Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
zd_rf_uw2453.c
Go to the documentation of this file.
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <[email protected]>
4  * Copyright (C) 2006-2007 Daniel Drake <[email protected]>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/slab.h>
23 
24 #include "zd_rf.h"
25 #include "zd_usb.h"
26 #include "zd_chip.h"
27 
28 /* This RF programming code is based upon the code found in v2.16.0.0 of the
29  * ZyDAS vendor driver. Unlike other RF's, Ubec publish full technical specs
30  * for this RF on their website, so we're able to understand more than
31  * usual as to what is going on. Thumbs up for Ubec for doing that. */
32 
33 /* The 3-wire serial interface provides access to 8 write-only registers.
34  * The data format is a 4 bit register address followed by a 20 bit value. */
35 #define UW2453_REGWRITE(reg, val) ((((reg) & 0xf) << 20) | ((val) & 0xfffff))
36 
37 /* For channel tuning, we have to configure registers 1 (synthesizer), 2 (synth
38  * fractional divide ratio) and 3 (VCO config).
39  *
40  * We configure the RF to produce an interrupt when the PLL is locked onto
41  * the configured frequency. During initialization, we run through a variety
42  * of different VCO configurations on channel 1 until we detect a PLL lock.
43  * When this happens, we remember which VCO configuration produced the lock
44  * and use it later. Actually, we use the configuration *after* the one that
45  * produced the lock, which seems odd, but it works.
46  *
47  * If we do not see a PLL lock on any standard VCO config, we fall back on an
48  * autocal configuration, which has a fixed (as opposed to per-channel) VCO
49  * config and different synth values from the standard set (divide ratio
50  * is still shared with the standard set). */
51 
52 /* The per-channel synth values for all standard VCO configurations. These get
53  * written to register 1. */
54 static const u8 uw2453_std_synth[] = {
55  RF_CHANNEL( 1) = 0x47,
56  RF_CHANNEL( 2) = 0x47,
57  RF_CHANNEL( 3) = 0x67,
58  RF_CHANNEL( 4) = 0x67,
59  RF_CHANNEL( 5) = 0x67,
60  RF_CHANNEL( 6) = 0x67,
61  RF_CHANNEL( 7) = 0x57,
62  RF_CHANNEL( 8) = 0x57,
63  RF_CHANNEL( 9) = 0x57,
64  RF_CHANNEL(10) = 0x57,
65  RF_CHANNEL(11) = 0x77,
66  RF_CHANNEL(12) = 0x77,
67  RF_CHANNEL(13) = 0x77,
68  RF_CHANNEL(14) = 0x4f,
69 };
70 
71 /* This table stores the synthesizer fractional divide ratio for *all* VCO
72  * configurations (both standard and autocal). These get written to register 2.
73  */
74 static const u16 uw2453_synth_divide[] = {
75  RF_CHANNEL( 1) = 0x999,
76  RF_CHANNEL( 2) = 0x99b,
77  RF_CHANNEL( 3) = 0x998,
78  RF_CHANNEL( 4) = 0x99a,
79  RF_CHANNEL( 5) = 0x999,
80  RF_CHANNEL( 6) = 0x99b,
81  RF_CHANNEL( 7) = 0x998,
82  RF_CHANNEL( 8) = 0x99a,
83  RF_CHANNEL( 9) = 0x999,
84  RF_CHANNEL(10) = 0x99b,
85  RF_CHANNEL(11) = 0x998,
86  RF_CHANNEL(12) = 0x99a,
87  RF_CHANNEL(13) = 0x999,
88  RF_CHANNEL(14) = 0xccc,
89 };
90 
91 /* Here is the data for all the standard VCO configurations. We shrink our
92  * table a little by observing that both channels in a consecutive pair share
93  * the same value. We also observe that the high 4 bits ([0:3] in the specs)
94  * are all 'Reserved' and are always set to 0x4 - we chop them off in the data
95  * below. */
96 #define CHAN_TO_PAIRIDX(a) ((a - 1) / 2)
97 #define RF_CHANPAIR(a,b) [CHAN_TO_PAIRIDX(a)]
98 static const u16 uw2453_std_vco_cfg[][7] = {
99  { /* table 1 */
100  RF_CHANPAIR( 1, 2) = 0x664d,
101  RF_CHANPAIR( 3, 4) = 0x604d,
102  RF_CHANPAIR( 5, 6) = 0x6675,
103  RF_CHANPAIR( 7, 8) = 0x6475,
104  RF_CHANPAIR( 9, 10) = 0x6655,
105  RF_CHANPAIR(11, 12) = 0x6455,
106  RF_CHANPAIR(13, 14) = 0x6665,
107  },
108  { /* table 2 */
109  RF_CHANPAIR( 1, 2) = 0x666d,
110  RF_CHANPAIR( 3, 4) = 0x606d,
111  RF_CHANPAIR( 5, 6) = 0x664d,
112  RF_CHANPAIR( 7, 8) = 0x644d,
113  RF_CHANPAIR( 9, 10) = 0x6675,
114  RF_CHANPAIR(11, 12) = 0x6475,
115  RF_CHANPAIR(13, 14) = 0x6655,
116  },
117  { /* table 3 */
118  RF_CHANPAIR( 1, 2) = 0x665d,
119  RF_CHANPAIR( 3, 4) = 0x605d,
120  RF_CHANPAIR( 5, 6) = 0x666d,
121  RF_CHANPAIR( 7, 8) = 0x646d,
122  RF_CHANPAIR( 9, 10) = 0x664d,
123  RF_CHANPAIR(11, 12) = 0x644d,
124  RF_CHANPAIR(13, 14) = 0x6675,
125  },
126  { /* table 4 */
127  RF_CHANPAIR( 1, 2) = 0x667d,
128  RF_CHANPAIR( 3, 4) = 0x607d,
129  RF_CHANPAIR( 5, 6) = 0x665d,
130  RF_CHANPAIR( 7, 8) = 0x645d,
131  RF_CHANPAIR( 9, 10) = 0x666d,
132  RF_CHANPAIR(11, 12) = 0x646d,
133  RF_CHANPAIR(13, 14) = 0x664d,
134  },
135  { /* table 5 */
136  RF_CHANPAIR( 1, 2) = 0x6643,
137  RF_CHANPAIR( 3, 4) = 0x6043,
138  RF_CHANPAIR( 5, 6) = 0x667d,
139  RF_CHANPAIR( 7, 8) = 0x647d,
140  RF_CHANPAIR( 9, 10) = 0x665d,
141  RF_CHANPAIR(11, 12) = 0x645d,
142  RF_CHANPAIR(13, 14) = 0x666d,
143  },
144  { /* table 6 */
145  RF_CHANPAIR( 1, 2) = 0x6663,
146  RF_CHANPAIR( 3, 4) = 0x6063,
147  RF_CHANPAIR( 5, 6) = 0x6643,
148  RF_CHANPAIR( 7, 8) = 0x6443,
149  RF_CHANPAIR( 9, 10) = 0x667d,
150  RF_CHANPAIR(11, 12) = 0x647d,
151  RF_CHANPAIR(13, 14) = 0x665d,
152  },
153  { /* table 7 */
154  RF_CHANPAIR( 1, 2) = 0x6653,
155  RF_CHANPAIR( 3, 4) = 0x6053,
156  RF_CHANPAIR( 5, 6) = 0x6663,
157  RF_CHANPAIR( 7, 8) = 0x6463,
158  RF_CHANPAIR( 9, 10) = 0x6643,
159  RF_CHANPAIR(11, 12) = 0x6443,
160  RF_CHANPAIR(13, 14) = 0x667d,
161  },
162  { /* table 8 */
163  RF_CHANPAIR( 1, 2) = 0x6673,
164  RF_CHANPAIR( 3, 4) = 0x6073,
165  RF_CHANPAIR( 5, 6) = 0x6653,
166  RF_CHANPAIR( 7, 8) = 0x6453,
167  RF_CHANPAIR( 9, 10) = 0x6663,
168  RF_CHANPAIR(11, 12) = 0x6463,
169  RF_CHANPAIR(13, 14) = 0x6643,
170  },
171  { /* table 9 */
172  RF_CHANPAIR( 1, 2) = 0x664b,
173  RF_CHANPAIR( 3, 4) = 0x604b,
174  RF_CHANPAIR( 5, 6) = 0x6673,
175  RF_CHANPAIR( 7, 8) = 0x6473,
176  RF_CHANPAIR( 9, 10) = 0x6653,
177  RF_CHANPAIR(11, 12) = 0x6453,
178  RF_CHANPAIR(13, 14) = 0x6663,
179  },
180  { /* table 10 */
181  RF_CHANPAIR( 1, 2) = 0x666b,
182  RF_CHANPAIR( 3, 4) = 0x606b,
183  RF_CHANPAIR( 5, 6) = 0x664b,
184  RF_CHANPAIR( 7, 8) = 0x644b,
185  RF_CHANPAIR( 9, 10) = 0x6673,
186  RF_CHANPAIR(11, 12) = 0x6473,
187  RF_CHANPAIR(13, 14) = 0x6653,
188  },
189  { /* table 11 */
190  RF_CHANPAIR( 1, 2) = 0x665b,
191  RF_CHANPAIR( 3, 4) = 0x605b,
192  RF_CHANPAIR( 5, 6) = 0x666b,
193  RF_CHANPAIR( 7, 8) = 0x646b,
194  RF_CHANPAIR( 9, 10) = 0x664b,
195  RF_CHANPAIR(11, 12) = 0x644b,
196  RF_CHANPAIR(13, 14) = 0x6673,
197  },
198 
199 };
200 
201 /* The per-channel synth values for autocal. These get written to register 1. */
202 static const u16 uw2453_autocal_synth[] = {
203  RF_CHANNEL( 1) = 0x6847,
204  RF_CHANNEL( 2) = 0x6847,
205  RF_CHANNEL( 3) = 0x6867,
206  RF_CHANNEL( 4) = 0x6867,
207  RF_CHANNEL( 5) = 0x6867,
208  RF_CHANNEL( 6) = 0x6867,
209  RF_CHANNEL( 7) = 0x6857,
210  RF_CHANNEL( 8) = 0x6857,
211  RF_CHANNEL( 9) = 0x6857,
212  RF_CHANNEL(10) = 0x6857,
213  RF_CHANNEL(11) = 0x6877,
214  RF_CHANNEL(12) = 0x6877,
215  RF_CHANNEL(13) = 0x6877,
216  RF_CHANNEL(14) = 0x684f,
217 };
218 
219 /* The VCO configuration for autocal (all channels) */
220 static const u16 UW2453_AUTOCAL_VCO_CFG = 0x6662;
221 
222 /* TX gain settings. The array index corresponds to the TX power integration
223  * values found in the EEPROM. The values get written to register 7. */
224 static u32 uw2453_txgain[] = {
225  [0x00] = 0x0e313,
226  [0x01] = 0x0fb13,
227  [0x02] = 0x0e093,
228  [0x03] = 0x0f893,
229  [0x04] = 0x0ea93,
230  [0x05] = 0x1f093,
231  [0x06] = 0x1f493,
232  [0x07] = 0x1f693,
233  [0x08] = 0x1f393,
234  [0x09] = 0x1f35b,
235  [0x0a] = 0x1e6db,
236  [0x0b] = 0x1ff3f,
237  [0x0c] = 0x1ffff,
238  [0x0d] = 0x361d7,
239  [0x0e] = 0x37fbf,
240  [0x0f] = 0x3ff8b,
241  [0x10] = 0x3ff33,
242  [0x11] = 0x3fb3f,
243  [0x12] = 0x3ffff,
244 };
245 
246 /* RF-specific structure */
247 struct uw2453_priv {
248  /* index into synth/VCO config tables where PLL lock was found
249  * -1 means autocal */
250  int config;
251 };
252 
253 #define UW2453_PRIV(rf) ((struct uw2453_priv *) (rf)->priv)
254 
255 static int uw2453_synth_set_channel(struct zd_chip *chip, int channel,
256  bool autocal)
257 {
258  int r;
259  int idx = channel - 1;
260  u32 val;
261 
262  if (autocal)
263  val = UW2453_REGWRITE(1, uw2453_autocal_synth[idx]);
264  else
265  val = UW2453_REGWRITE(1, uw2453_std_synth[idx]);
266 
267  r = zd_rfwrite_locked(chip, val, RF_RV_BITS);
268  if (r)
269  return r;
270 
271  return zd_rfwrite_locked(chip,
272  UW2453_REGWRITE(2, uw2453_synth_divide[idx]), RF_RV_BITS);
273 }
274 
275 static int uw2453_write_vco_cfg(struct zd_chip *chip, u16 value)
276 {
277  /* vendor driver always sets these upper bits even though the specs say
278  * they are reserved */
279  u32 val = 0x40000 | value;
280  return zd_rfwrite_locked(chip, UW2453_REGWRITE(3, val), RF_RV_BITS);
281 }
282 
283 static int uw2453_init_mode(struct zd_chip *chip)
284 {
285  static const u32 rv[] = {
286  UW2453_REGWRITE(0, 0x25f98), /* enter IDLE mode */
287  UW2453_REGWRITE(0, 0x25f9a), /* enter CAL_VCO mode */
288  UW2453_REGWRITE(0, 0x25f94), /* enter RX/TX mode */
289  UW2453_REGWRITE(0, 0x27fd4), /* power down RSSI circuit */
290  };
291 
292  return zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS);
293 }
294 
295 static int uw2453_set_tx_gain_level(struct zd_chip *chip, int channel)
296 {
297  u8 int_value = chip->pwr_int_values[channel - 1];
298 
299  if (int_value >= ARRAY_SIZE(uw2453_txgain)) {
300  dev_dbg_f(zd_chip_dev(chip), "can't configure TX gain for "
301  "int value %x on channel %d\n", int_value, channel);
302  return 0;
303  }
304 
305  return zd_rfwrite_locked(chip,
306  UW2453_REGWRITE(7, uw2453_txgain[int_value]), RF_RV_BITS);
307 }
308 
309 static int uw2453_init_hw(struct zd_rf *rf)
310 {
311  int i, r;
312  int found_config = -1;
313  u16 intr_status;
314  struct zd_chip *chip = zd_rf_to_chip(rf);
315 
316  static const struct zd_ioreq16 ioreqs[] = {
317  { ZD_CR10, 0x89 }, { ZD_CR15, 0x20 },
318  { ZD_CR17, 0x28 }, /* 6112 no change */
319  { ZD_CR23, 0x38 }, { ZD_CR24, 0x20 }, { ZD_CR26, 0x93 },
320  { ZD_CR27, 0x15 }, { ZD_CR28, 0x3e }, { ZD_CR29, 0x00 },
321  { ZD_CR33, 0x28 }, { ZD_CR34, 0x30 },
322  { ZD_CR35, 0x43 }, /* 6112 3e->43 */
323  { ZD_CR41, 0x24 }, { ZD_CR44, 0x32 },
324  { ZD_CR46, 0x92 }, /* 6112 96->92 */
325  { ZD_CR47, 0x1e },
326  { ZD_CR48, 0x04 }, /* 5602 Roger */
327  { ZD_CR49, 0xfa }, { ZD_CR79, 0x58 }, { ZD_CR80, 0x30 },
328  { ZD_CR81, 0x30 }, { ZD_CR87, 0x0a }, { ZD_CR89, 0x04 },
329  { ZD_CR91, 0x00 }, { ZD_CR92, 0x0a }, { ZD_CR98, 0x8d },
330  { ZD_CR99, 0x28 }, { ZD_CR100, 0x02 },
331  { ZD_CR101, 0x09 }, /* 6112 13->1f 6220 1f->13 6407 13->9 */
332  { ZD_CR102, 0x27 },
333  { ZD_CR106, 0x1c }, /* 5d07 5112 1f->1c 6220 1c->1f
334  * 6221 1f->1c
335  */
336  { ZD_CR107, 0x1c }, /* 6220 1c->1a 5221 1a->1c */
337  { ZD_CR109, 0x13 },
338  { ZD_CR110, 0x1f }, /* 6112 13->1f 6221 1f->13 6407 13->0x09 */
339  { ZD_CR111, 0x13 }, { ZD_CR112, 0x1f }, { ZD_CR113, 0x27 },
340  { ZD_CR114, 0x23 }, /* 6221 27->23 */
341  { ZD_CR115, 0x24 }, /* 6112 24->1c 6220 1c->24 */
342  { ZD_CR116, 0x24 }, /* 6220 1c->24 */
343  { ZD_CR117, 0xfa }, /* 6112 fa->f8 6220 f8->f4 6220 f4->fa */
344  { ZD_CR118, 0xf0 }, /* 5d07 6112 f0->f2 6220 f2->f0 */
345  { ZD_CR119, 0x1a }, /* 6112 1a->10 6220 10->14 6220 14->1a */
346  { ZD_CR120, 0x4f },
347  { ZD_CR121, 0x1f }, /* 6220 4f->1f */
348  { ZD_CR122, 0xf0 }, { ZD_CR123, 0x57 }, { ZD_CR125, 0xad },
349  { ZD_CR126, 0x6c }, { ZD_CR127, 0x03 },
350  { ZD_CR128, 0x14 }, /* 6302 12->11 */
351  { ZD_CR129, 0x12 }, /* 6301 10->0f */
352  { ZD_CR130, 0x10 }, { ZD_CR137, 0x50 }, { ZD_CR138, 0xa8 },
353  { ZD_CR144, 0xac }, { ZD_CR146, 0x20 }, { ZD_CR252, 0xff },
354  { ZD_CR253, 0xff },
355  };
356 
357  static const u32 rv[] = {
358  UW2453_REGWRITE(4, 0x2b), /* configure receiver gain */
359  UW2453_REGWRITE(5, 0x19e4f), /* configure transmitter gain */
360  UW2453_REGWRITE(6, 0xf81ad), /* enable RX/TX filter tuning */
361  UW2453_REGWRITE(7, 0x3fffe), /* disable TX gain in test mode */
362 
363  /* enter CAL_FIL mode, TX gain set by registers, RX gain set by pins,
364  * RSSI circuit powered down, reduced RSSI range */
365  UW2453_REGWRITE(0, 0x25f9c), /* 5d01 cal_fil */
366 
367  /* synthesizer configuration for channel 1 */
368  UW2453_REGWRITE(1, 0x47),
369  UW2453_REGWRITE(2, 0x999),
370 
371  /* disable manual VCO band selection */
372  UW2453_REGWRITE(3, 0x7602),
373 
374  /* enable manual VCO band selection, configure current level */
375  UW2453_REGWRITE(3, 0x46063),
376  };
377 
378  r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
379  if (r)
380  return r;
381 
382  r = zd_rfwritev_locked(chip, rv, ARRAY_SIZE(rv), RF_RV_BITS);
383  if (r)
384  return r;
385 
386  r = uw2453_init_mode(chip);
387  if (r)
388  return r;
389 
390  /* Try all standard VCO configuration settings on channel 1 */
391  for (i = 0; i < ARRAY_SIZE(uw2453_std_vco_cfg) - 1; i++) {
392  /* Configure synthesizer for channel 1 */
393  r = uw2453_synth_set_channel(chip, 1, false);
394  if (r)
395  return r;
396 
397  /* Write VCO config */
398  r = uw2453_write_vco_cfg(chip, uw2453_std_vco_cfg[i][0]);
399  if (r)
400  return r;
401 
402  /* ack interrupt event */
403  r = zd_iowrite16_locked(chip, 0x0f, UW2453_INTR_REG);
404  if (r)
405  return r;
406 
407  /* check interrupt status */
408  r = zd_ioread16_locked(chip, &intr_status, UW2453_INTR_REG);
409  if (r)
410  return r;
411 
412  if (!(intr_status & 0xf)) {
413  dev_dbg_f(zd_chip_dev(chip),
414  "PLL locked on configuration %d\n", i);
415  found_config = i;
416  break;
417  }
418  }
419 
420  if (found_config == -1) {
421  /* autocal */
422  dev_dbg_f(zd_chip_dev(chip),
423  "PLL did not lock, using autocal\n");
424 
425  r = uw2453_synth_set_channel(chip, 1, true);
426  if (r)
427  return r;
428 
429  r = uw2453_write_vco_cfg(chip, UW2453_AUTOCAL_VCO_CFG);
430  if (r)
431  return r;
432  }
433 
434  /* To match the vendor driver behaviour, we use the configuration after
435  * the one that produced a lock. */
436  UW2453_PRIV(rf)->config = found_config + 1;
437 
438  return zd_iowrite16_locked(chip, 0x06, ZD_CR203);
439 }
440 
441 static int uw2453_set_channel(struct zd_rf *rf, u8 channel)
442 {
443  int r;
444  u16 vco_cfg;
445  int config = UW2453_PRIV(rf)->config;
446  bool autocal = (config == -1);
447  struct zd_chip *chip = zd_rf_to_chip(rf);
448 
449  static const struct zd_ioreq16 ioreqs[] = {
450  { ZD_CR80, 0x30 }, { ZD_CR81, 0x30 }, { ZD_CR79, 0x58 },
451  { ZD_CR12, 0xf0 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x58 },
452  };
453 
454  r = uw2453_synth_set_channel(chip, channel, autocal);
455  if (r)
456  return r;
457 
458  if (autocal)
459  vco_cfg = UW2453_AUTOCAL_VCO_CFG;
460  else
461  vco_cfg = uw2453_std_vco_cfg[config][CHAN_TO_PAIRIDX(channel)];
462 
463  r = uw2453_write_vco_cfg(chip, vco_cfg);
464  if (r)
465  return r;
466 
467  r = uw2453_init_mode(chip);
468  if (r)
469  return r;
470 
471  r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
472  if (r)
473  return r;
474 
475  r = uw2453_set_tx_gain_level(chip, channel);
476  if (r)
477  return r;
478 
479  return zd_iowrite16_locked(chip, 0x06, ZD_CR203);
480 }
481 
482 static int uw2453_switch_radio_on(struct zd_rf *rf)
483 {
484  int r;
485  struct zd_chip *chip = zd_rf_to_chip(rf);
486  struct zd_ioreq16 ioreqs[] = {
487  { ZD_CR11, 0x00 }, { ZD_CR251, 0x3f },
488  };
489 
490  /* enter RXTX mode */
491  r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f94), RF_RV_BITS);
492  if (r)
493  return r;
494 
495  if (zd_chip_is_zd1211b(chip))
496  ioreqs[1].value = 0x7f;
497 
498  return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
499 }
500 
501 static int uw2453_switch_radio_off(struct zd_rf *rf)
502 {
503  int r;
504  struct zd_chip *chip = zd_rf_to_chip(rf);
505  static const struct zd_ioreq16 ioreqs[] = {
506  { ZD_CR11, 0x04 }, { ZD_CR251, 0x2f },
507  };
508 
509  /* enter IDLE mode */
510  /* FIXME: shouldn't we go to SLEEP? sent email to zydas */
511  r = zd_rfwrite_locked(chip, UW2453_REGWRITE(0, 0x25f90), RF_RV_BITS);
512  if (r)
513  return r;
514 
515  return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
516 }
517 
518 static void uw2453_clear(struct zd_rf *rf)
519 {
520  kfree(rf->priv);
521 }
522 
523 int zd_rf_init_uw2453(struct zd_rf *rf)
524 {
525  rf->init_hw = uw2453_init_hw;
526  rf->set_channel = uw2453_set_channel;
527  rf->switch_radio_on = uw2453_switch_radio_on;
528  rf->switch_radio_off = uw2453_switch_radio_off;
530  rf->clear = uw2453_clear;
531  /* we have our own TX integration code */
532  rf->update_channel_int = 0;
533 
534  rf->priv = kmalloc(sizeof(struct uw2453_priv), GFP_KERNEL);
535  if (rf->priv == NULL)
536  return -ENOMEM;
537 
538  return 0;
539 }
540