Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
unaligned-sh4a.h
Go to the documentation of this file.
1 #ifndef __ASM_SH_UNALIGNED_SH4A_H
2 #define __ASM_SH_UNALIGNED_SH4A_H
3 
4 /*
5  * SH-4A has support for unaligned 32-bit loads, and 32-bit loads only.
6  * Support for 64-bit accesses are done through shifting and masking
7  * relative to the endianness. Unaligned stores are not supported by the
8  * instruction encoding, so these continue to use the packed
9  * struct.
10  *
11  * The same note as with the movli.l/movco.l pair applies here, as long
12  * as the load is guaranteed to be inlined, nothing else will hook in to
13  * r0 and we get the return value for free.
14  *
15  * NOTE: Due to the fact we require r0 encoding, care should be taken to
16  * avoid mixing these heavily with other r0 consumers, such as the atomic
17  * ops. Failure to adhere to this can result in the compiler running out
18  * of spill registers and blowing up when building at low optimization
19  * levels. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34777.
20  */
22 #include <linux/types.h>
23 #include <asm/byteorder.h>
24 
25 static inline u16 sh4a_get_unaligned_cpu16(const u8 *p)
26 {
27 #ifdef __LITTLE_ENDIAN
28  return p[0] | p[1] << 8;
29 #else
30  return p[0] << 8 | p[1];
31 #endif
32 }
33 
34 static __always_inline u32 sh4a_get_unaligned_cpu32(const u8 *p)
35 {
36  unsigned long unaligned;
37 
38  __asm__ __volatile__ (
39  "movua.l @%1, %0\n\t"
40  : "=z" (unaligned)
41  : "r" (p)
42  );
43 
44  return unaligned;
45 }
46 
47 /*
48  * Even though movua.l supports auto-increment on the read side, it can
49  * only store to r0 due to instruction encoding constraints, so just let
50  * the compiler sort it out on its own.
51  */
52 static inline u64 sh4a_get_unaligned_cpu64(const u8 *p)
53 {
54 #ifdef __LITTLE_ENDIAN
55  return (u64)sh4a_get_unaligned_cpu32(p + 4) << 32 |
56  sh4a_get_unaligned_cpu32(p);
57 #else
58  return (u64)sh4a_get_unaligned_cpu32(p) << 32 |
59  sh4a_get_unaligned_cpu32(p + 4);
60 #endif
61 }
62 
63 static inline u16 get_unaligned_le16(const void *p)
64 {
65  return le16_to_cpu(sh4a_get_unaligned_cpu16(p));
66 }
67 
68 static inline u32 get_unaligned_le32(const void *p)
69 {
70  return le32_to_cpu(sh4a_get_unaligned_cpu32(p));
71 }
72 
73 static inline u64 get_unaligned_le64(const void *p)
74 {
75  return le64_to_cpu(sh4a_get_unaligned_cpu64(p));
76 }
77 
78 static inline u16 get_unaligned_be16(const void *p)
79 {
80  return be16_to_cpu(sh4a_get_unaligned_cpu16(p));
81 }
82 
83 static inline u32 get_unaligned_be32(const void *p)
84 {
85  return be32_to_cpu(sh4a_get_unaligned_cpu32(p));
86 }
87 
88 static inline u64 get_unaligned_be64(const void *p)
89 {
90  return be64_to_cpu(sh4a_get_unaligned_cpu64(p));
91 }
92 
93 static inline void nonnative_put_le16(u16 val, u8 *p)
94 {
95  *p++ = val;
96  *p++ = val >> 8;
97 }
98 
99 static inline void nonnative_put_le32(u32 val, u8 *p)
100 {
101  nonnative_put_le16(val, p);
102  nonnative_put_le16(val >> 16, p + 2);
103 }
104 
105 static inline void nonnative_put_le64(u64 val, u8 *p)
106 {
107  nonnative_put_le32(val, p);
108  nonnative_put_le32(val >> 32, p + 4);
109 }
110 
111 static inline void nonnative_put_be16(u16 val, u8 *p)
112 {
113  *p++ = val >> 8;
114  *p++ = val;
115 }
116 
117 static inline void nonnative_put_be32(u32 val, u8 *p)
118 {
119  nonnative_put_be16(val >> 16, p);
120  nonnative_put_be16(val, p + 2);
121 }
122 
123 static inline void nonnative_put_be64(u64 val, u8 *p)
124 {
125  nonnative_put_be32(val >> 32, p);
126  nonnative_put_be32(val, p + 4);
127 }
128 
129 static inline void put_unaligned_le16(u16 val, void *p)
130 {
131 #ifdef __LITTLE_ENDIAN
132  __put_unaligned_cpu16(val, p);
133 #else
134  nonnative_put_le16(val, p);
135 #endif
136 }
137 
138 static inline void put_unaligned_le32(u32 val, void *p)
139 {
140 #ifdef __LITTLE_ENDIAN
141  __put_unaligned_cpu32(val, p);
142 #else
143  nonnative_put_le32(val, p);
144 #endif
145 }
146 
147 static inline void put_unaligned_le64(u64 val, void *p)
148 {
149 #ifdef __LITTLE_ENDIAN
150  __put_unaligned_cpu64(val, p);
151 #else
152  nonnative_put_le64(val, p);
153 #endif
154 }
155 
156 static inline void put_unaligned_be16(u16 val, void *p)
157 {
158 #ifdef __BIG_ENDIAN
159  __put_unaligned_cpu16(val, p);
160 #else
161  nonnative_put_be16(val, p);
162 #endif
163 }
164 
165 static inline void put_unaligned_be32(u32 val, void *p)
166 {
167 #ifdef __BIG_ENDIAN
168  __put_unaligned_cpu32(val, p);
169 #else
170  nonnative_put_be32(val, p);
171 #endif
172 }
173 
174 static inline void put_unaligned_be64(u64 val, void *p)
175 {
176 #ifdef __BIG_ENDIAN
177  __put_unaligned_cpu64(val, p);
178 #else
179  nonnative_put_be64(val, p);
180 #endif
181 }
182 
183 /*
184  * While it's a bit non-obvious, even though the generic le/be wrappers
185  * use the __get/put_xxx prefixing, they actually wrap in to the
186  * non-prefixed get/put_xxx variants as provided above.
187  */
188 #include <linux/unaligned/generic.h>
189 
190 #ifdef __LITTLE_ENDIAN
191 # define get_unaligned __get_unaligned_le
192 # define put_unaligned __put_unaligned_le
193 #else
194 # define get_unaligned __get_unaligned_be
195 # define put_unaligned __put_unaligned_be
196 #endif
197 
198 #endif /* __ASM_SH_UNALIGNED_SH4A_H */