }
600  read_unlock(&vmlist_lock);
601 
602  if (!p) {
603  pr_err("iounmap: bad address %p\n", addr);
604  dump_stack();
605  return;
606  }
607 
608  /* Finally remove it */
609  o = remove_vm_area((void *)addr);
610  BUG_ON(p != o || o == NULL);
611  kfree(p);
612 #endif
613 }
615 
616 #endif /* CHIP_HAS_MMIO() */