Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
windfarm_pm112.c
Go to the documentation of this file.
1 /*
2  * Windfarm PowerMac thermal control.
3  * Control loops for machines with SMU and PPC970MP processors.
4  *
5  * Copyright (C) 2005 Paul Mackerras, IBM Corp. <[email protected]>
6  * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
7  *
8  * Use and redistribute under the terms of the GNU GPL v2.
9  */
10 #include <linux/types.h>
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/platform_device.h>
15 #include <linux/reboot.h>
16 #include <asm/prom.h>
17 #include <asm/smu.h>
18 
19 #include "windfarm.h"
20 #include "windfarm_pid.h"
21 
22 #define VERSION "0.2"
23 
24 #define DEBUG
25 #undef LOTSA_DEBUG
26 
27 #ifdef DEBUG
28 #define DBG(args...) printk(args)
29 #else
30 #define DBG(args...) do { } while(0)
31 #endif
32 
33 #ifdef LOTSA_DEBUG
34 #define DBG_LOTS(args...) printk(args)
35 #else
36 #define DBG_LOTS(args...) do { } while(0)
37 #endif
38 
39 /* define this to force CPU overtemp to 60 degree, useful for testing
40  * the overtemp code
41  */
42 #undef HACKED_OVERTEMP
43 
44 /* We currently only handle 2 chips, 4 cores... */
45 #define NR_CHIPS 2
46 #define NR_CORES 4
47 #define NR_CPU_FANS 3 * NR_CHIPS
48 
49 /* Controls and sensors */
50 static struct wf_sensor *sens_cpu_temp[NR_CORES];
51 static struct wf_sensor *sens_cpu_power[NR_CORES];
52 static struct wf_sensor *hd_temp;
53 static struct wf_sensor *slots_power;
54 static struct wf_sensor *u4_temp;
55 
56 static struct wf_control *cpu_fans[NR_CPU_FANS];
57 static char *cpu_fan_names[NR_CPU_FANS] = {
58  "cpu-rear-fan-0",
59  "cpu-rear-fan-1",
60  "cpu-front-fan-0",
61  "cpu-front-fan-1",
62  "cpu-pump-0",
63  "cpu-pump-1",
64 };
65 static struct wf_control *cpufreq_clamp;
66 
67 /* Second pump isn't required (and isn't actually present) */
68 #define CPU_FANS_REQD (NR_CPU_FANS - 2)
69 #define FIRST_PUMP 4
70 #define LAST_PUMP 5
71 
72 /* We keep a temperature history for average calculation of 180s */
73 #define CPU_TEMP_HIST_SIZE 180
74 
75 /* Scale factor for fan speed, *100 */
76 static int cpu_fan_scale[NR_CPU_FANS] = {
77  100,
78  100,
79  97, /* inlet fans run at 97% of exhaust fan */
80  97,
81  100, /* updated later */
82  100, /* updated later */
83 };
84 
85 static struct wf_control *backside_fan;
86 static struct wf_control *slots_fan;
87 static struct wf_control *drive_bay_fan;
88 
89 /* PID loop state */
90 static struct wf_cpu_pid_state cpu_pid[NR_CORES];
91 static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
92 static int cpu_thist_pt;
93 static s64 cpu_thist_total;
94 static s32 cpu_all_tmax = 100 << 16;
95 static int cpu_last_target;
96 static struct wf_pid_state backside_pid;
97 static int backside_tick;
98 static struct wf_pid_state slots_pid;
99 static int slots_started;
100 static struct wf_pid_state drive_bay_pid;
101 static int drive_bay_tick;
102 
103 static int nr_cores;
104 static int have_all_controls;
105 static int have_all_sensors;
106 static int started;
107 
108 static int failure_state;
109 #define FAILURE_SENSOR 1
110 #define FAILURE_FAN 2
111 #define FAILURE_PERM 4
112 #define FAILURE_LOW_OVERTEMP 8
113 #define FAILURE_HIGH_OVERTEMP 16
114 
115 /* Overtemp values */
116 #define LOW_OVER_AVERAGE 0
117 #define LOW_OVER_IMMEDIATE (10 << 16)
118 #define LOW_OVER_CLEAR ((-10) << 16)
119 #define HIGH_OVER_IMMEDIATE (14 << 16)
120 #define HIGH_OVER_AVERAGE (10 << 16)
121 #define HIGH_OVER_IMMEDIATE (14 << 16)
122 
123 
124 /* Implementation... */
125 static int create_cpu_loop(int cpu)
126 {
127  int chip = cpu / 2;
128  int core = cpu & 1;
129  struct smu_sdbp_header *hdr;
130  struct smu_sdbp_cpupiddata *piddata;
131  struct wf_cpu_pid_param pid;
132  struct wf_control *main_fan = cpu_fans[0];
133  s32 tmax;
134  int fmin;
135 
136  /* Get PID params from the appropriate SAT */
137  hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
138  if (hdr == NULL) {
139  printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
140  return -EINVAL;
141  }
142  piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
143 
144  /* Get FVT params to get Tmax; if not found, assume default */
145  hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
146  if (hdr) {
147  struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
148  tmax = fvt->maxtemp << 16;
149  } else
150  tmax = 95 << 16; /* default to 95 degrees C */
151 
152  /* We keep a global tmax for overtemp calculations */
153  if (tmax < cpu_all_tmax)
154  cpu_all_tmax = tmax;
155 
156  /*
157  * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
158  * 515 for the 2-way. That appears to be overkill, so for now,
159  * impose a minimum of 750 or 515.
160  */
161  fmin = (nr_cores > 2) ? 750 : 515;
162 
163  /* Initialize PID loop */
164  pid.interval = 1; /* seconds */
165  pid.history_len = piddata->history_len;
166  pid.gd = piddata->gd;
167  pid.gp = piddata->gp;
168  pid.gr = piddata->gr / piddata->history_len;
169  pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
170  pid.ttarget = tmax - (piddata->target_temp_delta << 16);
171  pid.tmax = tmax;
172  pid.min = main_fan->ops->get_min(main_fan);
173  pid.max = main_fan->ops->get_max(main_fan);
174  if (pid.min < fmin)
175  pid.min = fmin;
176 
177  wf_cpu_pid_init(&cpu_pid[cpu], &pid);
178  return 0;
179 }
180 
181 static void cpu_max_all_fans(void)
182 {
183  int i;
184 
185  /* We max all CPU fans in case of a sensor error. We also do the
186  * cpufreq clamping now, even if it's supposedly done later by the
187  * generic code anyway, we do it earlier here to react faster
188  */
189  if (cpufreq_clamp)
190  wf_control_set_max(cpufreq_clamp);
191  for (i = 0; i < NR_CPU_FANS; ++i)
192  if (cpu_fans[i])
193  wf_control_set_max(cpu_fans[i]);
194 }
195 
196 static int cpu_check_overtemp(s32 temp)
197 {
198  int new_state = 0;
199  s32 t_avg, t_old;
200 
201  /* First check for immediate overtemps */
202  if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
203  new_state |= FAILURE_LOW_OVERTEMP;
204  if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
205  printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
206  " temperature !\n");
207  }
208  if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
209  new_state |= FAILURE_HIGH_OVERTEMP;
210  if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
211  printk(KERN_ERR "windfarm: Critical overtemp due to"
212  " immediate CPU temperature !\n");
213  }
214 
215  /* We calculate a history of max temperatures and use that for the
216  * overtemp management
217  */
218  t_old = cpu_thist[cpu_thist_pt];
219  cpu_thist[cpu_thist_pt] = temp;
220  cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
221  cpu_thist_total -= t_old;
222  cpu_thist_total += temp;
223  t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
224 
225  DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
226  FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
227 
228  /* Now check for average overtemps */
229  if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
230  new_state |= FAILURE_LOW_OVERTEMP;
231  if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
232  printk(KERN_ERR "windfarm: Overtemp due to average CPU"
233  " temperature !\n");
234  }
235  if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
236  new_state |= FAILURE_HIGH_OVERTEMP;
237  if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
238  printk(KERN_ERR "windfarm: Critical overtemp due to"
239  " average CPU temperature !\n");
240  }
241 
242  /* Now handle overtemp conditions. We don't currently use the windfarm
243  * overtemp handling core as it's not fully suited to the needs of those
244  * new machine. This will be fixed later.
245  */
246  if (new_state) {
247  /* High overtemp -> immediate shutdown */
248  if (new_state & FAILURE_HIGH_OVERTEMP)
250  if ((failure_state & new_state) != new_state)
251  cpu_max_all_fans();
252  failure_state |= new_state;
253  } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
254  (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
255  printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
256  failure_state &= ~FAILURE_LOW_OVERTEMP;
257  }
258 
259  return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
260 }
261 
262 static void cpu_fans_tick(void)
263 {
264  int err, cpu;
265  s32 greatest_delta = 0;
266  s32 temp, power, t_max = 0;
267  int i, t, target = 0;
268  struct wf_sensor *sr;
269  struct wf_control *ct;
270  struct wf_cpu_pid_state *sp;
271 
273  for (cpu = 0; cpu < nr_cores; ++cpu) {
274  /* Get CPU core temperature */
275  sr = sens_cpu_temp[cpu];
276  err = sr->ops->get_value(sr, &temp);
277  if (err) {
278  DBG("\n");
279  printk(KERN_WARNING "windfarm: CPU %d temperature "
280  "sensor error %d\n", cpu, err);
281  failure_state |= FAILURE_SENSOR;
282  cpu_max_all_fans();
283  return;
284  }
285 
286  /* Keep track of highest temp */
287  t_max = max(t_max, temp);
288 
289  /* Get CPU power */
290  sr = sens_cpu_power[cpu];
291  err = sr->ops->get_value(sr, &power);
292  if (err) {
293  DBG("\n");
294  printk(KERN_WARNING "windfarm: CPU %d power "
295  "sensor error %d\n", cpu, err);
296  failure_state |= FAILURE_SENSOR;
297  cpu_max_all_fans();
298  return;
299  }
300 
301  /* Run PID */
302  sp = &cpu_pid[cpu];
303  t = wf_cpu_pid_run(sp, power, temp);
304 
305  if (cpu == 0 || sp->last_delta > greatest_delta) {
306  greatest_delta = sp->last_delta;
307  target = t;
308  }
309  DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
310  cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
311  }
312  DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
313 
314  /* Darwin limits decrease to 20 per iteration */
315  if (target < (cpu_last_target - 20))
316  target = cpu_last_target - 20;
317  cpu_last_target = target;
318  for (cpu = 0; cpu < nr_cores; ++cpu)
319  cpu_pid[cpu].target = target;
320 
321  /* Handle possible overtemps */
322  if (cpu_check_overtemp(t_max))
323  return;
324 
325  /* Set fans */
326  for (i = 0; i < NR_CPU_FANS; ++i) {
327  ct = cpu_fans[i];
328  if (ct == NULL)
329  continue;
330  err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
331  if (err) {
332  printk(KERN_WARNING "windfarm: fan %s reports "
333  "error %d\n", ct->name, err);
334  failure_state |= FAILURE_FAN;
335  break;
336  }
337  }
338 }
339 
340 /* Backside/U4 fan */
341 static struct wf_pid_param backside_param = {
342  .interval = 5,
343  .history_len = 2,
344  .gd = 48 << 20,
345  .gp = 5 << 20,
346  .gr = 0,
347  .itarget = 64 << 16,
348  .additive = 1,
349 };
350 
351 static void backside_fan_tick(void)
352 {
353  s32 temp;
354  int speed;
355  int err;
356 
357  if (!backside_fan || !u4_temp)
358  return;
359  if (!backside_tick) {
360  /* first time; initialize things */
361  printk(KERN_INFO "windfarm: Backside control loop started.\n");
362  backside_param.min = backside_fan->ops->get_min(backside_fan);
363  backside_param.max = backside_fan->ops->get_max(backside_fan);
364  wf_pid_init(&backside_pid, &backside_param);
365  backside_tick = 1;
366  }
367  if (--backside_tick > 0)
368  return;
369  backside_tick = backside_pid.param.interval;
370 
371  err = u4_temp->ops->get_value(u4_temp, &temp);
372  if (err) {
373  printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
374  err);
375  failure_state |= FAILURE_SENSOR;
376  wf_control_set_max(backside_fan);
377  return;
378  }
379  speed = wf_pid_run(&backside_pid, temp);
380  DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
381  FIX32TOPRINT(temp), speed);
382 
383  err = backside_fan->ops->set_value(backside_fan, speed);
384  if (err) {
385  printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
386  failure_state |= FAILURE_FAN;
387  }
388 }
389 
390 /* Drive bay fan */
391 static struct wf_pid_param drive_bay_prm = {
392  .interval = 5,
393  .history_len = 2,
394  .gd = 30 << 20,
395  .gp = 5 << 20,
396  .gr = 0,
397  .itarget = 40 << 16,
398  .additive = 1,
399 };
400 
401 static void drive_bay_fan_tick(void)
402 {
403  s32 temp;
404  int speed;
405  int err;
406 
407  if (!drive_bay_fan || !hd_temp)
408  return;
409  if (!drive_bay_tick) {
410  /* first time; initialize things */
411  printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
412  drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
413  drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
414  wf_pid_init(&drive_bay_pid, &drive_bay_prm);
415  drive_bay_tick = 1;
416  }
417  if (--drive_bay_tick > 0)
418  return;
419  drive_bay_tick = drive_bay_pid.param.interval;
420 
421  err = hd_temp->ops->get_value(hd_temp, &temp);
422  if (err) {
423  printk(KERN_WARNING "windfarm: drive bay temp sensor "
424  "error %d\n", err);
425  failure_state |= FAILURE_SENSOR;
426  wf_control_set_max(drive_bay_fan);
427  return;
428  }
429  speed = wf_pid_run(&drive_bay_pid, temp);
430  DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
431  FIX32TOPRINT(temp), speed);
432 
433  err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
434  if (err) {
435  printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
436  failure_state |= FAILURE_FAN;
437  }
438 }
439 
440 /* PCI slots area fan */
441 /* This makes the fan speed proportional to the power consumed */
442 static struct wf_pid_param slots_param = {
443  .interval = 1,
444  .history_len = 2,
445  .gd = 0,
446  .gp = 0,
447  .gr = 0x1277952,
448  .itarget = 0,
449  .min = 1560,
450  .max = 3510,
451 };
452 
453 static void slots_fan_tick(void)
454 {
455  s32 power;
456  int speed;
457  int err;
458 
459  if (!slots_fan || !slots_power)
460  return;
461  if (!slots_started) {
462  /* first time; initialize things */
463  printk(KERN_INFO "windfarm: Slots control loop started.\n");
464  wf_pid_init(&slots_pid, &slots_param);
465  slots_started = 1;
466  }
467 
468  err = slots_power->ops->get_value(slots_power, &power);
469  if (err) {
470  printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
471  err);
472  failure_state |= FAILURE_SENSOR;
473  wf_control_set_max(slots_fan);
474  return;
475  }
476  speed = wf_pid_run(&slots_pid, power);
477  DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
478  FIX32TOPRINT(power), speed);
479 
480  err = slots_fan->ops->set_value(slots_fan, speed);
481  if (err) {
482  printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
483  failure_state |= FAILURE_FAN;
484  }
485 }
486 
487 static void set_fail_state(void)
488 {
489  int i;
490 
491  if (cpufreq_clamp)
492  wf_control_set_max(cpufreq_clamp);
493  for (i = 0; i < NR_CPU_FANS; ++i)
494  if (cpu_fans[i])
495  wf_control_set_max(cpu_fans[i]);
496  if (backside_fan)
497  wf_control_set_max(backside_fan);
498  if (slots_fan)
499  wf_control_set_max(slots_fan);
500  if (drive_bay_fan)
501  wf_control_set_max(drive_bay_fan);
502 }
503 
504 static void pm112_tick(void)
505 {
506  int i, last_failure;
507 
508  if (!started) {
509  started = 1;
510  printk(KERN_INFO "windfarm: CPUs control loops started.\n");
511  for (i = 0; i < nr_cores; ++i) {
512  if (create_cpu_loop(i) < 0) {
513  failure_state = FAILURE_PERM;
514  set_fail_state();
515  break;
516  }
517  }
518  DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
519 
520 #ifdef HACKED_OVERTEMP
521  cpu_all_tmax = 60 << 16;
522 #endif
523  }
524 
525  /* Permanent failure, bail out */
526  if (failure_state & FAILURE_PERM)
527  return;
528  /* Clear all failure bits except low overtemp which will be eventually
529  * cleared by the control loop itself
530  */
531  last_failure = failure_state;
532  failure_state &= FAILURE_LOW_OVERTEMP;
533  cpu_fans_tick();
534  backside_fan_tick();
535  slots_fan_tick();
536  drive_bay_fan_tick();
537 
538  DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
539  last_failure, failure_state);
540 
541  /* Check for failures. Any failure causes cpufreq clamping */
542  if (failure_state && last_failure == 0 && cpufreq_clamp)
543  wf_control_set_max(cpufreq_clamp);
544  if (failure_state == 0 && last_failure && cpufreq_clamp)
545  wf_control_set_min(cpufreq_clamp);
546 
547  /* That's it for now, we might want to deal with other failures
548  * differently in the future though
549  */
550 }
551 
552 static void pm112_new_control(struct wf_control *ct)
553 {
554  int i, max_exhaust;
555 
556  if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
557  if (wf_get_control(ct) == 0)
558  cpufreq_clamp = ct;
559  }
560 
561  for (i = 0; i < NR_CPU_FANS; ++i) {
562  if (!strcmp(ct->name, cpu_fan_names[i])) {
563  if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
564  cpu_fans[i] = ct;
565  break;
566  }
567  }
568  if (i >= NR_CPU_FANS) {
569  /* not a CPU fan, try the others */
570  if (!strcmp(ct->name, "backside-fan")) {
571  if (backside_fan == NULL && wf_get_control(ct) == 0)
572  backside_fan = ct;
573  } else if (!strcmp(ct->name, "slots-fan")) {
574  if (slots_fan == NULL && wf_get_control(ct) == 0)
575  slots_fan = ct;
576  } else if (!strcmp(ct->name, "drive-bay-fan")) {
577  if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
578  drive_bay_fan = ct;
579  }
580  return;
581  }
582 
583  for (i = 0; i < CPU_FANS_REQD; ++i)
584  if (cpu_fans[i] == NULL)
585  return;
586 
587  /* work out pump scaling factors */
588  max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
589  for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
590  if ((ct = cpu_fans[i]) != NULL)
591  cpu_fan_scale[i] =
592  ct->ops->get_max(ct) * 100 / max_exhaust;
593 
594  have_all_controls = 1;
595 }
596 
597 static void pm112_new_sensor(struct wf_sensor *sr)
598 {
599  unsigned int i;
600 
601  if (!strncmp(sr->name, "cpu-temp-", 9)) {
602  i = sr->name[9] - '0';
603  if (sr->name[10] == 0 && i < NR_CORES &&
604  sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
605  sens_cpu_temp[i] = sr;
606 
607  } else if (!strncmp(sr->name, "cpu-power-", 10)) {
608  i = sr->name[10] - '0';
609  if (sr->name[11] == 0 && i < NR_CORES &&
610  sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
611  sens_cpu_power[i] = sr;
612  } else if (!strcmp(sr->name, "hd-temp")) {
613  if (hd_temp == NULL && wf_get_sensor(sr) == 0)
614  hd_temp = sr;
615  } else if (!strcmp(sr->name, "slots-power")) {
616  if (slots_power == NULL && wf_get_sensor(sr) == 0)
617  slots_power = sr;
618  } else if (!strcmp(sr->name, "backside-temp")) {
619  if (u4_temp == NULL && wf_get_sensor(sr) == 0)
620  u4_temp = sr;
621  } else
622  return;
623 
624  /* check if we have all the sensors we need */
625  for (i = 0; i < nr_cores; ++i)
626  if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
627  return;
628 
629  have_all_sensors = 1;
630 }
631 
632 static int pm112_wf_notify(struct notifier_block *self,
633  unsigned long event, void *data)
634 {
635  switch (event) {
636  case WF_EVENT_NEW_SENSOR:
637  pm112_new_sensor(data);
638  break;
640  pm112_new_control(data);
641  break;
642  case WF_EVENT_TICK:
643  if (have_all_controls && have_all_sensors)
644  pm112_tick();
645  }
646  return 0;
647 }
648 
649 static struct notifier_block pm112_events = {
650  .notifier_call = pm112_wf_notify,
651 };
652 
653 static int wf_pm112_probe(struct platform_device *dev)
654 {
655  wf_register_client(&pm112_events);
656  return 0;
657 }
658 
659 static int __devexit wf_pm112_remove(struct platform_device *dev)
660 {
661  wf_unregister_client(&pm112_events);
662  /* should release all sensors and controls */
663  return 0;
664 }
665 
666 static struct platform_driver wf_pm112_driver = {
667  .probe = wf_pm112_probe,
668  .remove = __devexit_p(wf_pm112_remove),
669  .driver = {
670  .name = "windfarm",
671  .owner = THIS_MODULE,
672  },
673 };
674 
675 static int __init wf_pm112_init(void)
676 {
677  struct device_node *cpu;
678 
679  if (!of_machine_is_compatible("PowerMac11,2"))
680  return -ENODEV;
681 
682  /* Count the number of CPU cores */
683  nr_cores = 0;
684  for (cpu = NULL; (cpu = of_find_node_by_type(cpu, "cpu")) != NULL; )
685  ++nr_cores;
686 
687  printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
688 
689 #ifdef MODULE
690  request_module("windfarm_smu_controls");
691  request_module("windfarm_smu_sensors");
692  request_module("windfarm_smu_sat");
693  request_module("windfarm_lm75_sensor");
694  request_module("windfarm_max6690_sensor");
695  request_module("windfarm_cpufreq_clamp");
696 
697 #endif /* MODULE */
698 
699  platform_driver_register(&wf_pm112_driver);
700  return 0;
701 }
702 
703 static void __exit wf_pm112_exit(void)
704 {
705  platform_driver_unregister(&wf_pm112_driver);
706 }
707 
708 module_init(wf_pm112_init);
709 module_exit(wf_pm112_exit);
710 
711 MODULE_AUTHOR("Paul Mackerras <[email protected]>");
712 MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
713 MODULE_LICENSE("GPL");
714 MODULE_ALIAS("platform:windfarm");