Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
xfs_sync.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_trans_priv.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_bmap_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dinode.h"
31 #include "xfs_error.h"
32 #include "xfs_filestream.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_quota.h"
36 #include "xfs_trace.h"
37 #include "xfs_fsops.h"
38 
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 
42 struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
43 
44 /*
45  * The inode lookup is done in batches to keep the amount of lock traffic and
46  * radix tree lookups to a minimum. The batch size is a trade off between
47  * lookup reduction and stack usage. This is in the reclaim path, so we can't
48  * be too greedy.
49  */
50 #define XFS_LOOKUP_BATCH 32
51 
52 STATIC int
54  struct xfs_inode *ip)
55 {
56  struct inode *inode = VFS_I(ip);
57 
58  ASSERT(rcu_read_lock_held());
59 
60  /*
61  * check for stale RCU freed inode
62  *
63  * If the inode has been reallocated, it doesn't matter if it's not in
64  * the AG we are walking - we are walking for writeback, so if it
65  * passes all the "valid inode" checks and is dirty, then we'll write
66  * it back anyway. If it has been reallocated and still being
67  * initialised, the XFS_INEW check below will catch it.
68  */
69  spin_lock(&ip->i_flags_lock);
70  if (!ip->i_ino)
71  goto out_unlock_noent;
72 
73  /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
74  if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
75  goto out_unlock_noent;
76  spin_unlock(&ip->i_flags_lock);
77 
78  /* nothing to sync during shutdown */
79  if (XFS_FORCED_SHUTDOWN(ip->i_mount))
80  return EFSCORRUPTED;
81 
82  /* If we can't grab the inode, it must on it's way to reclaim. */
83  if (!igrab(inode))
84  return ENOENT;
85 
86  if (is_bad_inode(inode)) {
87  IRELE(ip);
88  return ENOENT;
89  }
90 
91  /* inode is valid */
92  return 0;
93 
94 out_unlock_noent:
95  spin_unlock(&ip->i_flags_lock);
96  return ENOENT;
97 }
98 
99 STATIC int
101  struct xfs_mount *mp,
102  struct xfs_perag *pag,
103  int (*execute)(struct xfs_inode *ip,
104  struct xfs_perag *pag, int flags),
105  int flags)
106 {
107  uint32_t first_index;
108  int last_error = 0;
109  int skipped;
110  int done;
111  int nr_found;
112 
113 restart:
114  done = 0;
115  skipped = 0;
116  first_index = 0;
117  nr_found = 0;
118  do {
119  struct xfs_inode *batch[XFS_LOOKUP_BATCH];
120  int error = 0;
121  int i;
122 
123  rcu_read_lock();
124  nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
125  (void **)batch, first_index,
127  if (!nr_found) {
128  rcu_read_unlock();
129  break;
130  }
131 
132  /*
133  * Grab the inodes before we drop the lock. if we found
134  * nothing, nr == 0 and the loop will be skipped.
135  */
136  for (i = 0; i < nr_found; i++) {
137  struct xfs_inode *ip = batch[i];
138 
139  if (done || xfs_inode_ag_walk_grab(ip))
140  batch[i] = NULL;
141 
142  /*
143  * Update the index for the next lookup. Catch
144  * overflows into the next AG range which can occur if
145  * we have inodes in the last block of the AG and we
146  * are currently pointing to the last inode.
147  *
148  * Because we may see inodes that are from the wrong AG
149  * due to RCU freeing and reallocation, only update the
150  * index if it lies in this AG. It was a race that lead
151  * us to see this inode, so another lookup from the
152  * same index will not find it again.
153  */
154  if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
155  continue;
156  first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
157  if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
158  done = 1;
159  }
160 
161  /* unlock now we've grabbed the inodes. */
162  rcu_read_unlock();
163 
164  for (i = 0; i < nr_found; i++) {
165  if (!batch[i])
166  continue;
167  error = execute(batch[i], pag, flags);
168  IRELE(batch[i]);
169  if (error == EAGAIN) {
170  skipped++;
171  continue;
172  }
173  if (error && last_error != EFSCORRUPTED)
174  last_error = error;
175  }
176 
177  /* bail out if the filesystem is corrupted. */
178  if (error == EFSCORRUPTED)
179  break;
180 
181  cond_resched();
182 
183  } while (nr_found && !done);
184 
185  if (skipped) {
186  delay(1);
187  goto restart;
188  }
189  return last_error;
190 }
191 
192 int
194  struct xfs_mount *mp,
195  int (*execute)(struct xfs_inode *ip,
196  struct xfs_perag *pag, int flags),
197  int flags)
198 {
199  struct xfs_perag *pag;
200  int error = 0;
201  int last_error = 0;
202  xfs_agnumber_t ag;
203 
204  ag = 0;
205  while ((pag = xfs_perag_get(mp, ag))) {
206  ag = pag->pag_agno + 1;
207  error = xfs_inode_ag_walk(mp, pag, execute, flags);
208  xfs_perag_put(pag);
209  if (error) {
210  last_error = error;
211  if (error == EFSCORRUPTED)
212  break;
213  }
214  }
215  return XFS_ERROR(last_error);
216 }
217 
218 STATIC int
220  struct xfs_inode *ip,
221  struct xfs_perag *pag,
222  int flags)
223 {
224  struct inode *inode = VFS_I(ip);
225  struct address_space *mapping = inode->i_mapping;
226  int error = 0;
227 
228  if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
229  return 0;
230 
231  if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
232  if (flags & SYNC_TRYLOCK)
233  return 0;
234  xfs_ilock(ip, XFS_IOLOCK_SHARED);
235  }
236 
237  error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
238  0 : XBF_ASYNC, FI_NONE);
239  xfs_iunlock(ip, XFS_IOLOCK_SHARED);
240  return error;
241 }
242 
243 /*
244  * Write out pagecache data for the whole filesystem.
245  */
246 STATIC int
248  struct xfs_mount *mp,
249  int flags)
250 {
251  int error;
252 
253  ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
254 
255  error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
256  if (error)
257  return XFS_ERROR(error);
258 
259  xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
260  return 0;
261 }
262 
263 STATIC int
265  struct xfs_mount *mp)
266 {
267  struct xfs_buf *bp;
268  int error;
269 
270  /*
271  * If the buffer is pinned then push on the log so we won't get stuck
272  * waiting in the write for someone, maybe ourselves, to flush the log.
273  *
274  * Even though we just pushed the log above, we did not have the
275  * superblock buffer locked at that point so it can become pinned in
276  * between there and here.
277  */
278  bp = xfs_getsb(mp, 0);
279  if (xfs_buf_ispinned(bp))
280  xfs_log_force(mp, 0);
281  error = xfs_bwrite(bp);
282  xfs_buf_relse(bp);
283  return error;
284 }
285 
286 /*
287  * When remounting a filesystem read-only or freezing the filesystem, we have
288  * two phases to execute. This first phase is syncing the data before we
289  * quiesce the filesystem, and the second is flushing all the inodes out after
290  * we've waited for all the transactions created by the first phase to
291  * complete. The second phase ensures that the inodes are written to their
292  * location on disk rather than just existing in transactions in the log. This
293  * means after a quiesce there is no log replay required to write the inodes to
294  * disk (this is the main difference between a sync and a quiesce).
295  */
296 /*
297  * First stage of freeze - no writers will make progress now we are here,
298  * so we flush delwri and delalloc buffers here, then wait for all I/O to
299  * complete. Data is frozen at that point. Metadata is not frozen,
300  * transactions can still occur here so don't bother emptying the AIL
301  * because it'll just get dirty again.
302  */
303 int
305  struct xfs_mount *mp)
306 {
307  int error, error2 = 0;
308 
309  /* force out the log */
310  xfs_log_force(mp, XFS_LOG_SYNC);
311 
312  /* write superblock and hoover up shutdown errors */
313  error = xfs_sync_fsdata(mp);
314 
315  /* mark the log as covered if needed */
316  if (xfs_log_need_covered(mp))
317  error2 = xfs_fs_log_dummy(mp);
318 
319  return error ? error : error2;
320 }
321 
322 /*
323  * Second stage of a quiesce. The data is already synced, now we have to take
324  * care of the metadata. New transactions are already blocked, so we need to
325  * wait for any remaining transactions to drain out before proceeding.
326  */
327 void
329  struct xfs_mount *mp)
330 {
331  int error = 0;
332 
333  /* wait for all modifications to complete */
334  while (atomic_read(&mp->m_active_trans) > 0)
335  delay(100);
336 
337  /* reclaim inodes to do any IO before the freeze completes */
338  xfs_reclaim_inodes(mp, 0);
340 
341  /* flush all pending changes from the AIL */
342  xfs_ail_push_all_sync(mp->m_ail);
343 
344  /*
345  * Just warn here till VFS can correctly support
346  * read-only remount without racing.
347  */
348  WARN_ON(atomic_read(&mp->m_active_trans) != 0);
349 
350  /* Push the superblock and write an unmount record */
351  error = xfs_log_sbcount(mp);
352  if (error)
353  xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
354  "Frozen image may not be consistent.");
356 
357  /*
358  * At this point we might have modified the superblock again and thus
359  * added an item to the AIL, thus flush it again.
360  */
361  xfs_ail_push_all_sync(mp->m_ail);
362 
363  /*
364  * The superblock buffer is uncached and xfsaild_push() will lock and
365  * set the XBF_ASYNC flag on the buffer. We cannot do xfs_buf_iowait()
366  * here but a lock on the superblock buffer will block until iodone()
367  * has completed.
368  */
369  xfs_buf_lock(mp->m_sb_bp);
370  xfs_buf_unlock(mp->m_sb_bp);
371 }
372 
373 static void
374 xfs_syncd_queue_sync(
375  struct xfs_mount *mp)
376 {
377  queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
379 }
380 
381 /*
382  * Every sync period we need to unpin all items, reclaim inodes and sync
383  * disk quotas. We might need to cover the log to indicate that the
384  * filesystem is idle and not frozen.
385  */
386 STATIC void
388  struct work_struct *work)
389 {
390  struct xfs_mount *mp = container_of(to_delayed_work(work),
391  struct xfs_mount, m_sync_work);
392  int error;
393 
394  /*
395  * We shouldn't write/force the log if we are in the mount/unmount
396  * process or on a read only filesystem. The workqueue still needs to be
397  * active in both cases, however, because it is used for inode reclaim
398  * during these times. Use the MS_ACTIVE flag to avoid doing anything
399  * during mount. Doing work during unmount is avoided by calling
400  * cancel_delayed_work_sync on this work queue before tearing down
401  * the ail and the log in xfs_log_unmount.
402  */
403  if (!(mp->m_super->s_flags & MS_ACTIVE) &&
404  !(mp->m_flags & XFS_MOUNT_RDONLY)) {
405  /* dgc: errors ignored here */
406  if (mp->m_super->s_writers.frozen == SB_UNFROZEN &&
408  error = xfs_fs_log_dummy(mp);
409  else
410  xfs_log_force(mp, 0);
411 
412  /* start pushing all the metadata that is currently
413  * dirty */
414  xfs_ail_push_all(mp->m_ail);
415  }
416 
417  /* queue us up again */
418  xfs_syncd_queue_sync(mp);
419 }
420 
421 /*
422  * Queue a new inode reclaim pass if there are reclaimable inodes and there
423  * isn't a reclaim pass already in progress. By default it runs every 5s based
424  * on the xfs syncd work default of 30s. Perhaps this should have it's own
425  * tunable, but that can be done if this method proves to be ineffective or too
426  * aggressive.
427  */
428 static void
429 xfs_syncd_queue_reclaim(
430  struct xfs_mount *mp)
431 {
432 
433  rcu_read_lock();
434  if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
435  queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
437  }
438  rcu_read_unlock();
439 }
440 
441 /*
442  * This is a fast pass over the inode cache to try to get reclaim moving on as
443  * many inodes as possible in a short period of time. It kicks itself every few
444  * seconds, as well as being kicked by the inode cache shrinker when memory
445  * goes low. It scans as quickly as possible avoiding locked inodes or those
446  * already being flushed, and once done schedules a future pass.
447  */
448 STATIC void
450  struct work_struct *work)
451 {
452  struct xfs_mount *mp = container_of(to_delayed_work(work),
453  struct xfs_mount, m_reclaim_work);
454 
456  xfs_syncd_queue_reclaim(mp);
457 }
458 
459 /*
460  * Flush delayed allocate data, attempting to free up reserved space
461  * from existing allocations. At this point a new allocation attempt
462  * has failed with ENOSPC and we are in the process of scratching our
463  * heads, looking about for more room.
464  *
465  * Queue a new data flush if there isn't one already in progress and
466  * wait for completion of the flush. This means that we only ever have one
467  * inode flush in progress no matter how many ENOSPC events are occurring and
468  * so will prevent the system from bogging down due to every concurrent
469  * ENOSPC event scanning all the active inodes in the system for writeback.
470  */
471 void
473  struct xfs_inode *ip)
474 {
475  struct xfs_mount *mp = ip->i_mount;
476 
477  queue_work(xfs_syncd_wq, &mp->m_flush_work);
478  flush_work(&mp->m_flush_work);
479 }
480 
481 STATIC void
483  struct work_struct *work)
484 {
485  struct xfs_mount *mp = container_of(work,
486  struct xfs_mount, m_flush_work);
487 
490 }
491 
492 int
494  struct xfs_mount *mp)
495 {
496  INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
497  INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
498  INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
499 
500  xfs_syncd_queue_sync(mp);
501 
502  return 0;
503 }
504 
505 void
507  struct xfs_mount *mp)
508 {
509  cancel_delayed_work_sync(&mp->m_sync_work);
510  cancel_delayed_work_sync(&mp->m_reclaim_work);
511  cancel_work_sync(&mp->m_flush_work);
512 }
513 
514 void
516  struct xfs_perag *pag,
517  struct xfs_inode *ip)
518 {
519  radix_tree_tag_set(&pag->pag_ici_root,
520  XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
522 
523  if (!pag->pag_ici_reclaimable) {
524  /* propagate the reclaim tag up into the perag radix tree */
525  spin_lock(&ip->i_mount->m_perag_lock);
526  radix_tree_tag_set(&ip->i_mount->m_perag_tree,
527  XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
529  spin_unlock(&ip->i_mount->m_perag_lock);
530 
531  /* schedule periodic background inode reclaim */
532  xfs_syncd_queue_reclaim(ip->i_mount);
533 
534  trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
535  -1, _RET_IP_);
536  }
537  pag->pag_ici_reclaimable++;
538 }
539 
540 /*
541  * We set the inode flag atomically with the radix tree tag.
542  * Once we get tag lookups on the radix tree, this inode flag
543  * can go away.
544  */
545 void
547  xfs_inode_t *ip)
548 {
549  struct xfs_mount *mp = ip->i_mount;
550  struct xfs_perag *pag;
551 
552  pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
553  spin_lock(&pag->pag_ici_lock);
554  spin_lock(&ip->i_flags_lock);
556  __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
557  spin_unlock(&ip->i_flags_lock);
558  spin_unlock(&pag->pag_ici_lock);
559  xfs_perag_put(pag);
560 }
561 
562 STATIC void
564  xfs_perag_t *pag,
565  xfs_inode_t *ip)
566 {
567  pag->pag_ici_reclaimable--;
568  if (!pag->pag_ici_reclaimable) {
569  /* clear the reclaim tag from the perag radix tree */
570  spin_lock(&ip->i_mount->m_perag_lock);
571  radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
572  XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
574  spin_unlock(&ip->i_mount->m_perag_lock);
575  trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
576  -1, _RET_IP_);
577  }
578 }
579 
580 void
582  xfs_mount_t *mp,
583  xfs_perag_t *pag,
584  xfs_inode_t *ip)
585 {
586  radix_tree_tag_clear(&pag->pag_ici_root,
587  XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
588  __xfs_inode_clear_reclaim(pag, ip);
589 }
590 
591 /*
592  * Grab the inode for reclaim exclusively.
593  * Return 0 if we grabbed it, non-zero otherwise.
594  */
595 STATIC int
597  struct xfs_inode *ip,
598  int flags)
599 {
600  ASSERT(rcu_read_lock_held());
601 
602  /* quick check for stale RCU freed inode */
603  if (!ip->i_ino)
604  return 1;
605 
606  /*
607  * If we are asked for non-blocking operation, do unlocked checks to
608  * see if the inode already is being flushed or in reclaim to avoid
609  * lock traffic.
610  */
611  if ((flags & SYNC_TRYLOCK) &&
612  __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
613  return 1;
614 
615  /*
616  * The radix tree lock here protects a thread in xfs_iget from racing
617  * with us starting reclaim on the inode. Once we have the
618  * XFS_IRECLAIM flag set it will not touch us.
619  *
620  * Due to RCU lookup, we may find inodes that have been freed and only
621  * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
622  * aren't candidates for reclaim at all, so we must check the
623  * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
624  */
625  spin_lock(&ip->i_flags_lock);
626  if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
627  __xfs_iflags_test(ip, XFS_IRECLAIM)) {
628  /* not a reclaim candidate. */
629  spin_unlock(&ip->i_flags_lock);
630  return 1;
631  }
632  __xfs_iflags_set(ip, XFS_IRECLAIM);
633  spin_unlock(&ip->i_flags_lock);
634  return 0;
635 }
636 
637 /*
638  * Inodes in different states need to be treated differently. The following
639  * table lists the inode states and the reclaim actions necessary:
640  *
641  * inode state iflush ret required action
642  * --------------- ---------- ---------------
643  * bad - reclaim
644  * shutdown EIO unpin and reclaim
645  * clean, unpinned 0 reclaim
646  * stale, unpinned 0 reclaim
647  * clean, pinned(*) 0 requeue
648  * stale, pinned EAGAIN requeue
649  * dirty, async - requeue
650  * dirty, sync 0 reclaim
651  *
652  * (*) dgc: I don't think the clean, pinned state is possible but it gets
653  * handled anyway given the order of checks implemented.
654  *
655  * Also, because we get the flush lock first, we know that any inode that has
656  * been flushed delwri has had the flush completed by the time we check that
657  * the inode is clean.
658  *
659  * Note that because the inode is flushed delayed write by AIL pushing, the
660  * flush lock may already be held here and waiting on it can result in very
661  * long latencies. Hence for sync reclaims, where we wait on the flush lock,
662  * the caller should push the AIL first before trying to reclaim inodes to
663  * minimise the amount of time spent waiting. For background relaim, we only
664  * bother to reclaim clean inodes anyway.
665  *
666  * Hence the order of actions after gaining the locks should be:
667  * bad => reclaim
668  * shutdown => unpin and reclaim
669  * pinned, async => requeue
670  * pinned, sync => unpin
671  * stale => reclaim
672  * clean => reclaim
673  * dirty, async => requeue
674  * dirty, sync => flush, wait and reclaim
675  */
676 STATIC int
678  struct xfs_inode *ip,
679  struct xfs_perag *pag,
680  int sync_mode)
681 {
682  struct xfs_buf *bp = NULL;
683  int error;
684 
685 restart:
686  error = 0;
687  xfs_ilock(ip, XFS_ILOCK_EXCL);
688  if (!xfs_iflock_nowait(ip)) {
689  if (!(sync_mode & SYNC_WAIT))
690  goto out;
691  xfs_iflock(ip);
692  }
693 
694  if (is_bad_inode(VFS_I(ip)))
695  goto reclaim;
696  if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
697  xfs_iunpin_wait(ip);
698  xfs_iflush_abort(ip, false);
699  goto reclaim;
700  }
701  if (xfs_ipincount(ip)) {
702  if (!(sync_mode & SYNC_WAIT))
703  goto out_ifunlock;
704  xfs_iunpin_wait(ip);
705  }
706  if (xfs_iflags_test(ip, XFS_ISTALE))
707  goto reclaim;
708  if (xfs_inode_clean(ip))
709  goto reclaim;
710 
711  /*
712  * Never flush out dirty data during non-blocking reclaim, as it would
713  * just contend with AIL pushing trying to do the same job.
714  */
715  if (!(sync_mode & SYNC_WAIT))
716  goto out_ifunlock;
717 
718  /*
719  * Now we have an inode that needs flushing.
720  *
721  * Note that xfs_iflush will never block on the inode buffer lock, as
722  * xfs_ifree_cluster() can lock the inode buffer before it locks the
723  * ip->i_lock, and we are doing the exact opposite here. As a result,
724  * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
725  * result in an ABBA deadlock with xfs_ifree_cluster().
726  *
727  * As xfs_ifree_cluser() must gather all inodes that are active in the
728  * cache to mark them stale, if we hit this case we don't actually want
729  * to do IO here - we want the inode marked stale so we can simply
730  * reclaim it. Hence if we get an EAGAIN error here, just unlock the
731  * inode, back off and try again. Hopefully the next pass through will
732  * see the stale flag set on the inode.
733  */
734  error = xfs_iflush(ip, &bp);
735  if (error == EAGAIN) {
736  xfs_iunlock(ip, XFS_ILOCK_EXCL);
737  /* backoff longer than in xfs_ifree_cluster */
738  delay(2);
739  goto restart;
740  }
741 
742  if (!error) {
743  error = xfs_bwrite(bp);
744  xfs_buf_relse(bp);
745  }
746 
747  xfs_iflock(ip);
748 reclaim:
749  xfs_ifunlock(ip);
750  xfs_iunlock(ip, XFS_ILOCK_EXCL);
751 
752  XFS_STATS_INC(xs_ig_reclaims);
753  /*
754  * Remove the inode from the per-AG radix tree.
755  *
756  * Because radix_tree_delete won't complain even if the item was never
757  * added to the tree assert that it's been there before to catch
758  * problems with the inode life time early on.
759  */
760  spin_lock(&pag->pag_ici_lock);
761  if (!radix_tree_delete(&pag->pag_ici_root,
762  XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
763  ASSERT(0);
764  __xfs_inode_clear_reclaim(pag, ip);
765  spin_unlock(&pag->pag_ici_lock);
766 
767  /*
768  * Here we do an (almost) spurious inode lock in order to coordinate
769  * with inode cache radix tree lookups. This is because the lookup
770  * can reference the inodes in the cache without taking references.
771  *
772  * We make that OK here by ensuring that we wait until the inode is
773  * unlocked after the lookup before we go ahead and free it.
774  */
775  xfs_ilock(ip, XFS_ILOCK_EXCL);
776  xfs_qm_dqdetach(ip);
777  xfs_iunlock(ip, XFS_ILOCK_EXCL);
778 
779  xfs_inode_free(ip);
780  return error;
781 
782 out_ifunlock:
783  xfs_ifunlock(ip);
784 out:
785  xfs_iflags_clear(ip, XFS_IRECLAIM);
786  xfs_iunlock(ip, XFS_ILOCK_EXCL);
787  /*
788  * We could return EAGAIN here to make reclaim rescan the inode tree in
789  * a short while. However, this just burns CPU time scanning the tree
790  * waiting for IO to complete and xfssyncd never goes back to the idle
791  * state. Instead, return 0 to let the next scheduled background reclaim
792  * attempt to reclaim the inode again.
793  */
794  return 0;
795 }
796 
797 /*
798  * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
799  * corrupted, we still want to try to reclaim all the inodes. If we don't,
800  * then a shut down during filesystem unmount reclaim walk leak all the
801  * unreclaimed inodes.
802  */
803 int
805  struct xfs_mount *mp,
806  int flags,
807  int *nr_to_scan)
808 {
809  struct xfs_perag *pag;
810  int error = 0;
811  int last_error = 0;
812  xfs_agnumber_t ag;
813  int trylock = flags & SYNC_TRYLOCK;
814  int skipped;
815 
816 restart:
817  ag = 0;
818  skipped = 0;
819  while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
820  unsigned long first_index = 0;
821  int done = 0;
822  int nr_found = 0;
823 
824  ag = pag->pag_agno + 1;
825 
826  if (trylock) {
827  if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
828  skipped++;
829  xfs_perag_put(pag);
830  continue;
831  }
832  first_index = pag->pag_ici_reclaim_cursor;
833  } else
834  mutex_lock(&pag->pag_ici_reclaim_lock);
835 
836  do {
837  struct xfs_inode *batch[XFS_LOOKUP_BATCH];
838  int i;
839 
840  rcu_read_lock();
841  nr_found = radix_tree_gang_lookup_tag(
842  &pag->pag_ici_root,
843  (void **)batch, first_index,
846  if (!nr_found) {
847  done = 1;
848  rcu_read_unlock();
849  break;
850  }
851 
852  /*
853  * Grab the inodes before we drop the lock. if we found
854  * nothing, nr == 0 and the loop will be skipped.
855  */
856  for (i = 0; i < nr_found; i++) {
857  struct xfs_inode *ip = batch[i];
858 
859  if (done || xfs_reclaim_inode_grab(ip, flags))
860  batch[i] = NULL;
861 
862  /*
863  * Update the index for the next lookup. Catch
864  * overflows into the next AG range which can
865  * occur if we have inodes in the last block of
866  * the AG and we are currently pointing to the
867  * last inode.
868  *
869  * Because we may see inodes that are from the
870  * wrong AG due to RCU freeing and
871  * reallocation, only update the index if it
872  * lies in this AG. It was a race that lead us
873  * to see this inode, so another lookup from
874  * the same index will not find it again.
875  */
876  if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
877  pag->pag_agno)
878  continue;
879  first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
880  if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
881  done = 1;
882  }
883 
884  /* unlock now we've grabbed the inodes. */
885  rcu_read_unlock();
886 
887  for (i = 0; i < nr_found; i++) {
888  if (!batch[i])
889  continue;
890  error = xfs_reclaim_inode(batch[i], pag, flags);
891  if (error && last_error != EFSCORRUPTED)
892  last_error = error;
893  }
894 
895  *nr_to_scan -= XFS_LOOKUP_BATCH;
896 
897  cond_resched();
898 
899  } while (nr_found && !done && *nr_to_scan > 0);
900 
901  if (trylock && !done)
902  pag->pag_ici_reclaim_cursor = first_index;
903  else
904  pag->pag_ici_reclaim_cursor = 0;
905  mutex_unlock(&pag->pag_ici_reclaim_lock);
906  xfs_perag_put(pag);
907  }
908 
909  /*
910  * if we skipped any AG, and we still have scan count remaining, do
911  * another pass this time using blocking reclaim semantics (i.e
912  * waiting on the reclaim locks and ignoring the reclaim cursors). This
913  * ensure that when we get more reclaimers than AGs we block rather
914  * than spin trying to execute reclaim.
915  */
916  if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
917  trylock = 0;
918  goto restart;
919  }
920  return XFS_ERROR(last_error);
921 }
922 
923 int
925  xfs_mount_t *mp,
926  int mode)
927 {
928  int nr_to_scan = INT_MAX;
929 
930  return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
931 }
932 
933 /*
934  * Scan a certain number of inodes for reclaim.
935  *
936  * When called we make sure that there is a background (fast) inode reclaim in
937  * progress, while we will throttle the speed of reclaim via doing synchronous
938  * reclaim of inodes. That means if we come across dirty inodes, we wait for
939  * them to be cleaned, which we hope will not be very long due to the
940  * background walker having already kicked the IO off on those dirty inodes.
941  */
942 void
944  struct xfs_mount *mp,
945  int nr_to_scan)
946 {
947  /* kick background reclaimer and push the AIL */
948  xfs_syncd_queue_reclaim(mp);
949  xfs_ail_push_all(mp->m_ail);
950 
951  xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
952 }
953 
954 /*
955  * Return the number of reclaimable inodes in the filesystem for
956  * the shrinker to determine how much to reclaim.
957  */
958 int
960  struct xfs_mount *mp)
961 {
962  struct xfs_perag *pag;
963  xfs_agnumber_t ag = 0;
964  int reclaimable = 0;
965 
966  while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
967  ag = pag->pag_agno + 1;
968  reclaimable += pag->pag_ici_reclaimable;
969  xfs_perag_put(pag);
970  }
971  return reclaimable;
972 }
973