Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
xpc_main.c
Go to the documentation of this file.
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License. See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2004-2009 Silicon Graphics, Inc. All Rights Reserved.
7  */
8 
9 /*
10  * Cross Partition Communication (XPC) support - standard version.
11  *
12  * XPC provides a message passing capability that crosses partition
13  * boundaries. This module is made up of two parts:
14  *
15  * partition This part detects the presence/absence of other
16  * partitions. It provides a heartbeat and monitors
17  * the heartbeats of other partitions.
18  *
19  * channel This part manages the channels and sends/receives
20  * messages across them to/from other partitions.
21  *
22  * There are a couple of additional functions residing in XP, which
23  * provide an interface to XPC for its users.
24  *
25  *
26  * Caveats:
27  *
28  * . Currently on sn2, we have no way to determine which nasid an IRQ
29  * came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
30  * followed by an IPI. The amo indicates where data is to be pulled
31  * from, so after the IPI arrives, the remote partition checks the amo
32  * word. The IPI can actually arrive before the amo however, so other
33  * code must periodically check for this case. Also, remote amo
34  * operations do not reliably time out. Thus we do a remote PIO read
35  * solely to know whether the remote partition is down and whether we
36  * should stop sending IPIs to it. This remote PIO read operation is
37  * set up in a special nofault region so SAL knows to ignore (and
38  * cleanup) any errors due to the remote amo write, PIO read, and/or
39  * PIO write operations.
40  *
41  * If/when new hardware solves this IPI problem, we should abandon
42  * the current approach.
43  *
44  */
45 
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/sysctl.h>
49 #include <linux/device.h>
50 #include <linux/delay.h>
51 #include <linux/reboot.h>
52 #include <linux/kdebug.h>
53 #include <linux/kthread.h>
54 #include "xpc.h"
55 
56 /* define two XPC debug device structures to be used with dev_dbg() et al */
57 
59  .name = "xpc"
60 };
61 
63  .init_name = "", /* set to "part" at xpc_init() time */
64  .driver = &xpc_dbg_name
65 };
66 
68  .init_name = "", /* set to "chan" at xpc_init() time */
69  .driver = &xpc_dbg_name
70 };
71 
74 
75 static int xpc_kdebug_ignore;
76 
77 /* systune related variables for /proc/sys directories */
78 
79 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
80 static int xpc_hb_min_interval = 1;
81 static int xpc_hb_max_interval = 10;
82 
83 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
84 static int xpc_hb_check_min_interval = 10;
85 static int xpc_hb_check_max_interval = 120;
86 
88 static int xpc_disengage_min_timelimit; /* = 0 */
89 static int xpc_disengage_max_timelimit = 120;
90 
91 static ctl_table xpc_sys_xpc_hb_dir[] = {
92  {
93  .procname = "hb_interval",
94  .data = &xpc_hb_interval,
95  .maxlen = sizeof(int),
96  .mode = 0644,
98  .extra1 = &xpc_hb_min_interval,
99  .extra2 = &xpc_hb_max_interval},
100  {
101  .procname = "hb_check_interval",
102  .data = &xpc_hb_check_interval,
103  .maxlen = sizeof(int),
104  .mode = 0644,
106  .extra1 = &xpc_hb_check_min_interval,
107  .extra2 = &xpc_hb_check_max_interval},
108  {}
109 };
110 static ctl_table xpc_sys_xpc_dir[] = {
111  {
112  .procname = "hb",
113  .mode = 0555,
114  .child = xpc_sys_xpc_hb_dir},
115  {
116  .procname = "disengage_timelimit",
117  .data = &xpc_disengage_timelimit,
118  .maxlen = sizeof(int),
119  .mode = 0644,
121  .extra1 = &xpc_disengage_min_timelimit,
122  .extra2 = &xpc_disengage_max_timelimit},
123  {}
124 };
125 static ctl_table xpc_sys_dir[] = {
126  {
127  .procname = "xpc",
128  .mode = 0555,
129  .child = xpc_sys_xpc_dir},
130  {}
131 };
132 static struct ctl_table_header *xpc_sysctl;
133 
134 /* non-zero if any remote partition disengage was timed out */
136 
137 /* #of activate IRQs received and not yet processed */
139 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
140 
141 /* IRQ handler notifies this wait queue on receipt of an IRQ */
142 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
143 
144 static unsigned long xpc_hb_check_timeout;
145 static struct timer_list xpc_hb_timer;
146 
147 /* notification that the xpc_hb_checker thread has exited */
148 static DECLARE_COMPLETION(xpc_hb_checker_exited);
149 
150 /* notification that the xpc_discovery thread has exited */
151 static DECLARE_COMPLETION(xpc_discovery_exited);
152 
153 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
154 
155 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
156 static struct notifier_block xpc_reboot_notifier = {
157  .notifier_call = xpc_system_reboot,
158 };
159 
160 static int xpc_system_die(struct notifier_block *, unsigned long, void *);
161 static struct notifier_block xpc_die_notifier = {
162  .notifier_call = xpc_system_die,
163 };
164 
166 
167 /*
168  * Timer function to enforce the timelimit on the partition disengage.
169  */
170 static void
171 xpc_timeout_partition_disengage(unsigned long data)
172 {
173  struct xpc_partition *part = (struct xpc_partition *)data;
174 
176 
178 
179  DBUG_ON(part->disengage_timeout != 0);
180  DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
181 }
182 
183 /*
184  * Timer to produce the heartbeat. The timer structures function is
185  * already set when this is initially called. A tunable is used to
186  * specify when the next timeout should occur.
187  */
188 static void
189 xpc_hb_beater(unsigned long dummy)
190 {
191  xpc_arch_ops.increment_heartbeat();
192 
193  if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
194  wake_up_interruptible(&xpc_activate_IRQ_wq);
195 
196  xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
197  add_timer(&xpc_hb_timer);
198 }
199 
200 static void
201 xpc_start_hb_beater(void)
202 {
203  xpc_arch_ops.heartbeat_init();
204  init_timer(&xpc_hb_timer);
205  xpc_hb_timer.function = xpc_hb_beater;
206  xpc_hb_beater(0);
207 }
208 
209 static void
210 xpc_stop_hb_beater(void)
211 {
212  del_timer_sync(&xpc_hb_timer);
213  xpc_arch_ops.heartbeat_exit();
214 }
215 
216 /*
217  * At periodic intervals, scan through all active partitions and ensure
218  * their heartbeat is still active. If not, the partition is deactivated.
219  */
220 static void
221 xpc_check_remote_hb(void)
222 {
223  struct xpc_partition *part;
224  short partid;
225  enum xp_retval ret;
226 
227  for (partid = 0; partid < xp_max_npartitions; partid++) {
228 
229  if (xpc_exiting)
230  break;
231 
232  if (partid == xp_partition_id)
233  continue;
234 
235  part = &xpc_partitions[partid];
236 
237  if (part->act_state == XPC_P_AS_INACTIVE ||
238  part->act_state == XPC_P_AS_DEACTIVATING) {
239  continue;
240  }
241 
242  ret = xpc_arch_ops.get_remote_heartbeat(part);
243  if (ret != xpSuccess)
244  XPC_DEACTIVATE_PARTITION(part, ret);
245  }
246 }
247 
248 /*
249  * This thread is responsible for nearly all of the partition
250  * activation/deactivation.
251  */
252 static int
253 xpc_hb_checker(void *ignore)
254 {
255  int force_IRQ = 0;
256 
257  /* this thread was marked active by xpc_hb_init() */
258 
259  set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
260 
261  /* set our heartbeating to other partitions into motion */
262  xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
263  xpc_start_hb_beater();
264 
265  while (!xpc_exiting) {
266 
267  dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
268  "been received\n",
269  (int)(xpc_hb_check_timeout - jiffies),
270  xpc_activate_IRQ_rcvd);
271 
272  /* checking of remote heartbeats is skewed by IRQ handling */
273  if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
274  xpc_hb_check_timeout = jiffies +
275  (xpc_hb_check_interval * HZ);
276 
277  dev_dbg(xpc_part, "checking remote heartbeats\n");
278  xpc_check_remote_hb();
279 
280  /*
281  * On sn2 we need to periodically recheck to ensure no
282  * IRQ/amo pairs have been missed.
283  */
284  if (is_shub())
285  force_IRQ = 1;
286  }
287 
288  /* check for outstanding IRQs */
289  if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
290  force_IRQ = 0;
291  dev_dbg(xpc_part, "processing activate IRQs "
292  "received\n");
293  xpc_arch_ops.process_activate_IRQ_rcvd();
294  }
295 
296  /* wait for IRQ or timeout */
297  (void)wait_event_interruptible(xpc_activate_IRQ_wq,
299  xpc_hb_check_timeout) ||
300  xpc_activate_IRQ_rcvd > 0 ||
301  xpc_exiting));
302  }
303 
304  xpc_stop_hb_beater();
305 
306  dev_dbg(xpc_part, "heartbeat checker is exiting\n");
307 
308  /* mark this thread as having exited */
309  complete(&xpc_hb_checker_exited);
310  return 0;
311 }
312 
313 /*
314  * This thread will attempt to discover other partitions to activate
315  * based on info provided by SAL. This new thread is short lived and
316  * will exit once discovery is complete.
317  */
318 static int
319 xpc_initiate_discovery(void *ignore)
320 {
321  xpc_discovery();
322 
323  dev_dbg(xpc_part, "discovery thread is exiting\n");
324 
325  /* mark this thread as having exited */
326  complete(&xpc_discovery_exited);
327  return 0;
328 }
329 
330 /*
331  * The first kthread assigned to a newly activated partition is the one
332  * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
333  * that kthread until the partition is brought down, at which time that kthread
334  * returns back to XPC HB. (The return of that kthread will signify to XPC HB
335  * that XPC has dismantled all communication infrastructure for the associated
336  * partition.) This kthread becomes the channel manager for that partition.
337  *
338  * Each active partition has a channel manager, who, besides connecting and
339  * disconnecting channels, will ensure that each of the partition's connected
340  * channels has the required number of assigned kthreads to get the work done.
341  */
342 static void
343 xpc_channel_mgr(struct xpc_partition *part)
344 {
345  while (part->act_state != XPC_P_AS_DEACTIVATING ||
346  atomic_read(&part->nchannels_active) > 0 ||
347  !xpc_partition_disengaged(part)) {
348 
350 
351  /*
352  * Wait until we've been requested to activate kthreads or
353  * all of the channel's message queues have been torn down or
354  * a signal is pending.
355  *
356  * The channel_mgr_requests is set to 1 after being awakened,
357  * This is done to prevent the channel mgr from making one pass
358  * through the loop for each request, since he will
359  * be servicing all the requests in one pass. The reason it's
360  * set to 1 instead of 0 is so that other kthreads will know
361  * that the channel mgr is running and won't bother trying to
362  * wake him up.
363  */
366  (atomic_read(&part->channel_mgr_requests) > 0 ||
367  part->chctl.all_flags != 0 ||
368  (part->act_state == XPC_P_AS_DEACTIVATING &&
369  atomic_read(&part->nchannels_active) == 0 &&
370  xpc_partition_disengaged(part))));
371  atomic_set(&part->channel_mgr_requests, 1);
372  }
373 }
374 
375 /*
376  * Guarantee that the kzalloc'd memory is cacheline aligned.
377  */
378 void *
380 {
381  /* see if kzalloc will give us cachline aligned memory by default */
382  *base = kzalloc(size, flags);
383  if (*base == NULL)
384  return NULL;
385 
386  if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
387  return *base;
388 
389  kfree(*base);
390 
391  /* nope, we'll have to do it ourselves */
392  *base = kzalloc(size + L1_CACHE_BYTES, flags);
393  if (*base == NULL)
394  return NULL;
395 
396  return (void *)L1_CACHE_ALIGN((u64)*base);
397 }
398 
399 /*
400  * Setup the channel structures necessary to support XPartition Communication
401  * between the specified remote partition and the local one.
402  */
403 static enum xp_retval
404 xpc_setup_ch_structures(struct xpc_partition *part)
405 {
406  enum xp_retval ret;
407  int ch_number;
408  struct xpc_channel *ch;
409  short partid = XPC_PARTID(part);
410 
411  /*
412  * Allocate all of the channel structures as a contiguous chunk of
413  * memory.
414  */
415  DBUG_ON(part->channels != NULL);
416  part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
417  GFP_KERNEL);
418  if (part->channels == NULL) {
419  dev_err(xpc_chan, "can't get memory for channels\n");
420  return xpNoMemory;
421  }
422 
423  /* allocate the remote open and close args */
424 
425  part->remote_openclose_args =
427  GFP_KERNEL, &part->
428  remote_openclose_args_base);
429  if (part->remote_openclose_args == NULL) {
430  dev_err(xpc_chan, "can't get memory for remote connect args\n");
431  ret = xpNoMemory;
432  goto out_1;
433  }
434 
435  part->chctl.all_flags = 0;
436  spin_lock_init(&part->chctl_lock);
437 
438  atomic_set(&part->channel_mgr_requests, 1);
440 
442 
443  atomic_set(&part->nchannels_active, 0);
444  atomic_set(&part->nchannels_engaged, 0);
445 
446  for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
447  ch = &part->channels[ch_number];
448 
449  ch->partid = partid;
450  ch->number = ch_number;
452 
453  atomic_set(&ch->kthreads_assigned, 0);
454  atomic_set(&ch->kthreads_idle, 0);
455  atomic_set(&ch->kthreads_active, 0);
456 
457  atomic_set(&ch->references, 0);
458  atomic_set(&ch->n_to_notify, 0);
459 
460  spin_lock_init(&ch->lock);
461  init_completion(&ch->wdisconnect_wait);
462 
466  }
467 
468  ret = xpc_arch_ops.setup_ch_structures(part);
469  if (ret != xpSuccess)
470  goto out_2;
471 
472  /*
473  * With the setting of the partition setup_state to XPC_P_SS_SETUP,
474  * we're declaring that this partition is ready to go.
475  */
476  part->setup_state = XPC_P_SS_SETUP;
477 
478  return xpSuccess;
479 
480  /* setup of ch structures failed */
481 out_2:
483  part->remote_openclose_args = NULL;
484 out_1:
485  kfree(part->channels);
486  part->channels = NULL;
487  return ret;
488 }
489 
490 /*
491  * Teardown the channel structures necessary to support XPartition Communication
492  * between the specified remote partition and the local one.
493  */
494 static void
495 xpc_teardown_ch_structures(struct xpc_partition *part)
496 {
497  DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
498  DBUG_ON(atomic_read(&part->nchannels_active) != 0);
499 
500  /*
501  * Make this partition inaccessible to local processes by marking it
502  * as no longer setup. Then wait before proceeding with the teardown
503  * until all existing references cease.
504  */
507 
508  wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
509 
510  /* now we can begin tearing down the infrastructure */
511 
512  xpc_arch_ops.teardown_ch_structures(part);
513 
515  part->remote_openclose_args = NULL;
516  kfree(part->channels);
517  part->channels = NULL;
518 
520 }
521 
522 /*
523  * When XPC HB determines that a partition has come up, it will create a new
524  * kthread and that kthread will call this function to attempt to set up the
525  * basic infrastructure used for Cross Partition Communication with the newly
526  * upped partition.
527  *
528  * The kthread that was created by XPC HB and which setup the XPC
529  * infrastructure will remain assigned to the partition becoming the channel
530  * manager for that partition until the partition is deactivating, at which
531  * time the kthread will teardown the XPC infrastructure and then exit.
532  */
533 static int
534 xpc_activating(void *__partid)
535 {
536  short partid = (u64)__partid;
537  struct xpc_partition *part = &xpc_partitions[partid];
538  unsigned long irq_flags;
539 
540  DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
541 
542  spin_lock_irqsave(&part->act_lock, irq_flags);
543 
544  if (part->act_state == XPC_P_AS_DEACTIVATING) {
546  spin_unlock_irqrestore(&part->act_lock, irq_flags);
547  part->remote_rp_pa = 0;
548  return 0;
549  }
550 
551  /* indicate the thread is activating */
554 
555  XPC_SET_REASON(part, 0, 0);
556  spin_unlock_irqrestore(&part->act_lock, irq_flags);
557 
558  dev_dbg(xpc_part, "activating partition %d\n", partid);
559 
560  xpc_arch_ops.allow_hb(partid);
561 
562  if (xpc_setup_ch_structures(part) == xpSuccess) {
563  (void)xpc_part_ref(part); /* this will always succeed */
564 
565  if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
567  xpc_channel_mgr(part);
568  /* won't return until partition is deactivating */
569  }
570 
571  xpc_part_deref(part);
572  xpc_teardown_ch_structures(part);
573  }
574 
575  xpc_arch_ops.disallow_hb(partid);
577 
578  if (part->reason == xpReactivating) {
579  /* interrupting ourselves results in activating partition */
580  xpc_arch_ops.request_partition_reactivation(part);
581  }
582 
583  return 0;
584 }
585 
586 void
588 {
589  short partid = XPC_PARTID(part);
590  unsigned long irq_flags;
591  struct task_struct *kthread;
592 
593  spin_lock_irqsave(&part->act_lock, irq_flags);
594 
596 
598  XPC_SET_REASON(part, xpCloneKThread, __LINE__);
599 
600  spin_unlock_irqrestore(&part->act_lock, irq_flags);
601 
602  kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
603  partid);
604  if (IS_ERR(kthread)) {
605  spin_lock_irqsave(&part->act_lock, irq_flags);
607  XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
608  spin_unlock_irqrestore(&part->act_lock, irq_flags);
609  }
610 }
611 
612 void
613 xpc_activate_kthreads(struct xpc_channel *ch, int needed)
614 {
615  int idle = atomic_read(&ch->kthreads_idle);
616  int assigned = atomic_read(&ch->kthreads_assigned);
617  int wakeup;
618 
619  DBUG_ON(needed <= 0);
620 
621  if (idle > 0) {
622  wakeup = (needed > idle) ? idle : needed;
623  needed -= wakeup;
624 
625  dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
626  "channel=%d\n", wakeup, ch->partid, ch->number);
627 
628  /* only wakeup the requested number of kthreads */
629  wake_up_nr(&ch->idle_wq, wakeup);
630  }
631 
632  if (needed <= 0)
633  return;
634 
635  if (needed + assigned > ch->kthreads_assigned_limit) {
636  needed = ch->kthreads_assigned_limit - assigned;
637  if (needed <= 0)
638  return;
639  }
640 
641  dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
642  needed, ch->partid, ch->number);
643 
644  xpc_create_kthreads(ch, needed, 0);
645 }
646 
647 /*
648  * This function is where XPC's kthreads wait for messages to deliver.
649  */
650 static void
651 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
652 {
653  int (*n_of_deliverable_payloads) (struct xpc_channel *) =
654  xpc_arch_ops.n_of_deliverable_payloads;
655 
656  do {
657  /* deliver messages to their intended recipients */
658 
659  while (n_of_deliverable_payloads(ch) > 0 &&
660  !(ch->flags & XPC_C_DISCONNECTING)) {
662  }
663 
664  if (atomic_inc_return(&ch->kthreads_idle) >
665  ch->kthreads_idle_limit) {
666  /* too many idle kthreads on this channel */
668  break;
669  }
670 
671  dev_dbg(xpc_chan, "idle kthread calling "
672  "wait_event_interruptible_exclusive()\n");
673 
675  (n_of_deliverable_payloads(ch) > 0 ||
676  (ch->flags & XPC_C_DISCONNECTING)));
677 
679 
680  } while (!(ch->flags & XPC_C_DISCONNECTING));
681 }
682 
683 static int
684 xpc_kthread_start(void *args)
685 {
686  short partid = XPC_UNPACK_ARG1(args);
687  u16 ch_number = XPC_UNPACK_ARG2(args);
688  struct xpc_partition *part = &xpc_partitions[partid];
689  struct xpc_channel *ch;
690  int n_needed;
691  unsigned long irq_flags;
692  int (*n_of_deliverable_payloads) (struct xpc_channel *) =
693  xpc_arch_ops.n_of_deliverable_payloads;
694 
695  dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
696  partid, ch_number);
697 
698  ch = &part->channels[ch_number];
699 
700  if (!(ch->flags & XPC_C_DISCONNECTING)) {
701 
702  /* let registerer know that connection has been established */
703 
704  spin_lock_irqsave(&ch->lock, irq_flags);
705  if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
707  spin_unlock_irqrestore(&ch->lock, irq_flags);
708 
710 
711  spin_lock_irqsave(&ch->lock, irq_flags);
713  spin_unlock_irqrestore(&ch->lock, irq_flags);
714 
715  /*
716  * It is possible that while the callout was being
717  * made that the remote partition sent some messages.
718  * If that is the case, we may need to activate
719  * additional kthreads to help deliver them. We only
720  * need one less than total #of messages to deliver.
721  */
722  n_needed = n_of_deliverable_payloads(ch) - 1;
723  if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
724  xpc_activate_kthreads(ch, n_needed);
725 
726  } else {
727  spin_unlock_irqrestore(&ch->lock, irq_flags);
728  }
729 
730  xpc_kthread_waitmsgs(part, ch);
731  }
732 
733  /* let registerer know that connection is disconnecting */
734 
735  spin_lock_irqsave(&ch->lock, irq_flags);
736  if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
739  spin_unlock_irqrestore(&ch->lock, irq_flags);
740 
742 
743  spin_lock_irqsave(&ch->lock, irq_flags);
745  }
746  spin_unlock_irqrestore(&ch->lock, irq_flags);
747 
748  if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
749  atomic_dec_return(&part->nchannels_engaged) == 0) {
750  xpc_arch_ops.indicate_partition_disengaged(part);
751  }
752 
753  xpc_msgqueue_deref(ch);
754 
755  dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
756  partid, ch_number);
757 
758  xpc_part_deref(part);
759  return 0;
760 }
761 
762 /*
763  * For each partition that XPC has established communications with, there is
764  * a minimum of one kernel thread assigned to perform any operation that
765  * may potentially sleep or block (basically the callouts to the asynchronous
766  * functions registered via xpc_connect()).
767  *
768  * Additional kthreads are created and destroyed by XPC as the workload
769  * demands.
770  *
771  * A kthread is assigned to one of the active channels that exists for a given
772  * partition.
773  */
774 void
775 xpc_create_kthreads(struct xpc_channel *ch, int needed,
776  int ignore_disconnecting)
777 {
778  unsigned long irq_flags;
779  u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
780  struct xpc_partition *part = &xpc_partitions[ch->partid];
781  struct task_struct *kthread;
782  void (*indicate_partition_disengaged) (struct xpc_partition *) =
783  xpc_arch_ops.indicate_partition_disengaged;
784 
785  while (needed-- > 0) {
786 
787  /*
788  * The following is done on behalf of the newly created
789  * kthread. That kthread is responsible for doing the
790  * counterpart to the following before it exits.
791  */
792  if (ignore_disconnecting) {
794  /* kthreads assigned had gone to zero */
795  BUG_ON(!(ch->flags &
797  break;
798  }
799 
800  } else if (ch->flags & XPC_C_DISCONNECTING) {
801  break;
802 
803  } else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
804  atomic_inc_return(&part->nchannels_engaged) == 1) {
805  xpc_arch_ops.indicate_partition_engaged(part);
806  }
807  (void)xpc_part_ref(part);
808  xpc_msgqueue_ref(ch);
809 
810  kthread = kthread_run(xpc_kthread_start, (void *)args,
811  "xpc%02dc%d", ch->partid, ch->number);
812  if (IS_ERR(kthread)) {
813  /* the fork failed */
814 
815  /*
816  * NOTE: if (ignore_disconnecting &&
817  * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
818  * then we'll deadlock if all other kthreads assigned
819  * to this channel are blocked in the channel's
820  * registerer, because the only thing that will unblock
821  * them is the xpDisconnecting callout that this
822  * failed kthread_run() would have made.
823  */
824 
825  if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
826  atomic_dec_return(&part->nchannels_engaged) == 0) {
827  indicate_partition_disengaged(part);
828  }
829  xpc_msgqueue_deref(ch);
830  xpc_part_deref(part);
831 
832  if (atomic_read(&ch->kthreads_assigned) <
833  ch->kthreads_idle_limit) {
834  /*
835  * Flag this as an error only if we have an
836  * insufficient #of kthreads for the channel
837  * to function.
838  */
839  spin_lock_irqsave(&ch->lock, irq_flags);
841  &irq_flags);
842  spin_unlock_irqrestore(&ch->lock, irq_flags);
843  }
844  break;
845  }
846  }
847 }
848 
849 void
850 xpc_disconnect_wait(int ch_number)
851 {
852  unsigned long irq_flags;
853  short partid;
854  struct xpc_partition *part;
855  struct xpc_channel *ch;
856  int wakeup_channel_mgr;
857 
858  /* now wait for all callouts to the caller's function to cease */
859  for (partid = 0; partid < xp_max_npartitions; partid++) {
860  part = &xpc_partitions[partid];
861 
862  if (!xpc_part_ref(part))
863  continue;
864 
865  ch = &part->channels[ch_number];
866 
867  if (!(ch->flags & XPC_C_WDISCONNECT)) {
868  xpc_part_deref(part);
869  continue;
870  }
871 
873 
874  spin_lock_irqsave(&ch->lock, irq_flags);
875  DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
876  wakeup_channel_mgr = 0;
877 
878  if (ch->delayed_chctl_flags) {
879  if (part->act_state != XPC_P_AS_DEACTIVATING) {
880  spin_lock(&part->chctl_lock);
881  part->chctl.flags[ch->number] |=
883  spin_unlock(&part->chctl_lock);
884  wakeup_channel_mgr = 1;
885  }
886  ch->delayed_chctl_flags = 0;
887  }
888 
889  ch->flags &= ~XPC_C_WDISCONNECT;
890  spin_unlock_irqrestore(&ch->lock, irq_flags);
891 
892  if (wakeup_channel_mgr)
893  xpc_wakeup_channel_mgr(part);
894 
895  xpc_part_deref(part);
896  }
897 }
898 
899 static int
900 xpc_setup_partitions(void)
901 {
902  short partid;
903  struct xpc_partition *part;
904 
905  xpc_partitions = kzalloc(sizeof(struct xpc_partition) *
906  xp_max_npartitions, GFP_KERNEL);
907  if (xpc_partitions == NULL) {
908  dev_err(xpc_part, "can't get memory for partition structure\n");
909  return -ENOMEM;
910  }
911 
912  /*
913  * The first few fields of each entry of xpc_partitions[] need to
914  * be initialized now so that calls to xpc_connect() and
915  * xpc_disconnect() can be made prior to the activation of any remote
916  * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
917  * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
918  * PARTITION HAS BEEN ACTIVATED.
919  */
920  for (partid = 0; partid < xp_max_npartitions; partid++) {
921  part = &xpc_partitions[partid];
922 
923  DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
924 
925  part->activate_IRQ_rcvd = 0;
926  spin_lock_init(&part->act_lock);
928  XPC_SET_REASON(part, 0, 0);
929 
930  init_timer(&part->disengage_timer);
931  part->disengage_timer.function =
932  xpc_timeout_partition_disengage;
933  part->disengage_timer.data = (unsigned long)part;
934 
935  part->setup_state = XPC_P_SS_UNSET;
937  atomic_set(&part->references, 0);
938  }
939 
940  return xpc_arch_ops.setup_partitions();
941 }
942 
943 static void
944 xpc_teardown_partitions(void)
945 {
946  xpc_arch_ops.teardown_partitions();
948 }
949 
950 static void
951 xpc_do_exit(enum xp_retval reason)
952 {
953  short partid;
954  int active_part_count, printed_waiting_msg = 0;
955  struct xpc_partition *part;
956  unsigned long printmsg_time, disengage_timeout = 0;
957 
958  /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
959  DBUG_ON(xpc_exiting == 1);
960 
961  /*
962  * Let the heartbeat checker thread and the discovery thread
963  * (if one is running) know that they should exit. Also wake up
964  * the heartbeat checker thread in case it's sleeping.
965  */
966  xpc_exiting = 1;
967  wake_up_interruptible(&xpc_activate_IRQ_wq);
968 
969  /* wait for the discovery thread to exit */
970  wait_for_completion(&xpc_discovery_exited);
971 
972  /* wait for the heartbeat checker thread to exit */
973  wait_for_completion(&xpc_hb_checker_exited);
974 
975  /* sleep for a 1/3 of a second or so */
977 
978  /* wait for all partitions to become inactive */
979 
980  printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
981  xpc_disengage_timedout = 0;
982 
983  do {
984  active_part_count = 0;
985 
986  for (partid = 0; partid < xp_max_npartitions; partid++) {
987  part = &xpc_partitions[partid];
988 
989  if (xpc_partition_disengaged(part) &&
990  part->act_state == XPC_P_AS_INACTIVE) {
991  continue;
992  }
993 
994  active_part_count++;
995 
996  XPC_DEACTIVATE_PARTITION(part, reason);
997 
998  if (part->disengage_timeout > disengage_timeout)
999  disengage_timeout = part->disengage_timeout;
1000  }
1001 
1002  if (xpc_arch_ops.any_partition_engaged()) {
1003  if (time_is_before_jiffies(printmsg_time)) {
1004  dev_info(xpc_part, "waiting for remote "
1005  "partitions to deactivate, timeout in "
1006  "%ld seconds\n", (disengage_timeout -
1007  jiffies) / HZ);
1008  printmsg_time = jiffies +
1010  printed_waiting_msg = 1;
1011  }
1012 
1013  } else if (active_part_count > 0) {
1014  if (printed_waiting_msg) {
1015  dev_info(xpc_part, "waiting for local partition"
1016  " to deactivate\n");
1017  printed_waiting_msg = 0;
1018  }
1019 
1020  } else {
1021  if (!xpc_disengage_timedout) {
1022  dev_info(xpc_part, "all partitions have "
1023  "deactivated\n");
1024  }
1025  break;
1026  }
1027 
1028  /* sleep for a 1/3 of a second or so */
1029  (void)msleep_interruptible(300);
1030 
1031  } while (1);
1032 
1033  DBUG_ON(xpc_arch_ops.any_partition_engaged());
1034 
1036 
1037  if (reason == xpUnloading) {
1038  (void)unregister_die_notifier(&xpc_die_notifier);
1039  (void)unregister_reboot_notifier(&xpc_reboot_notifier);
1040  }
1041 
1042  /* clear the interface to XPC's functions */
1044 
1045  if (xpc_sysctl)
1046  unregister_sysctl_table(xpc_sysctl);
1047 
1048  xpc_teardown_partitions();
1049 
1050  if (is_shub())
1051  xpc_exit_sn2();
1052  else if (is_uv())
1053  xpc_exit_uv();
1054 }
1055 
1056 /*
1057  * This function is called when the system is being rebooted.
1058  */
1059 static int
1060 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1061 {
1062  enum xp_retval reason;
1063 
1064  switch (event) {
1065  case SYS_RESTART:
1066  reason = xpSystemReboot;
1067  break;
1068  case SYS_HALT:
1069  reason = xpSystemHalt;
1070  break;
1071  case SYS_POWER_OFF:
1072  reason = xpSystemPoweroff;
1073  break;
1074  default:
1075  reason = xpSystemGoingDown;
1076  }
1077 
1078  xpc_do_exit(reason);
1079  return NOTIFY_DONE;
1080 }
1081 
1082 /*
1083  * Notify other partitions to deactivate from us by first disengaging from all
1084  * references to our memory.
1085  */
1086 static void
1087 xpc_die_deactivate(void)
1088 {
1089  struct xpc_partition *part;
1090  short partid;
1091  int any_engaged;
1092  long keep_waiting;
1093  long wait_to_print;
1094 
1095  /* keep xpc_hb_checker thread from doing anything (just in case) */
1096  xpc_exiting = 1;
1097 
1098  xpc_arch_ops.disallow_all_hbs(); /*indicate we're deactivated */
1099 
1100  for (partid = 0; partid < xp_max_npartitions; partid++) {
1101  part = &xpc_partitions[partid];
1102 
1103  if (xpc_arch_ops.partition_engaged(partid) ||
1104  part->act_state != XPC_P_AS_INACTIVE) {
1105  xpc_arch_ops.request_partition_deactivation(part);
1106  xpc_arch_ops.indicate_partition_disengaged(part);
1107  }
1108  }
1109 
1110  /*
1111  * Though we requested that all other partitions deactivate from us,
1112  * we only wait until they've all disengaged or we've reached the
1113  * defined timelimit.
1114  *
1115  * Given that one iteration through the following while-loop takes
1116  * approximately 200 microseconds, calculate the #of loops to take
1117  * before bailing and the #of loops before printing a waiting message.
1118  */
1119  keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1120  wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1121 
1122  while (1) {
1123  any_engaged = xpc_arch_ops.any_partition_engaged();
1124  if (!any_engaged) {
1125  dev_info(xpc_part, "all partitions have deactivated\n");
1126  break;
1127  }
1128 
1129  if (!keep_waiting--) {
1130  for (partid = 0; partid < xp_max_npartitions;
1131  partid++) {
1132  if (xpc_arch_ops.partition_engaged(partid)) {
1133  dev_info(xpc_part, "deactivate from "
1134  "remote partition %d timed "
1135  "out\n", partid);
1136  }
1137  }
1138  break;
1139  }
1140 
1141  if (!wait_to_print--) {
1142  dev_info(xpc_part, "waiting for remote partitions to "
1143  "deactivate, timeout in %ld seconds\n",
1144  keep_waiting / (1000 * 5));
1145  wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1146  1000 * 5;
1147  }
1148 
1149  udelay(200);
1150  }
1151 }
1152 
1153 /*
1154  * This function is called when the system is being restarted or halted due
1155  * to some sort of system failure. If this is the case we need to notify the
1156  * other partitions to disengage from all references to our memory.
1157  * This function can also be called when our heartbeater could be offlined
1158  * for a time. In this case we need to notify other partitions to not worry
1159  * about the lack of a heartbeat.
1160  */
1161 static int
1162 xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused)
1163 {
1164 #ifdef CONFIG_IA64 /* !!! temporary kludge */
1165  switch (event) {
1166  case DIE_MACHINE_RESTART:
1167  case DIE_MACHINE_HALT:
1168  xpc_die_deactivate();
1169  break;
1170 
1171  case DIE_KDEBUG_ENTER:
1172  /* Should lack of heartbeat be ignored by other partitions? */
1173  if (!xpc_kdebug_ignore)
1174  break;
1175 
1176  /* fall through */
1177  case DIE_MCA_MONARCH_ENTER:
1179  xpc_arch_ops.offline_heartbeat();
1180  break;
1181 
1182  case DIE_KDEBUG_LEAVE:
1183  /* Is lack of heartbeat being ignored by other partitions? */
1184  if (!xpc_kdebug_ignore)
1185  break;
1186 
1187  /* fall through */
1188  case DIE_MCA_MONARCH_LEAVE:
1190  xpc_arch_ops.online_heartbeat();
1191  break;
1192  }
1193 #else
1194  xpc_die_deactivate();
1195 #endif
1196 
1197  return NOTIFY_DONE;
1198 }
1199 
1200 int __init
1202 {
1203  int ret;
1204  struct task_struct *kthread;
1205 
1206  dev_set_name(xpc_part, "part");
1207  dev_set_name(xpc_chan, "chan");
1208 
1209  if (is_shub()) {
1210  /*
1211  * The ia64-sn2 architecture supports at most 64 partitions.
1212  * And the inability to unregister remote amos restricts us
1213  * further to only support exactly 64 partitions on this
1214  * architecture, no less.
1215  */
1216  if (xp_max_npartitions != 64) {
1217  dev_err(xpc_part, "max #of partitions not set to 64\n");
1218  ret = -EINVAL;
1219  } else {
1220  ret = xpc_init_sn2();
1221  }
1222 
1223  } else if (is_uv()) {
1224  ret = xpc_init_uv();
1225 
1226  } else {
1227  ret = -ENODEV;
1228  }
1229 
1230  if (ret != 0)
1231  return ret;
1232 
1233  ret = xpc_setup_partitions();
1234  if (ret != 0) {
1235  dev_err(xpc_part, "can't get memory for partition structure\n");
1236  goto out_1;
1237  }
1238 
1239  xpc_sysctl = register_sysctl_table(xpc_sys_dir);
1240 
1241  /*
1242  * Fill the partition reserved page with the information needed by
1243  * other partitions to discover we are alive and establish initial
1244  * communications.
1245  */
1246  ret = xpc_setup_rsvd_page();
1247  if (ret != 0) {
1248  dev_err(xpc_part, "can't setup our reserved page\n");
1249  goto out_2;
1250  }
1251 
1252  /* add ourselves to the reboot_notifier_list */
1253  ret = register_reboot_notifier(&xpc_reboot_notifier);
1254  if (ret != 0)
1255  dev_warn(xpc_part, "can't register reboot notifier\n");
1256 
1257  /* add ourselves to the die_notifier list */
1258  ret = register_die_notifier(&xpc_die_notifier);
1259  if (ret != 0)
1260  dev_warn(xpc_part, "can't register die notifier\n");
1261 
1262  /*
1263  * The real work-horse behind xpc. This processes incoming
1264  * interrupts and monitors remote heartbeats.
1265  */
1266  kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1267  if (IS_ERR(kthread)) {
1268  dev_err(xpc_part, "failed while forking hb check thread\n");
1269  ret = -EBUSY;
1270  goto out_3;
1271  }
1272 
1273  /*
1274  * Startup a thread that will attempt to discover other partitions to
1275  * activate based on info provided by SAL. This new thread is short
1276  * lived and will exit once discovery is complete.
1277  */
1278  kthread = kthread_run(xpc_initiate_discovery, NULL,
1280  if (IS_ERR(kthread)) {
1281  dev_err(xpc_part, "failed while forking discovery thread\n");
1282 
1283  /* mark this new thread as a non-starter */
1284  complete(&xpc_discovery_exited);
1285 
1286  xpc_do_exit(xpUnloading);
1287  return -EBUSY;
1288  }
1289 
1290  /* set the interface to point at XPC's functions */
1294 
1295  return 0;
1296 
1297  /* initialization was not successful */
1298 out_3:
1300 
1301  (void)unregister_die_notifier(&xpc_die_notifier);
1302  (void)unregister_reboot_notifier(&xpc_reboot_notifier);
1303 out_2:
1304  if (xpc_sysctl)
1305  unregister_sysctl_table(xpc_sysctl);
1306 
1307  xpc_teardown_partitions();
1308 out_1:
1309  if (is_shub())
1310  xpc_exit_sn2();
1311  else if (is_uv())
1312  xpc_exit_uv();
1313  return ret;
1314 }
1315 
1317 
1318 void __exit
1320 {
1321  xpc_do_exit(xpUnloading);
1322 }
1323 
1325 
1326 MODULE_AUTHOR("Silicon Graphics, Inc.");
1327 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1328 MODULE_LICENSE("GPL");
1329 
1330 module_param(xpc_hb_interval, int, 0);
1331 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1332  "heartbeat increments.");
1333 
1334 module_param(xpc_hb_check_interval, int, 0);
1335 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1336  "heartbeat checks.");
1337 
1339 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1340  "for disengage to complete.");
1341 
1342 module_param(xpc_kdebug_ignore, int, 0);
1343 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1344  "other partitions when dropping into kdebug.");