Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
timerfd.c
Go to the documentation of this file.
1 /*
2  * fs/timerfd.c
3  *
4  * Copyright (C) 2007 Davide Libenzi <[email protected]>
5  *
6  *
7  * Thanks to Thomas Gleixner for code reviews and useful comments.
8  *
9  */
10 
11 #include <linux/file.h>
12 #include <linux/poll.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/list.h>
19 #include <linux/spinlock.h>
20 #include <linux/time.h>
21 #include <linux/hrtimer.h>
22 #include <linux/anon_inodes.h>
23 #include <linux/timerfd.h>
24 #include <linux/syscalls.h>
25 #include <linux/rcupdate.h>
26 
27 struct timerfd_ctx {
28  struct hrtimer tmr;
33  int expired;
34  int clockid;
35  struct rcu_head rcu;
36  struct list_head clist;
38 };
39 
40 static LIST_HEAD(cancel_list);
41 static DEFINE_SPINLOCK(cancel_lock);
42 
43 /*
44  * This gets called when the timer event triggers. We set the "expired"
45  * flag, but we do not re-arm the timer (in case it's necessary,
46  * tintv.tv64 != 0) until the timer is accessed.
47  */
48 static enum hrtimer_restart timerfd_tmrproc(struct hrtimer *htmr)
49 {
50  struct timerfd_ctx *ctx = container_of(htmr, struct timerfd_ctx, tmr);
51  unsigned long flags;
52 
53  spin_lock_irqsave(&ctx->wqh.lock, flags);
54  ctx->expired = 1;
55  ctx->ticks++;
56  wake_up_locked(&ctx->wqh);
57  spin_unlock_irqrestore(&ctx->wqh.lock, flags);
58 
59  return HRTIMER_NORESTART;
60 }
61 
62 /*
63  * Called when the clock was set to cancel the timers in the cancel
64  * list. This will wake up processes waiting on these timers. The
65  * wake-up requires ctx->ticks to be non zero, therefore we increment
66  * it before calling wake_up_locked().
67  */
69 {
71  struct timerfd_ctx *ctx;
72  unsigned long flags;
73 
74  rcu_read_lock();
75  list_for_each_entry_rcu(ctx, &cancel_list, clist) {
76  if (!ctx->might_cancel)
77  continue;
78  spin_lock_irqsave(&ctx->wqh.lock, flags);
79  if (ctx->moffs.tv64 != moffs.tv64) {
80  ctx->moffs.tv64 = KTIME_MAX;
81  ctx->ticks++;
82  wake_up_locked(&ctx->wqh);
83  }
84  spin_unlock_irqrestore(&ctx->wqh.lock, flags);
85  }
86  rcu_read_unlock();
87 }
88 
89 static void timerfd_remove_cancel(struct timerfd_ctx *ctx)
90 {
91  if (ctx->might_cancel) {
92  ctx->might_cancel = false;
93  spin_lock(&cancel_lock);
94  list_del_rcu(&ctx->clist);
95  spin_unlock(&cancel_lock);
96  }
97 }
98 
99 static bool timerfd_canceled(struct timerfd_ctx *ctx)
100 {
101  if (!ctx->might_cancel || ctx->moffs.tv64 != KTIME_MAX)
102  return false;
104  return true;
105 }
106 
107 static void timerfd_setup_cancel(struct timerfd_ctx *ctx, int flags)
108 {
109  if (ctx->clockid == CLOCK_REALTIME && (flags & TFD_TIMER_ABSTIME) &&
110  (flags & TFD_TIMER_CANCEL_ON_SET)) {
111  if (!ctx->might_cancel) {
112  ctx->might_cancel = true;
113  spin_lock(&cancel_lock);
114  list_add_rcu(&ctx->clist, &cancel_list);
115  spin_unlock(&cancel_lock);
116  }
117  } else if (ctx->might_cancel) {
118  timerfd_remove_cancel(ctx);
119  }
120 }
121 
122 static ktime_t timerfd_get_remaining(struct timerfd_ctx *ctx)
123 {
124  ktime_t remaining;
125 
126  remaining = hrtimer_expires_remaining(&ctx->tmr);
127  return remaining.tv64 < 0 ? ktime_set(0, 0): remaining;
128 }
129 
130 static int timerfd_setup(struct timerfd_ctx *ctx, int flags,
131  const struct itimerspec *ktmr)
132 {
133  enum hrtimer_mode htmode;
134  ktime_t texp;
135  int clockid = ctx->clockid;
136 
137  htmode = (flags & TFD_TIMER_ABSTIME) ?
139 
140  texp = timespec_to_ktime(ktmr->it_value);
141  ctx->expired = 0;
142  ctx->ticks = 0;
143  ctx->tintv = timespec_to_ktime(ktmr->it_interval);
144  hrtimer_init(&ctx->tmr, clockid, htmode);
145  hrtimer_set_expires(&ctx->tmr, texp);
146  ctx->tmr.function = timerfd_tmrproc;
147  if (texp.tv64 != 0) {
148  hrtimer_start(&ctx->tmr, texp, htmode);
149  if (timerfd_canceled(ctx))
150  return -ECANCELED;
151  }
152  return 0;
153 }
154 
155 static int timerfd_release(struct inode *inode, struct file *file)
156 {
157  struct timerfd_ctx *ctx = file->private_data;
158 
159  timerfd_remove_cancel(ctx);
160  hrtimer_cancel(&ctx->tmr);
161  kfree_rcu(ctx, rcu);
162  return 0;
163 }
164 
165 static unsigned int timerfd_poll(struct file *file, poll_table *wait)
166 {
167  struct timerfd_ctx *ctx = file->private_data;
168  unsigned int events = 0;
169  unsigned long flags;
170 
171  poll_wait(file, &ctx->wqh, wait);
172 
173  spin_lock_irqsave(&ctx->wqh.lock, flags);
174  if (ctx->ticks)
175  events |= POLLIN;
176  spin_unlock_irqrestore(&ctx->wqh.lock, flags);
177 
178  return events;
179 }
180 
181 static ssize_t timerfd_read(struct file *file, char __user *buf, size_t count,
182  loff_t *ppos)
183 {
184  struct timerfd_ctx *ctx = file->private_data;
185  ssize_t res;
186  u64 ticks = 0;
187 
188  if (count < sizeof(ticks))
189  return -EINVAL;
190  spin_lock_irq(&ctx->wqh.lock);
191  if (file->f_flags & O_NONBLOCK)
192  res = -EAGAIN;
193  else
195 
196  /*
197  * If clock has changed, we do not care about the
198  * ticks and we do not rearm the timer. Userspace must
199  * reevaluate anyway.
200  */
201  if (timerfd_canceled(ctx)) {
202  ctx->ticks = 0;
203  ctx->expired = 0;
204  res = -ECANCELED;
205  }
206 
207  if (ctx->ticks) {
208  ticks = ctx->ticks;
209 
210  if (ctx->expired && ctx->tintv.tv64) {
211  /*
212  * If tintv.tv64 != 0, this is a periodic timer that
213  * needs to be re-armed. We avoid doing it in the timer
214  * callback to avoid DoS attacks specifying a very
215  * short timer period.
216  */
217  ticks += hrtimer_forward_now(&ctx->tmr,
218  ctx->tintv) - 1;
219  hrtimer_restart(&ctx->tmr);
220  }
221  ctx->expired = 0;
222  ctx->ticks = 0;
223  }
224  spin_unlock_irq(&ctx->wqh.lock);
225  if (ticks)
226  res = put_user(ticks, (u64 __user *) buf) ? -EFAULT: sizeof(ticks);
227  return res;
228 }
229 
230 static const struct file_operations timerfd_fops = {
231  .release = timerfd_release,
232  .poll = timerfd_poll,
233  .read = timerfd_read,
234  .llseek = noop_llseek,
235 };
236 
237 static int timerfd_fget(int fd, struct fd *p)
238 {
239  struct fd f = fdget(fd);
240  if (!f.file)
241  return -EBADF;
242  if (f.file->f_op != &timerfd_fops) {
243  fdput(f);
244  return -EINVAL;
245  }
246  *p = f;
247  return 0;
248 }
249 
250 SYSCALL_DEFINE2(timerfd_create, int, clockid, int, flags)
251 {
252  int ufd;
253  struct timerfd_ctx *ctx;
254 
255  /* Check the TFD_* constants for consistency. */
258 
259  if ((flags & ~TFD_CREATE_FLAGS) ||
260  (clockid != CLOCK_MONOTONIC &&
261  clockid != CLOCK_REALTIME))
262  return -EINVAL;
263 
264  ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
265  if (!ctx)
266  return -ENOMEM;
267 
268  init_waitqueue_head(&ctx->wqh);
269  ctx->clockid = clockid;
270  hrtimer_init(&ctx->tmr, clockid, HRTIMER_MODE_ABS);
272 
273  ufd = anon_inode_getfd("[timerfd]", &timerfd_fops, ctx,
274  O_RDWR | (flags & TFD_SHARED_FCNTL_FLAGS));
275  if (ufd < 0)
276  kfree(ctx);
277 
278  return ufd;
279 }
280 
281 SYSCALL_DEFINE4(timerfd_settime, int, ufd, int, flags,
282  const struct itimerspec __user *, utmr,
283  struct itimerspec __user *, otmr)
284 {
285  struct fd f;
286  struct timerfd_ctx *ctx;
287  struct itimerspec ktmr, kotmr;
288  int ret;
289 
290  if (copy_from_user(&ktmr, utmr, sizeof(ktmr)))
291  return -EFAULT;
292 
293  if ((flags & ~TFD_SETTIME_FLAGS) ||
294  !timespec_valid(&ktmr.it_value) ||
295  !timespec_valid(&ktmr.it_interval))
296  return -EINVAL;
297 
298  ret = timerfd_fget(ufd, &f);
299  if (ret)
300  return ret;
301  ctx = f.file->private_data;
302 
303  timerfd_setup_cancel(ctx, flags);
304 
305  /*
306  * We need to stop the existing timer before reprogramming
307  * it to the new values.
308  */
309  for (;;) {
310  spin_lock_irq(&ctx->wqh.lock);
311  if (hrtimer_try_to_cancel(&ctx->tmr) >= 0)
312  break;
313  spin_unlock_irq(&ctx->wqh.lock);
314  cpu_relax();
315  }
316 
317  /*
318  * If the timer is expired and it's periodic, we need to advance it
319  * because the caller may want to know the previous expiration time.
320  * We do not update "ticks" and "expired" since the timer will be
321  * re-programmed again in the following timerfd_setup() call.
322  */
323  if (ctx->expired && ctx->tintv.tv64)
324  hrtimer_forward_now(&ctx->tmr, ctx->tintv);
325 
326  kotmr.it_value = ktime_to_timespec(timerfd_get_remaining(ctx));
327  kotmr.it_interval = ktime_to_timespec(ctx->tintv);
328 
329  /*
330  * Re-program the timer to the new value ...
331  */
332  ret = timerfd_setup(ctx, flags, &ktmr);
333 
334  spin_unlock_irq(&ctx->wqh.lock);
335  fdput(f);
336  if (otmr && copy_to_user(otmr, &kotmr, sizeof(kotmr)))
337  return -EFAULT;
338 
339  return ret;
340 }
341 
342 SYSCALL_DEFINE2(timerfd_gettime, int, ufd, struct itimerspec __user *, otmr)
343 {
344  struct fd f;
345  struct timerfd_ctx *ctx;
346  struct itimerspec kotmr;
347  int ret = timerfd_fget(ufd, &f);
348  if (ret)
349  return ret;
350  ctx = f.file->private_data;
351 
352  spin_lock_irq(&ctx->wqh.lock);
353  if (ctx->expired && ctx->tintv.tv64) {
354  ctx->expired = 0;
355  ctx->ticks +=
356  hrtimer_forward_now(&ctx->tmr, ctx->tintv) - 1;
357  hrtimer_restart(&ctx->tmr);
358  }
359  kotmr.it_value = ktime_to_timespec(timerfd_get_remaining(ctx));
360  kotmr.it_interval = ktime_to_timespec(ctx->tintv);
361  spin_unlock_irq(&ctx->wqh.lock);
362  fdput(f);
363 
364  return copy_to_user(otmr, &kotmr, sizeof(kotmr)) ? -EFAULT: 0;
365 }
366