Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
windfarm_pm72.c
Go to the documentation of this file.
1 /*
2  * Windfarm PowerMac thermal control.
3  * Control loops for PowerMac7,2 and 7,3
4  *
5  * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp.
6  *
7  * Use and redistribute under the terms of the GNU GPL v2.
8  */
9 #include <linux/types.h>
10 #include <linux/errno.h>
11 #include <linux/kernel.h>
12 #include <linux/device.h>
13 #include <linux/platform_device.h>
14 #include <linux/reboot.h>
15 #include <asm/prom.h>
16 #include <asm/smu.h>
17 
18 #include "windfarm.h"
19 #include "windfarm_pid.h"
20 #include "windfarm_mpu.h"
21 
22 #define VERSION "1.0"
23 
24 #undef DEBUG
25 #undef LOTSA_DEBUG
26 
27 #ifdef DEBUG
28 #define DBG(args...) printk(args)
29 #else
30 #define DBG(args...) do { } while(0)
31 #endif
32 
33 #ifdef LOTSA_DEBUG
34 #define DBG_LOTS(args...) printk(args)
35 #else
36 #define DBG_LOTS(args...) do { } while(0)
37 #endif
38 
39 /* define this to force CPU overtemp to 60 degree, useful for testing
40  * the overtemp code
41  */
42 #undef HACKED_OVERTEMP
43 
44 /* We currently only handle 2 chips */
45 #define NR_CHIPS 2
46 #define NR_CPU_FANS 3 * NR_CHIPS
47 
48 /* Controls and sensors */
49 static struct wf_sensor *sens_cpu_temp[NR_CHIPS];
50 static struct wf_sensor *sens_cpu_volts[NR_CHIPS];
51 static struct wf_sensor *sens_cpu_amps[NR_CHIPS];
52 static struct wf_sensor *backside_temp;
53 static struct wf_sensor *drives_temp;
54 
55 static struct wf_control *cpu_front_fans[NR_CHIPS];
56 static struct wf_control *cpu_rear_fans[NR_CHIPS];
57 static struct wf_control *cpu_pumps[NR_CHIPS];
58 static struct wf_control *backside_fan;
59 static struct wf_control *drives_fan;
60 static struct wf_control *slots_fan;
61 static struct wf_control *cpufreq_clamp;
62 
63 /* We keep a temperature history for average calculation of 180s */
64 #define CPU_TEMP_HIST_SIZE 180
65 
66 /* Fixed speed for slot fan */
67 #define SLOTS_FAN_DEFAULT_PWM 40
68 
69 /* Scale value for CPU intake fans */
70 #define CPU_INTAKE_SCALE 0x0000f852
71 
72 /* PID loop state */
73 static const struct mpu_data *cpu_mpu_data[NR_CHIPS];
74 static struct wf_cpu_pid_state cpu_pid[NR_CHIPS];
75 static bool cpu_pid_combined;
76 static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
77 static int cpu_thist_pt;
78 static s64 cpu_thist_total;
79 static s32 cpu_all_tmax = 100 << 16;
80 static struct wf_pid_state backside_pid;
81 static int backside_tick;
82 static struct wf_pid_state drives_pid;
83 static int drives_tick;
84 
85 static int nr_chips;
86 static bool have_all_controls;
87 static bool have_all_sensors;
88 static bool started;
89 
90 static int failure_state;
91 #define FAILURE_SENSOR 1
92 #define FAILURE_FAN 2
93 #define FAILURE_PERM 4
94 #define FAILURE_LOW_OVERTEMP 8
95 #define FAILURE_HIGH_OVERTEMP 16
96 
97 /* Overtemp values */
98 #define LOW_OVER_AVERAGE 0
99 #define LOW_OVER_IMMEDIATE (10 << 16)
100 #define LOW_OVER_CLEAR ((-10) << 16)
101 #define HIGH_OVER_IMMEDIATE (14 << 16)
102 #define HIGH_OVER_AVERAGE (10 << 16)
103 #define HIGH_OVER_IMMEDIATE (14 << 16)
104 
105 
106 static void cpu_max_all_fans(void)
107 {
108  int i;
109 
110  /* We max all CPU fans in case of a sensor error. We also do the
111  * cpufreq clamping now, even if it's supposedly done later by the
112  * generic code anyway, we do it earlier here to react faster
113  */
114  if (cpufreq_clamp)
115  wf_control_set_max(cpufreq_clamp);
116  for (i = 0; i < nr_chips; i++) {
117  if (cpu_front_fans[i])
118  wf_control_set_max(cpu_front_fans[i]);
119  if (cpu_rear_fans[i])
120  wf_control_set_max(cpu_rear_fans[i]);
121  if (cpu_pumps[i])
122  wf_control_set_max(cpu_pumps[i]);
123  }
124 }
125 
126 static int cpu_check_overtemp(s32 temp)
127 {
128  int new_state = 0;
129  s32 t_avg, t_old;
130  static bool first = true;
131 
132  /* First check for immediate overtemps */
133  if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
134  new_state |= FAILURE_LOW_OVERTEMP;
135  if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
136  printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
137  " temperature !\n");
138  }
139  if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
140  new_state |= FAILURE_HIGH_OVERTEMP;
141  if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
142  printk(KERN_ERR "windfarm: Critical overtemp due to"
143  " immediate CPU temperature !\n");
144  }
145 
146  /*
147  * The first time around, initialize the array with the first
148  * temperature reading
149  */
150  if (first) {
151  int i;
152 
153  cpu_thist_total = 0;
154  for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) {
155  cpu_thist[i] = temp;
156  cpu_thist_total += temp;
157  }
158  first = false;
159  }
160 
161  /*
162  * We calculate a history of max temperatures and use that for the
163  * overtemp management
164  */
165  t_old = cpu_thist[cpu_thist_pt];
166  cpu_thist[cpu_thist_pt] = temp;
167  cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
168  cpu_thist_total -= t_old;
169  cpu_thist_total += temp;
170  t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
171 
172  DBG_LOTS(" t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
173  FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
174 
175  /* Now check for average overtemps */
176  if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
177  new_state |= FAILURE_LOW_OVERTEMP;
178  if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
179  printk(KERN_ERR "windfarm: Overtemp due to average CPU"
180  " temperature !\n");
181  }
182  if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
183  new_state |= FAILURE_HIGH_OVERTEMP;
184  if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
185  printk(KERN_ERR "windfarm: Critical overtemp due to"
186  " average CPU temperature !\n");
187  }
188 
189  /* Now handle overtemp conditions. We don't currently use the windfarm
190  * overtemp handling core as it's not fully suited to the needs of those
191  * new machine. This will be fixed later.
192  */
193  if (new_state) {
194  /* High overtemp -> immediate shutdown */
195  if (new_state & FAILURE_HIGH_OVERTEMP)
197  if ((failure_state & new_state) != new_state)
198  cpu_max_all_fans();
199  failure_state |= new_state;
200  } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
201  (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
202  printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
203  failure_state &= ~FAILURE_LOW_OVERTEMP;
204  }
205 
206  return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
207 }
208 
209 static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power)
210 {
211  s32 dtemp, volts, amps;
212  int rc;
213 
214  /* Get diode temperature */
215  rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp);
216  if (rc) {
217  DBG(" CPU%d: temp reading error !\n", cpu);
218  return -EIO;
219  }
220  DBG_LOTS(" CPU%d: temp = %d.%03d\n", cpu, FIX32TOPRINT((dtemp)));
221  *temp = dtemp;
222 
223  /* Get voltage */
224  rc = wf_sensor_get(sens_cpu_volts[cpu], &volts);
225  if (rc) {
226  DBG(" CPU%d, volts reading error !\n", cpu);
227  return -EIO;
228  }
229  DBG_LOTS(" CPU%d: volts = %d.%03d\n", cpu, FIX32TOPRINT((volts)));
230 
231  /* Get current */
232  rc = wf_sensor_get(sens_cpu_amps[cpu], &amps);
233  if (rc) {
234  DBG(" CPU%d, current reading error !\n", cpu);
235  return -EIO;
236  }
237  DBG_LOTS(" CPU%d: amps = %d.%03d\n", cpu, FIX32TOPRINT((amps)));
238 
239  /* Calculate power */
240 
241  /* Scale voltage and current raw sensor values according to fixed scales
242  * obtained in Darwin and calculate power from I and V
243  */
244  *power = (((u64)volts) * ((u64)amps)) >> 16;
245 
246  DBG_LOTS(" CPU%d: power = %d.%03d\n", cpu, FIX32TOPRINT((*power)));
247 
248  return 0;
249 
250 }
251 
252 static void cpu_fans_tick_split(void)
253 {
254  int err, cpu;
255  s32 intake, temp, power, t_max = 0;
256 
257  DBG_LOTS("* cpu fans_tick_split()\n");
258 
259  for (cpu = 0; cpu < nr_chips; ++cpu) {
260  struct wf_cpu_pid_state *sp = &cpu_pid[cpu];
261 
262  /* Read current speed */
263  wf_control_get(cpu_rear_fans[cpu], &sp->target);
264 
265  DBG_LOTS(" CPU%d: cur_target = %d RPM\n", cpu, sp->target);
266 
267  err = read_one_cpu_vals(cpu, &temp, &power);
268  if (err) {
269  failure_state |= FAILURE_SENSOR;
270  cpu_max_all_fans();
271  return;
272  }
273 
274  /* Keep track of highest temp */
275  t_max = max(t_max, temp);
276 
277  /* Handle possible overtemps */
278  if (cpu_check_overtemp(t_max))
279  return;
280 
281  /* Run PID */
282  wf_cpu_pid_run(sp, power, temp);
283 
284  DBG_LOTS(" CPU%d: target = %d RPM\n", cpu, sp->target);
285 
286  /* Apply result directly to exhaust fan */
287  err = wf_control_set(cpu_rear_fans[cpu], sp->target);
288  if (err) {
289  pr_warning("wf_pm72: Fan %s reports error %d\n",
290  cpu_rear_fans[cpu]->name, err);
291  failure_state |= FAILURE_FAN;
292  break;
293  }
294 
295  /* Scale result for intake fan */
296  intake = (sp->target * CPU_INTAKE_SCALE) >> 16;
297  DBG_LOTS(" CPU%d: intake = %d RPM\n", cpu, intake);
298  err = wf_control_set(cpu_front_fans[cpu], intake);
299  if (err) {
300  pr_warning("wf_pm72: Fan %s reports error %d\n",
301  cpu_front_fans[cpu]->name, err);
302  failure_state |= FAILURE_FAN;
303  break;
304  }
305  }
306 }
307 
308 static void cpu_fans_tick_combined(void)
309 {
310  s32 temp0, power0, temp1, power1, t_max = 0;
311  s32 temp, power, intake, pump;
312  struct wf_control *pump0, *pump1;
313  struct wf_cpu_pid_state *sp = &cpu_pid[0];
314  int err, cpu;
315 
316  DBG_LOTS("* cpu fans_tick_combined()\n");
317 
318  /* Read current speed from cpu 0 */
319  wf_control_get(cpu_rear_fans[0], &sp->target);
320 
321  DBG_LOTS(" CPUs: cur_target = %d RPM\n", sp->target);
322 
323  /* Read values for both CPUs */
324  err = read_one_cpu_vals(0, &temp0, &power0);
325  if (err) {
326  failure_state |= FAILURE_SENSOR;
327  cpu_max_all_fans();
328  return;
329  }
330  err = read_one_cpu_vals(1, &temp1, &power1);
331  if (err) {
332  failure_state |= FAILURE_SENSOR;
333  cpu_max_all_fans();
334  return;
335  }
336 
337  /* Keep track of highest temp */
338  t_max = max(t_max, max(temp0, temp1));
339 
340  /* Handle possible overtemps */
341  if (cpu_check_overtemp(t_max))
342  return;
343 
344  /* Use the max temp & power of both */
345  temp = max(temp0, temp1);
346  power = max(power0, power1);
347 
348  /* Run PID */
349  wf_cpu_pid_run(sp, power, temp);
350 
351  /* Scale result for intake fan */
352  intake = (sp->target * CPU_INTAKE_SCALE) >> 16;
353 
354  /* Same deal with pump speed */
355  pump0 = cpu_pumps[0];
356  pump1 = cpu_pumps[1];
357  if (!pump0) {
358  pump0 = pump1;
359  pump1 = NULL;
360  }
361  pump = (sp->target * wf_control_get_max(pump0)) /
362  cpu_mpu_data[0]->rmaxn_exhaust_fan;
363 
364  DBG_LOTS(" CPUs: target = %d RPM\n", sp->target);
365  DBG_LOTS(" CPUs: intake = %d RPM\n", intake);
366  DBG_LOTS(" CPUs: pump = %d RPM\n", pump);
367 
368  for (cpu = 0; cpu < nr_chips; cpu++) {
369  err = wf_control_set(cpu_rear_fans[cpu], sp->target);
370  if (err) {
371  pr_warning("wf_pm72: Fan %s reports error %d\n",
372  cpu_rear_fans[cpu]->name, err);
373  failure_state |= FAILURE_FAN;
374  }
375  err = wf_control_set(cpu_front_fans[cpu], intake);
376  if (err) {
377  pr_warning("wf_pm72: Fan %s reports error %d\n",
378  cpu_front_fans[cpu]->name, err);
379  failure_state |= FAILURE_FAN;
380  }
381  err = 0;
382  if (cpu_pumps[cpu])
383  err = wf_control_set(cpu_pumps[cpu], pump);
384  if (err) {
385  pr_warning("wf_pm72: Pump %s reports error %d\n",
386  cpu_pumps[cpu]->name, err);
387  failure_state |= FAILURE_FAN;
388  }
389  }
390 }
391 
392 /* Implementation... */
393 static int cpu_setup_pid(int cpu)
394 {
395  struct wf_cpu_pid_param pid;
396  const struct mpu_data *mpu = cpu_mpu_data[cpu];
397  s32 tmax, ttarget, ptarget;
398  int fmin, fmax, hsize;
399 
400  /* Get PID params from the appropriate MPU EEPROM */
401  tmax = mpu->tmax << 16;
402  ttarget = mpu->ttarget << 16;
403  ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16;
404 
405  DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n",
406  cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax));
407 
408  /* We keep a global tmax for overtemp calculations */
409  if (tmax < cpu_all_tmax)
410  cpu_all_tmax = tmax;
411 
412  /* Set PID min/max by using the rear fan min/max */
413  fmin = wf_control_get_min(cpu_rear_fans[cpu]);
414  fmax = wf_control_get_max(cpu_rear_fans[cpu]);
415  DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax);
416 
417  /* History size */
418  hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY);
419  DBG("wf_72: CPU%d history size = %d\n", cpu, hsize);
420 
421  /* Initialize PID loop */
422  pid.interval = 1; /* seconds */
423  pid.history_len = hsize;
424  pid.gd = mpu->pid_gd;
425  pid.gp = mpu->pid_gp;
426  pid.gr = mpu->pid_gr;
427  pid.tmax = tmax;
428  pid.ttarget = ttarget;
429  pid.pmaxadj = ptarget;
430  pid.min = fmin;
431  pid.max = fmax;
432 
433  wf_cpu_pid_init(&cpu_pid[cpu], &pid);
434  cpu_pid[cpu].target = 1000;
435 
436  return 0;
437 }
438 
439 /* Backside/U3 fan */
440 static struct wf_pid_param backside_u3_param = {
441  .interval = 5,
442  .history_len = 2,
443  .gd = 40 << 20,
444  .gp = 5 << 20,
445  .gr = 0,
446  .itarget = 65 << 16,
447  .additive = 1,
448  .min = 20,
449  .max = 100,
450 };
451 
452 static struct wf_pid_param backside_u3h_param = {
453  .interval = 5,
454  .history_len = 2,
455  .gd = 20 << 20,
456  .gp = 5 << 20,
457  .gr = 0,
458  .itarget = 75 << 16,
459  .additive = 1,
460  .min = 20,
461  .max = 100,
462 };
463 
464 static void backside_fan_tick(void)
465 {
466  s32 temp;
467  int speed;
468  int err;
469 
470  if (!backside_fan || !backside_temp || !backside_tick)
471  return;
472  if (--backside_tick > 0)
473  return;
474  backside_tick = backside_pid.param.interval;
475 
476  DBG_LOTS("* backside fans tick\n");
477 
478  /* Update fan speed from actual fans */
479  err = wf_control_get(backside_fan, &speed);
480  if (!err)
481  backside_pid.target = speed;
482 
483  err = wf_sensor_get(backside_temp, &temp);
484  if (err) {
485  printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
486  err);
487  failure_state |= FAILURE_SENSOR;
488  wf_control_set_max(backside_fan);
489  return;
490  }
491  speed = wf_pid_run(&backside_pid, temp);
492 
493  DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
494  FIX32TOPRINT(temp), speed);
495 
496  err = wf_control_set(backside_fan, speed);
497  if (err) {
498  printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
499  failure_state |= FAILURE_FAN;
500  }
501 }
502 
503 static void backside_setup_pid(void)
504 {
505  /* first time initialize things */
506  s32 fmin = wf_control_get_min(backside_fan);
507  s32 fmax = wf_control_get_max(backside_fan);
508  struct wf_pid_param param;
509  struct device_node *u3;
510  int u3h = 1; /* conservative by default */
511 
512  u3 = of_find_node_by_path("/u3@0,f8000000");
513  if (u3 != NULL) {
514  const u32 *vers = of_get_property(u3, "device-rev", NULL);
515  if (vers)
516  if (((*vers) & 0x3f) < 0x34)
517  u3h = 0;
518  of_node_put(u3);
519  }
520 
521  param = u3h ? backside_u3h_param : backside_u3_param;
522 
523  param.min = max(param.min, fmin);
524  param.max = min(param.max, fmax);
525  wf_pid_init(&backside_pid, &param);
526  backside_tick = 1;
527 
528  pr_info("wf_pm72: Backside control loop started.\n");
529 }
530 
531 /* Drive bay fan */
532 static const struct wf_pid_param drives_param = {
533  .interval = 5,
534  .history_len = 2,
535  .gd = 30 << 20,
536  .gp = 5 << 20,
537  .gr = 0,
538  .itarget = 40 << 16,
539  .additive = 1,
540  .min = 300,
541  .max = 4000,
542 };
543 
544 static void drives_fan_tick(void)
545 {
546  s32 temp;
547  int speed;
548  int err;
549 
550  if (!drives_fan || !drives_temp || !drives_tick)
551  return;
552  if (--drives_tick > 0)
553  return;
554  drives_tick = drives_pid.param.interval;
555 
556  DBG_LOTS("* drives fans tick\n");
557 
558  /* Update fan speed from actual fans */
559  err = wf_control_get(drives_fan, &speed);
560  if (!err)
561  drives_pid.target = speed;
562 
563  err = wf_sensor_get(drives_temp, &temp);
564  if (err) {
565  pr_warning("wf_pm72: drive bay temp sensor error %d\n", err);
566  failure_state |= FAILURE_SENSOR;
567  wf_control_set_max(drives_fan);
568  return;
569  }
570  speed = wf_pid_run(&drives_pid, temp);
571 
572  DBG_LOTS("drives PID temp=%d.%.3d speed=%d\n",
573  FIX32TOPRINT(temp), speed);
574 
575  err = wf_control_set(drives_fan, speed);
576  if (err) {
577  printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
578  failure_state |= FAILURE_FAN;
579  }
580 }
581 
582 static void drives_setup_pid(void)
583 {
584  /* first time initialize things */
585  s32 fmin = wf_control_get_min(drives_fan);
586  s32 fmax = wf_control_get_max(drives_fan);
587  struct wf_pid_param param = drives_param;
588 
589  param.min = max(param.min, fmin);
590  param.max = min(param.max, fmax);
591  wf_pid_init(&drives_pid, &param);
592  drives_tick = 1;
593 
594  pr_info("wf_pm72: Drive bay control loop started.\n");
595 }
596 
597 static void set_fail_state(void)
598 {
599  cpu_max_all_fans();
600 
601  if (backside_fan)
602  wf_control_set_max(backside_fan);
603  if (slots_fan)
604  wf_control_set_max(slots_fan);
605  if (drives_fan)
606  wf_control_set_max(drives_fan);
607 }
608 
609 static void pm72_tick(void)
610 {
611  int i, last_failure;
612 
613  if (!started) {
614  started = 1;
615  printk(KERN_INFO "windfarm: CPUs control loops started.\n");
616  for (i = 0; i < nr_chips; ++i) {
617  if (cpu_setup_pid(i) < 0) {
618  failure_state = FAILURE_PERM;
619  set_fail_state();
620  break;
621  }
622  }
623  DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
624 
625  backside_setup_pid();
626  drives_setup_pid();
627 
628  /*
629  * We don't have the right stuff to drive the PCI fan
630  * so we fix it to a default value
631  */
632  wf_control_set(slots_fan, SLOTS_FAN_DEFAULT_PWM);
633 
634 #ifdef HACKED_OVERTEMP
635  cpu_all_tmax = 60 << 16;
636 #endif
637  }
638 
639  /* Permanent failure, bail out */
640  if (failure_state & FAILURE_PERM)
641  return;
642 
643  /*
644  * Clear all failure bits except low overtemp which will be eventually
645  * cleared by the control loop itself
646  */
647  last_failure = failure_state;
648  failure_state &= FAILURE_LOW_OVERTEMP;
649  if (cpu_pid_combined)
650  cpu_fans_tick_combined();
651  else
652  cpu_fans_tick_split();
653  backside_fan_tick();
654  drives_fan_tick();
655 
656  DBG_LOTS(" last_failure: 0x%x, failure_state: %x\n",
657  last_failure, failure_state);
658 
659  /* Check for failures. Any failure causes cpufreq clamping */
660  if (failure_state && last_failure == 0 && cpufreq_clamp)
661  wf_control_set_max(cpufreq_clamp);
662  if (failure_state == 0 && last_failure && cpufreq_clamp)
663  wf_control_set_min(cpufreq_clamp);
664 
665  /* That's it for now, we might want to deal with other failures
666  * differently in the future though
667  */
668 }
669 
670 static void pm72_new_control(struct wf_control *ct)
671 {
672  bool all_controls;
673  bool had_pump = cpu_pumps[0] || cpu_pumps[1];
674 
675  if (!strcmp(ct->name, "cpu-front-fan-0"))
676  cpu_front_fans[0] = ct;
677  else if (!strcmp(ct->name, "cpu-front-fan-1"))
678  cpu_front_fans[1] = ct;
679  else if (!strcmp(ct->name, "cpu-rear-fan-0"))
680  cpu_rear_fans[0] = ct;
681  else if (!strcmp(ct->name, "cpu-rear-fan-1"))
682  cpu_rear_fans[1] = ct;
683  else if (!strcmp(ct->name, "cpu-pump-0"))
684  cpu_pumps[0] = ct;
685  else if (!strcmp(ct->name, "cpu-pump-1"))
686  cpu_pumps[1] = ct;
687  else if (!strcmp(ct->name, "backside-fan"))
688  backside_fan = ct;
689  else if (!strcmp(ct->name, "slots-fan"))
690  slots_fan = ct;
691  else if (!strcmp(ct->name, "drive-bay-fan"))
692  drives_fan = ct;
693  else if (!strcmp(ct->name, "cpufreq-clamp"))
694  cpufreq_clamp = ct;
695 
696  all_controls =
697  cpu_front_fans[0] &&
698  cpu_rear_fans[0] &&
699  backside_fan &&
700  slots_fan &&
701  drives_fan;
702  if (nr_chips > 1)
703  all_controls &=
704  cpu_front_fans[1] &&
705  cpu_rear_fans[1];
706  have_all_controls = all_controls;
707 
708  if ((cpu_pumps[0] || cpu_pumps[1]) && !had_pump) {
709  pr_info("wf_pm72: Liquid cooling pump(s) detected,"
710  " using new algorithm !\n");
711  cpu_pid_combined = true;
712  }
713 }
714 
715 
716 static void pm72_new_sensor(struct wf_sensor *sr)
717 {
718  bool all_sensors;
719 
720  if (!strcmp(sr->name, "cpu-diode-temp-0"))
721  sens_cpu_temp[0] = sr;
722  else if (!strcmp(sr->name, "cpu-diode-temp-1"))
723  sens_cpu_temp[1] = sr;
724  else if (!strcmp(sr->name, "cpu-voltage-0"))
725  sens_cpu_volts[0] = sr;
726  else if (!strcmp(sr->name, "cpu-voltage-1"))
727  sens_cpu_volts[1] = sr;
728  else if (!strcmp(sr->name, "cpu-current-0"))
729  sens_cpu_amps[0] = sr;
730  else if (!strcmp(sr->name, "cpu-current-1"))
731  sens_cpu_amps[1] = sr;
732  else if (!strcmp(sr->name, "backside-temp"))
733  backside_temp = sr;
734  else if (!strcmp(sr->name, "hd-temp"))
735  drives_temp = sr;
736 
737  all_sensors =
738  sens_cpu_temp[0] &&
739  sens_cpu_volts[0] &&
740  sens_cpu_amps[0] &&
741  backside_temp &&
742  drives_temp;
743  if (nr_chips > 1)
744  all_sensors &=
745  sens_cpu_temp[1] &&
746  sens_cpu_volts[1] &&
747  sens_cpu_amps[1];
748 
749  have_all_sensors = all_sensors;
750 }
751 
752 static int pm72_wf_notify(struct notifier_block *self,
753  unsigned long event, void *data)
754 {
755  switch (event) {
756  case WF_EVENT_NEW_SENSOR:
757  pm72_new_sensor(data);
758  break;
760  pm72_new_control(data);
761  break;
762  case WF_EVENT_TICK:
763  if (have_all_controls && have_all_sensors)
764  pm72_tick();
765  }
766  return 0;
767 }
768 
769 static struct notifier_block pm72_events = {
770  .notifier_call = pm72_wf_notify,
771 };
772 
773 static int wf_pm72_probe(struct platform_device *dev)
774 {
775  wf_register_client(&pm72_events);
776  return 0;
777 }
778 
779 static int __devexit wf_pm72_remove(struct platform_device *dev)
780 {
781  wf_unregister_client(&pm72_events);
782 
783  /* should release all sensors and controls */
784  return 0;
785 }
786 
787 static struct platform_driver wf_pm72_driver = {
788  .probe = wf_pm72_probe,
789  .remove = wf_pm72_remove,
790  .driver = {
791  .name = "windfarm",
792  .owner = THIS_MODULE,
793  },
794 };
795 
796 static int __init wf_pm72_init(void)
797 {
798  struct device_node *cpu;
799  int i;
800 
801  if (!of_machine_is_compatible("PowerMac7,2") &&
802  !of_machine_is_compatible("PowerMac7,3"))
803  return -ENODEV;
804 
805  /* Count the number of CPU cores */
806  nr_chips = 0;
807  for (cpu = NULL; (cpu = of_find_node_by_type(cpu, "cpu")) != NULL; )
808  ++nr_chips;
809  if (nr_chips > NR_CHIPS)
810  nr_chips = NR_CHIPS;
811 
812  pr_info("windfarm: Initializing for desktop G5 with %d chips\n",
813  nr_chips);
814 
815  /* Get MPU data for each CPU */
816  for (i = 0; i < nr_chips; i++) {
817  cpu_mpu_data[i] = wf_get_mpu(i);
818  if (!cpu_mpu_data[i]) {
819  pr_err("wf_pm72: Failed to find MPU data for CPU %d\n", i);
820  return -ENXIO;
821  }
822  }
823 
824 #ifdef MODULE
825  request_module("windfarm_fcu_controls");
826  request_module("windfarm_lm75_sensor");
827  request_module("windfarm_ad7417_sensor");
828  request_module("windfarm_max6690_sensor");
829  request_module("windfarm_cpufreq_clamp");
830 #endif /* MODULE */
831 
832  platform_driver_register(&wf_pm72_driver);
833  return 0;
834 }
835 
836 static void __exit wf_pm72_exit(void)
837 {
838  platform_driver_unregister(&wf_pm72_driver);
839 }
840 
841 module_init(wf_pm72_init);
842 module_exit(wf_pm72_exit);
843 
844 MODULE_AUTHOR("Benjamin Herrenschmidt <[email protected]>");
845 MODULE_DESCRIPTION("Thermal control for AGP PowerMac G5s");
846 MODULE_LICENSE("GPL");
847 MODULE_ALIAS("platform:windfarm");