Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
windfarm_rm31.c
Go to the documentation of this file.
1 /*
2  * Windfarm PowerMac thermal control.
3  * Control loops for RackMack3,1 (Xserve G5)
4  *
5  * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp.
6  *
7  * Use and redistribute under the terms of the GNU GPL v2.
8  */
9 #include <linux/types.h>
10 #include <linux/errno.h>
11 #include <linux/kernel.h>
12 #include <linux/device.h>
13 #include <linux/platform_device.h>
14 #include <linux/reboot.h>
15 #include <asm/prom.h>
16 #include <asm/smu.h>
17 
18 #include "windfarm.h"
19 #include "windfarm_pid.h"
20 #include "windfarm_mpu.h"
21 
22 #define VERSION "1.0"
23 
24 #undef DEBUG
25 #undef LOTSA_DEBUG
26 
27 #ifdef DEBUG
28 #define DBG(args...) printk(args)
29 #else
30 #define DBG(args...) do { } while(0)
31 #endif
32 
33 #ifdef LOTSA_DEBUG
34 #define DBG_LOTS(args...) printk(args)
35 #else
36 #define DBG_LOTS(args...) do { } while(0)
37 #endif
38 
39 /* define this to force CPU overtemp to 60 degree, useful for testing
40  * the overtemp code
41  */
42 #undef HACKED_OVERTEMP
43 
44 /* We currently only handle 2 chips */
45 #define NR_CHIPS 2
46 #define NR_CPU_FANS 3 * NR_CHIPS
47 
48 /* Controls and sensors */
49 static struct wf_sensor *sens_cpu_temp[NR_CHIPS];
50 static struct wf_sensor *sens_cpu_volts[NR_CHIPS];
51 static struct wf_sensor *sens_cpu_amps[NR_CHIPS];
52 static struct wf_sensor *backside_temp;
53 static struct wf_sensor *slots_temp;
54 static struct wf_sensor *dimms_temp;
55 
56 static struct wf_control *cpu_fans[NR_CHIPS][3];
57 static struct wf_control *backside_fan;
58 static struct wf_control *slots_fan;
59 static struct wf_control *cpufreq_clamp;
60 
61 /* We keep a temperature history for average calculation of 180s */
62 #define CPU_TEMP_HIST_SIZE 180
63 
64 /* PID loop state */
65 static const struct mpu_data *cpu_mpu_data[NR_CHIPS];
66 static struct wf_cpu_pid_state cpu_pid[NR_CHIPS];
67 static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
68 static int cpu_thist_pt;
69 static s64 cpu_thist_total;
70 static s32 cpu_all_tmax = 100 << 16;
71 static struct wf_pid_state backside_pid;
72 static int backside_tick;
73 static struct wf_pid_state slots_pid;
74 static int slots_tick;
75 static int slots_speed;
76 static struct wf_pid_state dimms_pid;
77 static int dimms_output_clamp;
78 
79 static int nr_chips;
80 static bool have_all_controls;
81 static bool have_all_sensors;
82 static bool started;
83 
84 static int failure_state;
85 #define FAILURE_SENSOR 1
86 #define FAILURE_FAN 2
87 #define FAILURE_PERM 4
88 #define FAILURE_LOW_OVERTEMP 8
89 #define FAILURE_HIGH_OVERTEMP 16
90 
91 /* Overtemp values */
92 #define LOW_OVER_AVERAGE 0
93 #define LOW_OVER_IMMEDIATE (10 << 16)
94 #define LOW_OVER_CLEAR ((-10) << 16)
95 #define HIGH_OVER_IMMEDIATE (14 << 16)
96 #define HIGH_OVER_AVERAGE (10 << 16)
97 #define HIGH_OVER_IMMEDIATE (14 << 16)
98 
99 
100 static void cpu_max_all_fans(void)
101 {
102  int i;
103 
104  /* We max all CPU fans in case of a sensor error. We also do the
105  * cpufreq clamping now, even if it's supposedly done later by the
106  * generic code anyway, we do it earlier here to react faster
107  */
108  if (cpufreq_clamp)
109  wf_control_set_max(cpufreq_clamp);
110  for (i = 0; i < nr_chips; i++) {
111  if (cpu_fans[i][0])
112  wf_control_set_max(cpu_fans[i][0]);
113  if (cpu_fans[i][1])
114  wf_control_set_max(cpu_fans[i][1]);
115  if (cpu_fans[i][2])
116  wf_control_set_max(cpu_fans[i][2]);
117  }
118 }
119 
120 static int cpu_check_overtemp(s32 temp)
121 {
122  int new_state = 0;
123  s32 t_avg, t_old;
124  static bool first = true;
125 
126  /* First check for immediate overtemps */
127  if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
128  new_state |= FAILURE_LOW_OVERTEMP;
129  if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
130  printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
131  " temperature !\n");
132  }
133  if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
134  new_state |= FAILURE_HIGH_OVERTEMP;
135  if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
136  printk(KERN_ERR "windfarm: Critical overtemp due to"
137  " immediate CPU temperature !\n");
138  }
139 
140  /*
141  * The first time around, initialize the array with the first
142  * temperature reading
143  */
144  if (first) {
145  int i;
146 
147  cpu_thist_total = 0;
148  for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) {
149  cpu_thist[i] = temp;
150  cpu_thist_total += temp;
151  }
152  first = false;
153  }
154 
155  /*
156  * We calculate a history of max temperatures and use that for the
157  * overtemp management
158  */
159  t_old = cpu_thist[cpu_thist_pt];
160  cpu_thist[cpu_thist_pt] = temp;
161  cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
162  cpu_thist_total -= t_old;
163  cpu_thist_total += temp;
164  t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
165 
166  DBG_LOTS(" t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
167  FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
168 
169  /* Now check for average overtemps */
170  if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
171  new_state |= FAILURE_LOW_OVERTEMP;
172  if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
173  printk(KERN_ERR "windfarm: Overtemp due to average CPU"
174  " temperature !\n");
175  }
176  if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
177  new_state |= FAILURE_HIGH_OVERTEMP;
178  if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
179  printk(KERN_ERR "windfarm: Critical overtemp due to"
180  " average CPU temperature !\n");
181  }
182 
183  /* Now handle overtemp conditions. We don't currently use the windfarm
184  * overtemp handling core as it's not fully suited to the needs of those
185  * new machine. This will be fixed later.
186  */
187  if (new_state) {
188  /* High overtemp -> immediate shutdown */
189  if (new_state & FAILURE_HIGH_OVERTEMP)
191  if ((failure_state & new_state) != new_state)
192  cpu_max_all_fans();
193  failure_state |= new_state;
194  } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
195  (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
196  printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
197  failure_state &= ~FAILURE_LOW_OVERTEMP;
198  }
199 
200  return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
201 }
202 
203 static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power)
204 {
205  s32 dtemp, volts, amps;
206  int rc;
207 
208  /* Get diode temperature */
209  rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp);
210  if (rc) {
211  DBG(" CPU%d: temp reading error !\n", cpu);
212  return -EIO;
213  }
214  DBG_LOTS(" CPU%d: temp = %d.%03d\n", cpu, FIX32TOPRINT((dtemp)));
215  *temp = dtemp;
216 
217  /* Get voltage */
218  rc = wf_sensor_get(sens_cpu_volts[cpu], &volts);
219  if (rc) {
220  DBG(" CPU%d, volts reading error !\n", cpu);
221  return -EIO;
222  }
223  DBG_LOTS(" CPU%d: volts = %d.%03d\n", cpu, FIX32TOPRINT((volts)));
224 
225  /* Get current */
226  rc = wf_sensor_get(sens_cpu_amps[cpu], &amps);
227  if (rc) {
228  DBG(" CPU%d, current reading error !\n", cpu);
229  return -EIO;
230  }
231  DBG_LOTS(" CPU%d: amps = %d.%03d\n", cpu, FIX32TOPRINT((amps)));
232 
233  /* Calculate power */
234 
235  /* Scale voltage and current raw sensor values according to fixed scales
236  * obtained in Darwin and calculate power from I and V
237  */
238  *power = (((u64)volts) * ((u64)amps)) >> 16;
239 
240  DBG_LOTS(" CPU%d: power = %d.%03d\n", cpu, FIX32TOPRINT((*power)));
241 
242  return 0;
243 
244 }
245 
246 static void cpu_fans_tick(void)
247 {
248  int err, cpu, i;
249  s32 speed, temp, power, t_max = 0;
250 
251  DBG_LOTS("* cpu fans_tick_split()\n");
252 
253  for (cpu = 0; cpu < nr_chips; ++cpu) {
254  struct wf_cpu_pid_state *sp = &cpu_pid[cpu];
255 
256  /* Read current speed */
257  wf_control_get(cpu_fans[cpu][0], &sp->target);
258 
259  err = read_one_cpu_vals(cpu, &temp, &power);
260  if (err) {
261  failure_state |= FAILURE_SENSOR;
262  cpu_max_all_fans();
263  return;
264  }
265 
266  /* Keep track of highest temp */
267  t_max = max(t_max, temp);
268 
269  /* Handle possible overtemps */
270  if (cpu_check_overtemp(t_max))
271  return;
272 
273  /* Run PID */
274  wf_cpu_pid_run(sp, power, temp);
275 
276  DBG_LOTS(" CPU%d: target = %d RPM\n", cpu, sp->target);
277 
278  /* Apply DIMMs clamp */
279  speed = max(sp->target, dimms_output_clamp);
280 
281  /* Apply result to all cpu fans */
282  for (i = 0; i < 3; i++) {
283  err = wf_control_set(cpu_fans[cpu][i], speed);
284  if (err) {
285  pr_warning("wf_rm31: Fan %s reports error %d\n",
286  cpu_fans[cpu][i]->name, err);
287  failure_state |= FAILURE_FAN;
288  }
289  }
290  }
291 }
292 
293 /* Implementation... */
294 static int cpu_setup_pid(int cpu)
295 {
296  struct wf_cpu_pid_param pid;
297  const struct mpu_data *mpu = cpu_mpu_data[cpu];
298  s32 tmax, ttarget, ptarget;
299  int fmin, fmax, hsize;
300 
301  /* Get PID params from the appropriate MPU EEPROM */
302  tmax = mpu->tmax << 16;
303  ttarget = mpu->ttarget << 16;
304  ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16;
305 
306  DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n",
307  cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax));
308 
309  /* We keep a global tmax for overtemp calculations */
310  if (tmax < cpu_all_tmax)
311  cpu_all_tmax = tmax;
312 
313  /* Set PID min/max by using the rear fan min/max */
314  fmin = wf_control_get_min(cpu_fans[cpu][0]);
315  fmax = wf_control_get_max(cpu_fans[cpu][0]);
316  DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax);
317 
318  /* History size */
319  hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY);
320  DBG("wf_72: CPU%d history size = %d\n", cpu, hsize);
321 
322  /* Initialize PID loop */
323  pid.interval = 1; /* seconds */
324  pid.history_len = hsize;
325  pid.gd = mpu->pid_gd;
326  pid.gp = mpu->pid_gp;
327  pid.gr = mpu->pid_gr;
328  pid.tmax = tmax;
329  pid.ttarget = ttarget;
330  pid.pmaxadj = ptarget;
331  pid.min = fmin;
332  pid.max = fmax;
333 
334  wf_cpu_pid_init(&cpu_pid[cpu], &pid);
335  cpu_pid[cpu].target = 4000;
336 
337  return 0;
338 }
339 
340 /* Backside/U3 fan */
341 static struct wf_pid_param backside_param = {
342  .interval = 1,
343  .history_len = 2,
344  .gd = 0x00500000,
345  .gp = 0x0004cccc,
346  .gr = 0,
347  .itarget = 70 << 16,
348  .additive = 0,
349  .min = 20,
350  .max = 100,
351 };
352 
353 /* DIMMs temperature (clamp the backside fan) */
354 static struct wf_pid_param dimms_param = {
355  .interval = 1,
356  .history_len = 20,
357  .gd = 0,
358  .gp = 0,
359  .gr = 0x06553600,
360  .itarget = 50 << 16,
361  .additive = 0,
362  .min = 4000,
363  .max = 14000,
364 };
365 
366 static void backside_fan_tick(void)
367 {
368  s32 temp, dtemp;
369  int speed, dspeed, fan_min;
370  int err;
371 
372  if (!backside_fan || !backside_temp || !dimms_temp || !backside_tick)
373  return;
374  if (--backside_tick > 0)
375  return;
376  backside_tick = backside_pid.param.interval;
377 
378  DBG_LOTS("* backside fans tick\n");
379 
380  /* Update fan speed from actual fans */
381  err = wf_control_get(backside_fan, &speed);
382  if (!err)
383  backside_pid.target = speed;
384 
385  err = wf_sensor_get(backside_temp, &temp);
386  if (err) {
387  printk(KERN_WARNING "windfarm: U3 temp sensor error %d\n",
388  err);
389  failure_state |= FAILURE_SENSOR;
390  wf_control_set_max(backside_fan);
391  return;
392  }
393  speed = wf_pid_run(&backside_pid, temp);
394 
395  DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
396  FIX32TOPRINT(temp), speed);
397 
398  err = wf_sensor_get(dimms_temp, &dtemp);
399  if (err) {
400  printk(KERN_WARNING "windfarm: DIMMs temp sensor error %d\n",
401  err);
402  failure_state |= FAILURE_SENSOR;
403  wf_control_set_max(backside_fan);
404  return;
405  }
406  dspeed = wf_pid_run(&dimms_pid, dtemp);
407  dimms_output_clamp = dspeed;
408 
409  fan_min = (dspeed * 100) / 14000;
410  fan_min = max(fan_min, backside_param.min);
411  speed = max(speed, fan_min);
412 
413  err = wf_control_set(backside_fan, speed);
414  if (err) {
415  printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
416  failure_state |= FAILURE_FAN;
417  }
418 }
419 
420 static void backside_setup_pid(void)
421 {
422  /* first time initialize things */
423  s32 fmin = wf_control_get_min(backside_fan);
424  s32 fmax = wf_control_get_max(backside_fan);
425  struct wf_pid_param param;
426 
427  param = backside_param;
428  param.min = max(param.min, fmin);
429  param.max = min(param.max, fmax);
430  wf_pid_init(&backside_pid, &param);
431 
432  param = dimms_param;
433  wf_pid_init(&dimms_pid, &param);
434 
435  backside_tick = 1;
436 
437  pr_info("wf_rm31: Backside control loop started.\n");
438 }
439 
440 /* Slots fan */
441 static const struct wf_pid_param slots_param = {
442  .interval = 5,
443  .history_len = 2,
444  .gd = 30 << 20,
445  .gp = 5 << 20,
446  .gr = 0,
447  .itarget = 40 << 16,
448  .additive = 1,
449  .min = 300,
450  .max = 4000,
451 };
452 
453 static void slots_fan_tick(void)
454 {
455  s32 temp;
456  int speed;
457  int err;
458 
459  if (!slots_fan || !slots_temp || !slots_tick)
460  return;
461  if (--slots_tick > 0)
462  return;
463  slots_tick = slots_pid.param.interval;
464 
465  DBG_LOTS("* slots fans tick\n");
466 
467  err = wf_sensor_get(slots_temp, &temp);
468  if (err) {
469  pr_warning("wf_rm31: slots temp sensor error %d\n", err);
470  failure_state |= FAILURE_SENSOR;
471  wf_control_set_max(slots_fan);
472  return;
473  }
474  speed = wf_pid_run(&slots_pid, temp);
475 
476  DBG_LOTS("slots PID temp=%d.%.3d speed=%d\n",
477  FIX32TOPRINT(temp), speed);
478 
479  slots_speed = speed;
480  err = wf_control_set(slots_fan, speed);
481  if (err) {
482  printk(KERN_WARNING "windfarm: slots bay fan error %d\n", err);
483  failure_state |= FAILURE_FAN;
484  }
485 }
486 
487 static void slots_setup_pid(void)
488 {
489  /* first time initialize things */
490  s32 fmin = wf_control_get_min(slots_fan);
491  s32 fmax = wf_control_get_max(slots_fan);
492  struct wf_pid_param param = slots_param;
493 
494  param.min = max(param.min, fmin);
495  param.max = min(param.max, fmax);
496  wf_pid_init(&slots_pid, &param);
497  slots_tick = 1;
498 
499  pr_info("wf_rm31: Slots control loop started.\n");
500 }
501 
502 static void set_fail_state(void)
503 {
504  cpu_max_all_fans();
505 
506  if (backside_fan)
507  wf_control_set_max(backside_fan);
508  if (slots_fan)
509  wf_control_set_max(slots_fan);
510 }
511 
512 static void rm31_tick(void)
513 {
514  int i, last_failure;
515 
516  if (!started) {
517  started = 1;
518  printk(KERN_INFO "windfarm: CPUs control loops started.\n");
519  for (i = 0; i < nr_chips; ++i) {
520  if (cpu_setup_pid(i) < 0) {
521  failure_state = FAILURE_PERM;
522  set_fail_state();
523  break;
524  }
525  }
526  DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
527 
528  backside_setup_pid();
529  slots_setup_pid();
530 
531 #ifdef HACKED_OVERTEMP
532  cpu_all_tmax = 60 << 16;
533 #endif
534  }
535 
536  /* Permanent failure, bail out */
537  if (failure_state & FAILURE_PERM)
538  return;
539 
540  /*
541  * Clear all failure bits except low overtemp which will be eventually
542  * cleared by the control loop itself
543  */
544  last_failure = failure_state;
545  failure_state &= FAILURE_LOW_OVERTEMP;
546  backside_fan_tick();
547  slots_fan_tick();
548 
549  /* We do CPUs last because they can be clamped high by
550  * DIMM temperature
551  */
552  cpu_fans_tick();
553 
554  DBG_LOTS(" last_failure: 0x%x, failure_state: %x\n",
555  last_failure, failure_state);
556 
557  /* Check for failures. Any failure causes cpufreq clamping */
558  if (failure_state && last_failure == 0 && cpufreq_clamp)
559  wf_control_set_max(cpufreq_clamp);
560  if (failure_state == 0 && last_failure && cpufreq_clamp)
561  wf_control_set_min(cpufreq_clamp);
562 
563  /* That's it for now, we might want to deal with other failures
564  * differently in the future though
565  */
566 }
567 
568 static void rm31_new_control(struct wf_control *ct)
569 {
570  bool all_controls;
571 
572  if (!strcmp(ct->name, "cpu-fan-a-0"))
573  cpu_fans[0][0] = ct;
574  else if (!strcmp(ct->name, "cpu-fan-b-0"))
575  cpu_fans[0][1] = ct;
576  else if (!strcmp(ct->name, "cpu-fan-c-0"))
577  cpu_fans[0][2] = ct;
578  else if (!strcmp(ct->name, "cpu-fan-a-1"))
579  cpu_fans[1][0] = ct;
580  else if (!strcmp(ct->name, "cpu-fan-b-1"))
581  cpu_fans[1][1] = ct;
582  else if (!strcmp(ct->name, "cpu-fan-c-1"))
583  cpu_fans[1][2] = ct;
584  else if (!strcmp(ct->name, "backside-fan"))
585  backside_fan = ct;
586  else if (!strcmp(ct->name, "slots-fan"))
587  slots_fan = ct;
588  else if (!strcmp(ct->name, "cpufreq-clamp"))
589  cpufreq_clamp = ct;
590 
591  all_controls =
592  cpu_fans[0][0] &&
593  cpu_fans[0][1] &&
594  cpu_fans[0][2] &&
595  backside_fan &&
596  slots_fan;
597  if (nr_chips > 1)
598  all_controls &=
599  cpu_fans[1][0] &&
600  cpu_fans[1][1] &&
601  cpu_fans[1][2];
602  have_all_controls = all_controls;
603 }
604 
605 
606 static void rm31_new_sensor(struct wf_sensor *sr)
607 {
608  bool all_sensors;
609 
610  if (!strcmp(sr->name, "cpu-diode-temp-0"))
611  sens_cpu_temp[0] = sr;
612  else if (!strcmp(sr->name, "cpu-diode-temp-1"))
613  sens_cpu_temp[1] = sr;
614  else if (!strcmp(sr->name, "cpu-voltage-0"))
615  sens_cpu_volts[0] = sr;
616  else if (!strcmp(sr->name, "cpu-voltage-1"))
617  sens_cpu_volts[1] = sr;
618  else if (!strcmp(sr->name, "cpu-current-0"))
619  sens_cpu_amps[0] = sr;
620  else if (!strcmp(sr->name, "cpu-current-1"))
621  sens_cpu_amps[1] = sr;
622  else if (!strcmp(sr->name, "backside-temp"))
623  backside_temp = sr;
624  else if (!strcmp(sr->name, "slots-temp"))
625  slots_temp = sr;
626  else if (!strcmp(sr->name, "dimms-temp"))
627  dimms_temp = sr;
628 
629  all_sensors =
630  sens_cpu_temp[0] &&
631  sens_cpu_volts[0] &&
632  sens_cpu_amps[0] &&
633  backside_temp &&
634  slots_temp &&
635  dimms_temp;
636  if (nr_chips > 1)
637  all_sensors &=
638  sens_cpu_temp[1] &&
639  sens_cpu_volts[1] &&
640  sens_cpu_amps[1];
641 
642  have_all_sensors = all_sensors;
643 }
644 
645 static int rm31_wf_notify(struct notifier_block *self,
646  unsigned long event, void *data)
647 {
648  switch (event) {
649  case WF_EVENT_NEW_SENSOR:
650  rm31_new_sensor(data);
651  break;
653  rm31_new_control(data);
654  break;
655  case WF_EVENT_TICK:
656  if (have_all_controls && have_all_sensors)
657  rm31_tick();
658  }
659  return 0;
660 }
661 
662 static struct notifier_block rm31_events = {
663  .notifier_call = rm31_wf_notify,
664 };
665 
666 static int wf_rm31_probe(struct platform_device *dev)
667 {
668  wf_register_client(&rm31_events);
669  return 0;
670 }
671 
672 static int __devexit wf_rm31_remove(struct platform_device *dev)
673 {
674  wf_unregister_client(&rm31_events);
675 
676  /* should release all sensors and controls */
677  return 0;
678 }
679 
680 static struct platform_driver wf_rm31_driver = {
681  .probe = wf_rm31_probe,
682  .remove = wf_rm31_remove,
683  .driver = {
684  .name = "windfarm",
685  .owner = THIS_MODULE,
686  },
687 };
688 
689 static int __init wf_rm31_init(void)
690 {
691  struct device_node *cpu;
692  int i;
693 
694  if (!of_machine_is_compatible("RackMac3,1"))
695  return -ENODEV;
696 
697  /* Count the number of CPU cores */
698  nr_chips = 0;
699  for (cpu = NULL; (cpu = of_find_node_by_type(cpu, "cpu")) != NULL; )
700  ++nr_chips;
701  if (nr_chips > NR_CHIPS)
702  nr_chips = NR_CHIPS;
703 
704  pr_info("windfarm: Initializing for desktop G5 with %d chips\n",
705  nr_chips);
706 
707  /* Get MPU data for each CPU */
708  for (i = 0; i < nr_chips; i++) {
709  cpu_mpu_data[i] = wf_get_mpu(i);
710  if (!cpu_mpu_data[i]) {
711  pr_err("wf_rm31: Failed to find MPU data for CPU %d\n", i);
712  return -ENXIO;
713  }
714  }
715 
716 #ifdef MODULE
717  request_module("windfarm_fcu_controls");
718  request_module("windfarm_lm75_sensor");
719  request_module("windfarm_lm87_sensor");
720  request_module("windfarm_ad7417_sensor");
721  request_module("windfarm_max6690_sensor");
722  request_module("windfarm_cpufreq_clamp");
723 #endif /* MODULE */
724 
725  platform_driver_register(&wf_rm31_driver);
726  return 0;
727 }
728 
729 static void __exit wf_rm31_exit(void)
730 {
731  platform_driver_unregister(&wf_rm31_driver);
732 }
733 
734 module_init(wf_rm31_init);
735 module_exit(wf_rm31_exit);
736 
737 MODULE_AUTHOR("Benjamin Herrenschmidt <[email protected]>");
738 MODULE_DESCRIPTION("Thermal control for Xserve G5");
739 MODULE_LICENSE("GPL");
740 MODULE_ALIAS("platform:windfarm");