Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
xfs_mru_cache.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2006-2007 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17  */
18 #include "xfs.h"
19 #include "xfs_mru_cache.h"
20 
21 /*
22  * The MRU Cache data structure consists of a data store, an array of lists and
23  * a lock to protect its internal state. At initialisation time, the client
24  * supplies an element lifetime in milliseconds and a group count, as well as a
25  * function pointer to call when deleting elements. A data structure for
26  * queueing up work in the form of timed callbacks is also included.
27  *
28  * The group count controls how many lists are created, and thereby how finely
29  * the elements are grouped in time. When reaping occurs, all the elements in
30  * all the lists whose time has expired are deleted.
31  *
32  * To give an example of how this works in practice, consider a client that
33  * initialises an MRU Cache with a lifetime of ten seconds and a group count of
34  * five. Five internal lists will be created, each representing a two second
35  * period in time. When the first element is added, time zero for the data
36  * structure is initialised to the current time.
37  *
38  * All the elements added in the first two seconds are appended to the first
39  * list. Elements added in the third second go into the second list, and so on.
40  * If an element is accessed at any point, it is removed from its list and
41  * inserted at the head of the current most-recently-used list.
42  *
43  * The reaper function will have nothing to do until at least twelve seconds
44  * have elapsed since the first element was added. The reason for this is that
45  * if it were called at t=11s, there could be elements in the first list that
46  * have only been inactive for nine seconds, so it still does nothing. If it is
47  * called anywhere between t=12 and t=14 seconds, it will delete all the
48  * elements that remain in the first list. It's therefore possible for elements
49  * to remain in the data store even after they've been inactive for up to
50  * (t + t/g) seconds, where t is the inactive element lifetime and g is the
51  * number of groups.
52  *
53  * The above example assumes that the reaper function gets called at least once
54  * every (t/g) seconds. If it is called less frequently, unused elements will
55  * accumulate in the reap list until the reaper function is eventually called.
56  * The current implementation uses work queue callbacks to carefully time the
57  * reaper function calls, so this should happen rarely, if at all.
58  *
59  * From a design perspective, the primary reason for the choice of a list array
60  * representing discrete time intervals is that it's only practical to reap
61  * expired elements in groups of some appreciable size. This automatically
62  * introduces a granularity to element lifetimes, so there's no point storing an
63  * individual timeout with each element that specifies a more precise reap time.
64  * The bonus is a saving of sizeof(long) bytes of memory per element stored.
65  *
66  * The elements could have been stored in just one list, but an array of
67  * counters or pointers would need to be maintained to allow them to be divided
68  * up into discrete time groups. More critically, the process of touching or
69  * removing an element would involve walking large portions of the entire list,
70  * which would have a detrimental effect on performance. The additional memory
71  * requirement for the array of list heads is minimal.
72  *
73  * When an element is touched or deleted, it needs to be removed from its
74  * current list. Doubly linked lists are used to make the list maintenance
75  * portion of these operations O(1). Since reaper timing can be imprecise,
76  * inserts and lookups can occur when there are no free lists available. When
77  * this happens, all the elements on the LRU list need to be migrated to the end
78  * of the reap list. To keep the list maintenance portion of these operations
79  * O(1) also, list tails need to be accessible without walking the entire list.
80  * This is the reason why doubly linked list heads are used.
81  */
82 
83 /*
84  * An MRU Cache is a dynamic data structure that stores its elements in a way
85  * that allows efficient lookups, but also groups them into discrete time
86  * intervals based on insertion time. This allows elements to be efficiently
87  * and automatically reaped after a fixed period of inactivity.
88  *
89  * When a client data pointer is stored in the MRU Cache it needs to be added to
90  * both the data store and to one of the lists. It must also be possible to
91  * access each of these entries via the other, i.e. to:
92  *
93  * a) Walk a list, removing the corresponding data store entry for each item.
94  * b) Look up a data store entry, then access its list entry directly.
95  *
96  * To achieve both of these goals, each entry must contain both a list entry and
97  * a key, in addition to the user's data pointer. Note that it's not a good
98  * idea to have the client embed one of these structures at the top of their own
99  * data structure, because inserting the same item more than once would most
100  * likely result in a loop in one of the lists. That's a sure-fire recipe for
101  * an infinite loop in the code.
102  */
103 typedef struct xfs_mru_cache_elem
104 {
106  unsigned long key;
107  void *value;
109 
110 static kmem_zone_t *xfs_mru_elem_zone;
111 static struct workqueue_struct *xfs_mru_reap_wq;
112 
113 /*
114  * When inserting, destroying or reaping, it's first necessary to update the
115  * lists relative to a particular time. In the case of destroying, that time
116  * will be well in the future to ensure that all items are moved to the reap
117  * list. In all other cases though, the time will be the current time.
118  *
119  * This function enters a loop, moving the contents of the LRU list to the reap
120  * list again and again until either a) the lists are all empty, or b) time zero
121  * has been advanced sufficiently to be within the immediate element lifetime.
122  *
123  * Case a) above is detected by counting how many groups are migrated and
124  * stopping when they've all been moved. Case b) is detected by monitoring the
125  * time_zero field, which is updated as each group is migrated.
126  *
127  * The return value is the earliest time that more migration could be needed, or
128  * zero if there's no need to schedule more work because the lists are empty.
129  */
130 STATIC unsigned long
132  xfs_mru_cache_t *mru,
133  unsigned long now)
134 {
135  unsigned int grp;
136  unsigned int migrated = 0;
137  struct list_head *lru_list;
138 
139  /* Nothing to do if the data store is empty. */
140  if (!mru->time_zero)
141  return 0;
142 
143  /* While time zero is older than the time spanned by all the lists. */
144  while (mru->time_zero <= now - mru->grp_count * mru->grp_time) {
145 
146  /*
147  * If the LRU list isn't empty, migrate its elements to the tail
148  * of the reap list.
149  */
150  lru_list = mru->lists + mru->lru_grp;
151  if (!list_empty(lru_list))
152  list_splice_init(lru_list, mru->reap_list.prev);
153 
154  /*
155  * Advance the LRU group number, freeing the old LRU list to
156  * become the new MRU list; advance time zero accordingly.
157  */
158  mru->lru_grp = (mru->lru_grp + 1) % mru->grp_count;
159  mru->time_zero += mru->grp_time;
160 
161  /*
162  * If reaping is so far behind that all the elements on all the
163  * lists have been migrated to the reap list, it's now empty.
164  */
165  if (++migrated == mru->grp_count) {
166  mru->lru_grp = 0;
167  mru->time_zero = 0;
168  return 0;
169  }
170  }
171 
172  /* Find the first non-empty list from the LRU end. */
173  for (grp = 0; grp < mru->grp_count; grp++) {
174 
175  /* Check the grp'th list from the LRU end. */
176  lru_list = mru->lists + ((mru->lru_grp + grp) % mru->grp_count);
177  if (!list_empty(lru_list))
178  return mru->time_zero +
179  (mru->grp_count + grp) * mru->grp_time;
180  }
181 
182  /* All the lists must be empty. */
183  mru->lru_grp = 0;
184  mru->time_zero = 0;
185  return 0;
186 }
187 
188 /*
189  * When inserting or doing a lookup, an element needs to be inserted into the
190  * MRU list. The lists must be migrated first to ensure that they're
191  * up-to-date, otherwise the new element could be given a shorter lifetime in
192  * the cache than it should.
193  */
194 STATIC void
196  xfs_mru_cache_t *mru,
198 {
199  unsigned int grp = 0;
200  unsigned long now = jiffies;
201 
202  /*
203  * If the data store is empty, initialise time zero, leave grp set to
204  * zero and start the work queue timer if necessary. Otherwise, set grp
205  * to the number of group times that have elapsed since time zero.
206  */
207  if (!_xfs_mru_cache_migrate(mru, now)) {
208  mru->time_zero = now;
209  if (!mru->queued) {
210  mru->queued = 1;
211  queue_delayed_work(xfs_mru_reap_wq, &mru->work,
212  mru->grp_count * mru->grp_time);
213  }
214  } else {
215  grp = (now - mru->time_zero) / mru->grp_time;
216  grp = (mru->lru_grp + grp) % mru->grp_count;
217  }
218 
219  /* Insert the element at the tail of the corresponding list. */
220  list_add_tail(&elem->list_node, mru->lists + grp);
221 }
222 
223 /*
224  * When destroying or reaping, all the elements that were migrated to the reap
225  * list need to be deleted. For each element this involves removing it from the
226  * data store, removing it from the reap list, calling the client's free
227  * function and deleting the element from the element zone.
228  *
229  * We get called holding the mru->lock, which we drop and then reacquire.
230  * Sparse need special help with this to tell it we know what we are doing.
231  */
232 STATIC void
234  xfs_mru_cache_t *mru) __releases(mru->lock) __acquires(mru->lock)
235 
236 {
238  struct list_head tmp;
239 
240  INIT_LIST_HEAD(&tmp);
241  list_for_each_entry_safe(elem, next, &mru->reap_list, list_node) {
242 
243  /* Remove the element from the data store. */
244  radix_tree_delete(&mru->store, elem->key);
245 
246  /*
247  * remove to temp list so it can be freed without
248  * needing to hold the lock
249  */
250  list_move(&elem->list_node, &tmp);
251  }
252  spin_unlock(&mru->lock);
253 
254  list_for_each_entry_safe(elem, next, &tmp, list_node) {
255 
256  /* Remove the element from the reap list. */
257  list_del_init(&elem->list_node);
258 
259  /* Call the client's free function with the key and value pointer. */
260  mru->free_func(elem->key, elem->value);
261 
262  /* Free the element structure. */
263  kmem_zone_free(xfs_mru_elem_zone, elem);
264  }
265 
266  spin_lock(&mru->lock);
267 }
268 
269 /*
270  * We fire the reap timer every group expiry interval so
271  * we always have a reaper ready to run. This makes shutdown
272  * and flushing of the reaper easy to do. Hence we need to
273  * keep when the next reap must occur so we can determine
274  * at each interval whether there is anything we need to do.
275  */
276 STATIC void
278  struct work_struct *work)
279 {
280  xfs_mru_cache_t *mru = container_of(work, xfs_mru_cache_t, work.work);
281  unsigned long now, next;
282 
283  ASSERT(mru && mru->lists);
284  if (!mru || !mru->lists)
285  return;
286 
287  spin_lock(&mru->lock);
288  next = _xfs_mru_cache_migrate(mru, jiffies);
290 
291  mru->queued = next;
292  if ((mru->queued > 0)) {
293  now = jiffies;
294  if (next <= now)
295  next = 0;
296  else
297  next -= now;
298  queue_delayed_work(xfs_mru_reap_wq, &mru->work, next);
299  }
300 
301  spin_unlock(&mru->lock);
302 }
303 
304 int
306 {
307  xfs_mru_elem_zone = kmem_zone_init(sizeof(xfs_mru_cache_elem_t),
308  "xfs_mru_cache_elem");
309  if (!xfs_mru_elem_zone)
310  goto out;
311 
312  xfs_mru_reap_wq = alloc_workqueue("xfs_mru_cache", WQ_MEM_RECLAIM, 1);
313  if (!xfs_mru_reap_wq)
314  goto out_destroy_mru_elem_zone;
315 
316  return 0;
317 
318  out_destroy_mru_elem_zone:
319  kmem_zone_destroy(xfs_mru_elem_zone);
320  out:
321  return -ENOMEM;
322 }
323 
324 void
326 {
327  destroy_workqueue(xfs_mru_reap_wq);
328  kmem_zone_destroy(xfs_mru_elem_zone);
329 }
330 
331 /*
332  * To initialise a struct xfs_mru_cache pointer, call xfs_mru_cache_create()
333  * with the address of the pointer, a lifetime value in milliseconds, a group
334  * count and a free function to use when deleting elements. This function
335  * returns 0 if the initialisation was successful.
336  */
337 int
339  xfs_mru_cache_t **mrup,
340  unsigned int lifetime_ms,
341  unsigned int grp_count,
342  xfs_mru_cache_free_func_t free_func)
343 {
344  xfs_mru_cache_t *mru = NULL;
345  int err = 0, grp;
346  unsigned int grp_time;
347 
348  if (mrup)
349  *mrup = NULL;
350 
351  if (!mrup || !grp_count || !lifetime_ms || !free_func)
352  return EINVAL;
353 
354  if (!(grp_time = msecs_to_jiffies(lifetime_ms) / grp_count))
355  return EINVAL;
356 
357  if (!(mru = kmem_zalloc(sizeof(*mru), KM_SLEEP)))
358  return ENOMEM;
359 
360  /* An extra list is needed to avoid reaping up to a grp_time early. */
361  mru->grp_count = grp_count + 1;
362  mru->lists = kmem_zalloc(mru->grp_count * sizeof(*mru->lists), KM_SLEEP);
363 
364  if (!mru->lists) {
365  err = ENOMEM;
366  goto exit;
367  }
368 
369  for (grp = 0; grp < mru->grp_count; grp++)
370  INIT_LIST_HEAD(mru->lists + grp);
371 
372  /*
373  * We use GFP_KERNEL radix tree preload and do inserts under a
374  * spinlock so GFP_ATOMIC is appropriate for the radix tree itself.
375  */
377  INIT_LIST_HEAD(&mru->reap_list);
378  spin_lock_init(&mru->lock);
380 
381  mru->grp_time = grp_time;
382  mru->free_func = free_func;
383 
384  *mrup = mru;
385 
386 exit:
387  if (err && mru && mru->lists)
388  kmem_free(mru->lists);
389  if (err && mru)
390  kmem_free(mru);
391 
392  return err;
393 }
394 
395 /*
396  * Call xfs_mru_cache_flush() to flush out all cached entries, calling their
397  * free functions as they're deleted. When this function returns, the caller is
398  * guaranteed that all the free functions for all the elements have finished
399  * executing and the reaper is not running.
400  */
401 static void
402 xfs_mru_cache_flush(
403  xfs_mru_cache_t *mru)
404 {
405  if (!mru || !mru->lists)
406  return;
407 
408  spin_lock(&mru->lock);
409  if (mru->queued) {
410  spin_unlock(&mru->lock);
412  spin_lock(&mru->lock);
413  }
414 
415  _xfs_mru_cache_migrate(mru, jiffies + mru->grp_count * mru->grp_time);
417 
418  spin_unlock(&mru->lock);
419 }
420 
421 void
423  xfs_mru_cache_t *mru)
424 {
425  if (!mru || !mru->lists)
426  return;
427 
428  xfs_mru_cache_flush(mru);
429 
430  kmem_free(mru->lists);
431  kmem_free(mru);
432 }
433 
434 /*
435  * To insert an element, call xfs_mru_cache_insert() with the data store, the
436  * element's key and the client data pointer. This function returns 0 on
437  * success or ENOMEM if memory for the data element couldn't be allocated.
438  */
439 int
441  xfs_mru_cache_t *mru,
442  unsigned long key,
443  void *value)
444 {
446 
447  ASSERT(mru && mru->lists);
448  if (!mru || !mru->lists)
449  return EINVAL;
450 
451  elem = kmem_zone_zalloc(xfs_mru_elem_zone, KM_SLEEP);
452  if (!elem)
453  return ENOMEM;
454 
456  kmem_zone_free(xfs_mru_elem_zone, elem);
457  return ENOMEM;
458  }
459 
460  INIT_LIST_HEAD(&elem->list_node);
461  elem->key = key;
462  elem->value = value;
463 
464  spin_lock(&mru->lock);
465 
466  radix_tree_insert(&mru->store, key, elem);
467  radix_tree_preload_end();
468  _xfs_mru_cache_list_insert(mru, elem);
469 
470  spin_unlock(&mru->lock);
471 
472  return 0;
473 }
474 
475 /*
476  * To remove an element without calling the free function, call
477  * xfs_mru_cache_remove() with the data store and the element's key. On success
478  * the client data pointer for the removed element is returned, otherwise this
479  * function will return a NULL pointer.
480  */
481 void *
483  xfs_mru_cache_t *mru,
484  unsigned long key)
485 {
487  void *value = NULL;
488 
489  ASSERT(mru && mru->lists);
490  if (!mru || !mru->lists)
491  return NULL;
492 
493  spin_lock(&mru->lock);
494  elem = radix_tree_delete(&mru->store, key);
495  if (elem) {
496  value = elem->value;
497  list_del(&elem->list_node);
498  }
499 
500  spin_unlock(&mru->lock);
501 
502  if (elem)
503  kmem_zone_free(xfs_mru_elem_zone, elem);
504 
505  return value;
506 }
507 
508 /*
509  * To remove and element and call the free function, call xfs_mru_cache_delete()
510  * with the data store and the element's key.
511  */
512 void
514  xfs_mru_cache_t *mru,
515  unsigned long key)
516 {
517  void *value = xfs_mru_cache_remove(mru, key);
518 
519  if (value)
520  mru->free_func(key, value);
521 }
522 
523 /*
524  * To look up an element using its key, call xfs_mru_cache_lookup() with the
525  * data store and the element's key. If found, the element will be moved to the
526  * head of the MRU list to indicate that it's been touched.
527  *
528  * The internal data structures are protected by a spinlock that is STILL HELD
529  * when this function returns. Call xfs_mru_cache_done() to release it. Note
530  * that it is not safe to call any function that might sleep in the interim.
531  *
532  * The implementation could have used reference counting to avoid this
533  * restriction, but since most clients simply want to get, set or test a member
534  * of the returned data structure, the extra per-element memory isn't warranted.
535  *
536  * If the element isn't found, this function returns NULL and the spinlock is
537  * released. xfs_mru_cache_done() should NOT be called when this occurs.
538  *
539  * Because sparse isn't smart enough to know about conditional lock return
540  * status, we need to help it get it right by annotating the path that does
541  * not release the lock.
542  */
543 void *
545  xfs_mru_cache_t *mru,
546  unsigned long key)
547 {
549 
550  ASSERT(mru && mru->lists);
551  if (!mru || !mru->lists)
552  return NULL;
553 
554  spin_lock(&mru->lock);
555  elem = radix_tree_lookup(&mru->store, key);
556  if (elem) {
557  list_del(&elem->list_node);
558  _xfs_mru_cache_list_insert(mru, elem);
559  __release(mru_lock); /* help sparse not be stupid */
560  } else
561  spin_unlock(&mru->lock);
562 
563  return elem ? elem->value : NULL;
564 }
565 
566 /*
567  * To release the internal data structure spinlock after having performed an
568  * xfs_mru_cache_lookup() or an xfs_mru_cache_peek(), call xfs_mru_cache_done()
569  * with the data store pointer.
570  */
571 void
573  xfs_mru_cache_t *mru) __releases(mru->lock)
574 {
575  spin_unlock(&mru->lock);
576 }