LLVM API Documentation

BitcodeWriter.cpp
Go to the documentation of this file.
00001 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // Bitcode writer implementation.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "llvm/Bitcode/ReaderWriter.h"
00015 #include "ValueEnumerator.h"
00016 #include "llvm/ADT/Triple.h"
00017 #include "llvm/Bitcode/BitstreamWriter.h"
00018 #include "llvm/Bitcode/LLVMBitCodes.h"
00019 #include "llvm/IR/Constants.h"
00020 #include "llvm/IR/DerivedTypes.h"
00021 #include "llvm/IR/InlineAsm.h"
00022 #include "llvm/IR/Instructions.h"
00023 #include "llvm/IR/Module.h"
00024 #include "llvm/IR/Operator.h"
00025 #include "llvm/IR/UseListOrder.h"
00026 #include "llvm/IR/ValueSymbolTable.h"
00027 #include "llvm/Support/CommandLine.h"
00028 #include "llvm/Support/ErrorHandling.h"
00029 #include "llvm/Support/MathExtras.h"
00030 #include "llvm/Support/Program.h"
00031 #include "llvm/Support/raw_ostream.h"
00032 #include <cctype>
00033 #include <map>
00034 using namespace llvm;
00035 
00036 /// These are manifest constants used by the bitcode writer. They do not need to
00037 /// be kept in sync with the reader, but need to be consistent within this file.
00038 enum {
00039   // VALUE_SYMTAB_BLOCK abbrev id's.
00040   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
00041   VST_ENTRY_7_ABBREV,
00042   VST_ENTRY_6_ABBREV,
00043   VST_BBENTRY_6_ABBREV,
00044 
00045   // CONSTANTS_BLOCK abbrev id's.
00046   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
00047   CONSTANTS_INTEGER_ABBREV,
00048   CONSTANTS_CE_CAST_Abbrev,
00049   CONSTANTS_NULL_Abbrev,
00050 
00051   // FUNCTION_BLOCK abbrev id's.
00052   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
00053   FUNCTION_INST_BINOP_ABBREV,
00054   FUNCTION_INST_BINOP_FLAGS_ABBREV,
00055   FUNCTION_INST_CAST_ABBREV,
00056   FUNCTION_INST_RET_VOID_ABBREV,
00057   FUNCTION_INST_RET_VAL_ABBREV,
00058   FUNCTION_INST_UNREACHABLE_ABBREV
00059 };
00060 
00061 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
00062   switch (Opcode) {
00063   default: llvm_unreachable("Unknown cast instruction!");
00064   case Instruction::Trunc   : return bitc::CAST_TRUNC;
00065   case Instruction::ZExt    : return bitc::CAST_ZEXT;
00066   case Instruction::SExt    : return bitc::CAST_SEXT;
00067   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
00068   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
00069   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
00070   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
00071   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
00072   case Instruction::FPExt   : return bitc::CAST_FPEXT;
00073   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
00074   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
00075   case Instruction::BitCast : return bitc::CAST_BITCAST;
00076   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
00077   }
00078 }
00079 
00080 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
00081   switch (Opcode) {
00082   default: llvm_unreachable("Unknown binary instruction!");
00083   case Instruction::Add:
00084   case Instruction::FAdd: return bitc::BINOP_ADD;
00085   case Instruction::Sub:
00086   case Instruction::FSub: return bitc::BINOP_SUB;
00087   case Instruction::Mul:
00088   case Instruction::FMul: return bitc::BINOP_MUL;
00089   case Instruction::UDiv: return bitc::BINOP_UDIV;
00090   case Instruction::FDiv:
00091   case Instruction::SDiv: return bitc::BINOP_SDIV;
00092   case Instruction::URem: return bitc::BINOP_UREM;
00093   case Instruction::FRem:
00094   case Instruction::SRem: return bitc::BINOP_SREM;
00095   case Instruction::Shl:  return bitc::BINOP_SHL;
00096   case Instruction::LShr: return bitc::BINOP_LSHR;
00097   case Instruction::AShr: return bitc::BINOP_ASHR;
00098   case Instruction::And:  return bitc::BINOP_AND;
00099   case Instruction::Or:   return bitc::BINOP_OR;
00100   case Instruction::Xor:  return bitc::BINOP_XOR;
00101   }
00102 }
00103 
00104 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
00105   switch (Op) {
00106   default: llvm_unreachable("Unknown RMW operation!");
00107   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
00108   case AtomicRMWInst::Add: return bitc::RMW_ADD;
00109   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
00110   case AtomicRMWInst::And: return bitc::RMW_AND;
00111   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
00112   case AtomicRMWInst::Or: return bitc::RMW_OR;
00113   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
00114   case AtomicRMWInst::Max: return bitc::RMW_MAX;
00115   case AtomicRMWInst::Min: return bitc::RMW_MIN;
00116   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
00117   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
00118   }
00119 }
00120 
00121 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
00122   switch (Ordering) {
00123   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
00124   case Unordered: return bitc::ORDERING_UNORDERED;
00125   case Monotonic: return bitc::ORDERING_MONOTONIC;
00126   case Acquire: return bitc::ORDERING_ACQUIRE;
00127   case Release: return bitc::ORDERING_RELEASE;
00128   case AcquireRelease: return bitc::ORDERING_ACQREL;
00129   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
00130   }
00131   llvm_unreachable("Invalid ordering");
00132 }
00133 
00134 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
00135   switch (SynchScope) {
00136   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
00137   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
00138   }
00139   llvm_unreachable("Invalid synch scope");
00140 }
00141 
00142 static void WriteStringRecord(unsigned Code, StringRef Str,
00143                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
00144   SmallVector<unsigned, 64> Vals;
00145 
00146   // Code: [strchar x N]
00147   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
00148     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
00149       AbbrevToUse = 0;
00150     Vals.push_back(Str[i]);
00151   }
00152 
00153   // Emit the finished record.
00154   Stream.EmitRecord(Code, Vals, AbbrevToUse);
00155 }
00156 
00157 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
00158   switch (Kind) {
00159   case Attribute::Alignment:
00160     return bitc::ATTR_KIND_ALIGNMENT;
00161   case Attribute::AlwaysInline:
00162     return bitc::ATTR_KIND_ALWAYS_INLINE;
00163   case Attribute::Builtin:
00164     return bitc::ATTR_KIND_BUILTIN;
00165   case Attribute::ByVal:
00166     return bitc::ATTR_KIND_BY_VAL;
00167   case Attribute::InAlloca:
00168     return bitc::ATTR_KIND_IN_ALLOCA;
00169   case Attribute::Cold:
00170     return bitc::ATTR_KIND_COLD;
00171   case Attribute::InlineHint:
00172     return bitc::ATTR_KIND_INLINE_HINT;
00173   case Attribute::InReg:
00174     return bitc::ATTR_KIND_IN_REG;
00175   case Attribute::JumpTable:
00176     return bitc::ATTR_KIND_JUMP_TABLE;
00177   case Attribute::MinSize:
00178     return bitc::ATTR_KIND_MIN_SIZE;
00179   case Attribute::Naked:
00180     return bitc::ATTR_KIND_NAKED;
00181   case Attribute::Nest:
00182     return bitc::ATTR_KIND_NEST;
00183   case Attribute::NoAlias:
00184     return bitc::ATTR_KIND_NO_ALIAS;
00185   case Attribute::NoBuiltin:
00186     return bitc::ATTR_KIND_NO_BUILTIN;
00187   case Attribute::NoCapture:
00188     return bitc::ATTR_KIND_NO_CAPTURE;
00189   case Attribute::NoDuplicate:
00190     return bitc::ATTR_KIND_NO_DUPLICATE;
00191   case Attribute::NoImplicitFloat:
00192     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
00193   case Attribute::NoInline:
00194     return bitc::ATTR_KIND_NO_INLINE;
00195   case Attribute::NonLazyBind:
00196     return bitc::ATTR_KIND_NON_LAZY_BIND;
00197   case Attribute::NonNull:
00198     return bitc::ATTR_KIND_NON_NULL;
00199   case Attribute::Dereferenceable:
00200     return bitc::ATTR_KIND_DEREFERENCEABLE;
00201   case Attribute::NoRedZone:
00202     return bitc::ATTR_KIND_NO_RED_ZONE;
00203   case Attribute::NoReturn:
00204     return bitc::ATTR_KIND_NO_RETURN;
00205   case Attribute::NoUnwind:
00206     return bitc::ATTR_KIND_NO_UNWIND;
00207   case Attribute::OptimizeForSize:
00208     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
00209   case Attribute::OptimizeNone:
00210     return bitc::ATTR_KIND_OPTIMIZE_NONE;
00211   case Attribute::ReadNone:
00212     return bitc::ATTR_KIND_READ_NONE;
00213   case Attribute::ReadOnly:
00214     return bitc::ATTR_KIND_READ_ONLY;
00215   case Attribute::Returned:
00216     return bitc::ATTR_KIND_RETURNED;
00217   case Attribute::ReturnsTwice:
00218     return bitc::ATTR_KIND_RETURNS_TWICE;
00219   case Attribute::SExt:
00220     return bitc::ATTR_KIND_S_EXT;
00221   case Attribute::StackAlignment:
00222     return bitc::ATTR_KIND_STACK_ALIGNMENT;
00223   case Attribute::StackProtect:
00224     return bitc::ATTR_KIND_STACK_PROTECT;
00225   case Attribute::StackProtectReq:
00226     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
00227   case Attribute::StackProtectStrong:
00228     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
00229   case Attribute::StructRet:
00230     return bitc::ATTR_KIND_STRUCT_RET;
00231   case Attribute::SanitizeAddress:
00232     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
00233   case Attribute::SanitizeThread:
00234     return bitc::ATTR_KIND_SANITIZE_THREAD;
00235   case Attribute::SanitizeMemory:
00236     return bitc::ATTR_KIND_SANITIZE_MEMORY;
00237   case Attribute::UWTable:
00238     return bitc::ATTR_KIND_UW_TABLE;
00239   case Attribute::ZExt:
00240     return bitc::ATTR_KIND_Z_EXT;
00241   case Attribute::EndAttrKinds:
00242     llvm_unreachable("Can not encode end-attribute kinds marker.");
00243   case Attribute::None:
00244     llvm_unreachable("Can not encode none-attribute.");
00245   }
00246 
00247   llvm_unreachable("Trying to encode unknown attribute");
00248 }
00249 
00250 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
00251                                      BitstreamWriter &Stream) {
00252   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
00253   if (AttrGrps.empty()) return;
00254 
00255   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
00256 
00257   SmallVector<uint64_t, 64> Record;
00258   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
00259     AttributeSet AS = AttrGrps[i];
00260     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
00261       AttributeSet A = AS.getSlotAttributes(i);
00262 
00263       Record.push_back(VE.getAttributeGroupID(A));
00264       Record.push_back(AS.getSlotIndex(i));
00265 
00266       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
00267            I != E; ++I) {
00268         Attribute Attr = *I;
00269         if (Attr.isEnumAttribute()) {
00270           Record.push_back(0);
00271           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
00272         } else if (Attr.isIntAttribute()) {
00273           Record.push_back(1);
00274           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
00275           Record.push_back(Attr.getValueAsInt());
00276         } else {
00277           StringRef Kind = Attr.getKindAsString();
00278           StringRef Val = Attr.getValueAsString();
00279 
00280           Record.push_back(Val.empty() ? 3 : 4);
00281           Record.append(Kind.begin(), Kind.end());
00282           Record.push_back(0);
00283           if (!Val.empty()) {
00284             Record.append(Val.begin(), Val.end());
00285             Record.push_back(0);
00286           }
00287         }
00288       }
00289 
00290       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
00291       Record.clear();
00292     }
00293   }
00294 
00295   Stream.ExitBlock();
00296 }
00297 
00298 static void WriteAttributeTable(const ValueEnumerator &VE,
00299                                 BitstreamWriter &Stream) {
00300   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
00301   if (Attrs.empty()) return;
00302 
00303   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
00304 
00305   SmallVector<uint64_t, 64> Record;
00306   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
00307     const AttributeSet &A = Attrs[i];
00308     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
00309       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
00310 
00311     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
00312     Record.clear();
00313   }
00314 
00315   Stream.ExitBlock();
00316 }
00317 
00318 /// WriteTypeTable - Write out the type table for a module.
00319 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
00320   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
00321 
00322   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
00323   SmallVector<uint64_t, 64> TypeVals;
00324 
00325   uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1);
00326 
00327   // Abbrev for TYPE_CODE_POINTER.
00328   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
00329   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
00330   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
00331   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
00332   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
00333 
00334   // Abbrev for TYPE_CODE_FUNCTION.
00335   Abbv = new BitCodeAbbrev();
00336   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
00337   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
00338   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
00339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
00340 
00341   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
00342 
00343   // Abbrev for TYPE_CODE_STRUCT_ANON.
00344   Abbv = new BitCodeAbbrev();
00345   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
00346   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
00347   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
00348   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
00349 
00350   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
00351 
00352   // Abbrev for TYPE_CODE_STRUCT_NAME.
00353   Abbv = new BitCodeAbbrev();
00354   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
00355   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
00356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
00357   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
00358 
00359   // Abbrev for TYPE_CODE_STRUCT_NAMED.
00360   Abbv = new BitCodeAbbrev();
00361   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
00362   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
00363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
00364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
00365 
00366   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
00367 
00368   // Abbrev for TYPE_CODE_ARRAY.
00369   Abbv = new BitCodeAbbrev();
00370   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
00371   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
00372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
00373 
00374   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
00375 
00376   // Emit an entry count so the reader can reserve space.
00377   TypeVals.push_back(TypeList.size());
00378   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
00379   TypeVals.clear();
00380 
00381   // Loop over all of the types, emitting each in turn.
00382   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
00383     Type *T = TypeList[i];
00384     int AbbrevToUse = 0;
00385     unsigned Code = 0;
00386 
00387     switch (T->getTypeID()) {
00388     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
00389     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
00390     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
00391     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
00392     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
00393     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
00394     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
00395     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
00396     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
00397     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
00398     case Type::IntegerTyID:
00399       // INTEGER: [width]
00400       Code = bitc::TYPE_CODE_INTEGER;
00401       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
00402       break;
00403     case Type::PointerTyID: {
00404       PointerType *PTy = cast<PointerType>(T);
00405       // POINTER: [pointee type, address space]
00406       Code = bitc::TYPE_CODE_POINTER;
00407       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
00408       unsigned AddressSpace = PTy->getAddressSpace();
00409       TypeVals.push_back(AddressSpace);
00410       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
00411       break;
00412     }
00413     case Type::FunctionTyID: {
00414       FunctionType *FT = cast<FunctionType>(T);
00415       // FUNCTION: [isvararg, retty, paramty x N]
00416       Code = bitc::TYPE_CODE_FUNCTION;
00417       TypeVals.push_back(FT->isVarArg());
00418       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
00419       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
00420         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
00421       AbbrevToUse = FunctionAbbrev;
00422       break;
00423     }
00424     case Type::StructTyID: {
00425       StructType *ST = cast<StructType>(T);
00426       // STRUCT: [ispacked, eltty x N]
00427       TypeVals.push_back(ST->isPacked());
00428       // Output all of the element types.
00429       for (StructType::element_iterator I = ST->element_begin(),
00430            E = ST->element_end(); I != E; ++I)
00431         TypeVals.push_back(VE.getTypeID(*I));
00432 
00433       if (ST->isLiteral()) {
00434         Code = bitc::TYPE_CODE_STRUCT_ANON;
00435         AbbrevToUse = StructAnonAbbrev;
00436       } else {
00437         if (ST->isOpaque()) {
00438           Code = bitc::TYPE_CODE_OPAQUE;
00439         } else {
00440           Code = bitc::TYPE_CODE_STRUCT_NAMED;
00441           AbbrevToUse = StructNamedAbbrev;
00442         }
00443 
00444         // Emit the name if it is present.
00445         if (!ST->getName().empty())
00446           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
00447                             StructNameAbbrev, Stream);
00448       }
00449       break;
00450     }
00451     case Type::ArrayTyID: {
00452       ArrayType *AT = cast<ArrayType>(T);
00453       // ARRAY: [numelts, eltty]
00454       Code = bitc::TYPE_CODE_ARRAY;
00455       TypeVals.push_back(AT->getNumElements());
00456       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
00457       AbbrevToUse = ArrayAbbrev;
00458       break;
00459     }
00460     case Type::VectorTyID: {
00461       VectorType *VT = cast<VectorType>(T);
00462       // VECTOR [numelts, eltty]
00463       Code = bitc::TYPE_CODE_VECTOR;
00464       TypeVals.push_back(VT->getNumElements());
00465       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
00466       break;
00467     }
00468     }
00469 
00470     // Emit the finished record.
00471     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
00472     TypeVals.clear();
00473   }
00474 
00475   Stream.ExitBlock();
00476 }
00477 
00478 static unsigned getEncodedLinkage(const GlobalValue &GV) {
00479   switch (GV.getLinkage()) {
00480   case GlobalValue::ExternalLinkage:                 return 0;
00481   case GlobalValue::WeakAnyLinkage:                  return 1;
00482   case GlobalValue::AppendingLinkage:                return 2;
00483   case GlobalValue::InternalLinkage:                 return 3;
00484   case GlobalValue::LinkOnceAnyLinkage:              return 4;
00485   case GlobalValue::ExternalWeakLinkage:             return 7;
00486   case GlobalValue::CommonLinkage:                   return 8;
00487   case GlobalValue::PrivateLinkage:                  return 9;
00488   case GlobalValue::WeakODRLinkage:                  return 10;
00489   case GlobalValue::LinkOnceODRLinkage:              return 11;
00490   case GlobalValue::AvailableExternallyLinkage:      return 12;
00491   }
00492   llvm_unreachable("Invalid linkage");
00493 }
00494 
00495 static unsigned getEncodedVisibility(const GlobalValue &GV) {
00496   switch (GV.getVisibility()) {
00497   case GlobalValue::DefaultVisibility:   return 0;
00498   case GlobalValue::HiddenVisibility:    return 1;
00499   case GlobalValue::ProtectedVisibility: return 2;
00500   }
00501   llvm_unreachable("Invalid visibility");
00502 }
00503 
00504 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
00505   switch (GV.getDLLStorageClass()) {
00506   case GlobalValue::DefaultStorageClass:   return 0;
00507   case GlobalValue::DLLImportStorageClass: return 1;
00508   case GlobalValue::DLLExportStorageClass: return 2;
00509   }
00510   llvm_unreachable("Invalid DLL storage class");
00511 }
00512 
00513 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
00514   switch (GV.getThreadLocalMode()) {
00515     case GlobalVariable::NotThreadLocal:         return 0;
00516     case GlobalVariable::GeneralDynamicTLSModel: return 1;
00517     case GlobalVariable::LocalDynamicTLSModel:   return 2;
00518     case GlobalVariable::InitialExecTLSModel:    return 3;
00519     case GlobalVariable::LocalExecTLSModel:      return 4;
00520   }
00521   llvm_unreachable("Invalid TLS model");
00522 }
00523 
00524 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
00525   switch (C.getSelectionKind()) {
00526   case Comdat::Any:
00527     return bitc::COMDAT_SELECTION_KIND_ANY;
00528   case Comdat::ExactMatch:
00529     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
00530   case Comdat::Largest:
00531     return bitc::COMDAT_SELECTION_KIND_LARGEST;
00532   case Comdat::NoDuplicates:
00533     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
00534   case Comdat::SameSize:
00535     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
00536   }
00537   llvm_unreachable("Invalid selection kind");
00538 }
00539 
00540 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
00541   SmallVector<uint8_t, 64> Vals;
00542   for (const Comdat *C : VE.getComdats()) {
00543     // COMDAT: [selection_kind, name]
00544     Vals.push_back(getEncodedComdatSelectionKind(*C));
00545     Vals.push_back(C->getName().size());
00546     for (char Chr : C->getName())
00547       Vals.push_back((unsigned char)Chr);
00548     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
00549     Vals.clear();
00550   }
00551 }
00552 
00553 // Emit top-level description of module, including target triple, inline asm,
00554 // descriptors for global variables, and function prototype info.
00555 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
00556                             BitstreamWriter &Stream) {
00557   // Emit various pieces of data attached to a module.
00558   if (!M->getTargetTriple().empty())
00559     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
00560                       0/*TODO*/, Stream);
00561   const std::string &DL = M->getDataLayoutStr();
00562   if (!DL.empty())
00563     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
00564   if (!M->getModuleInlineAsm().empty())
00565     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
00566                       0/*TODO*/, Stream);
00567 
00568   // Emit information about sections and GC, computing how many there are. Also
00569   // compute the maximum alignment value.
00570   std::map<std::string, unsigned> SectionMap;
00571   std::map<std::string, unsigned> GCMap;
00572   unsigned MaxAlignment = 0;
00573   unsigned MaxGlobalType = 0;
00574   for (const GlobalValue &GV : M->globals()) {
00575     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
00576     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
00577     if (GV.hasSection()) {
00578       // Give section names unique ID's.
00579       unsigned &Entry = SectionMap[GV.getSection()];
00580       if (!Entry) {
00581         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
00582                           0/*TODO*/, Stream);
00583         Entry = SectionMap.size();
00584       }
00585     }
00586   }
00587   for (const Function &F : *M) {
00588     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
00589     if (F.hasSection()) {
00590       // Give section names unique ID's.
00591       unsigned &Entry = SectionMap[F.getSection()];
00592       if (!Entry) {
00593         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
00594                           0/*TODO*/, Stream);
00595         Entry = SectionMap.size();
00596       }
00597     }
00598     if (F.hasGC()) {
00599       // Same for GC names.
00600       unsigned &Entry = GCMap[F.getGC()];
00601       if (!Entry) {
00602         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
00603                           0/*TODO*/, Stream);
00604         Entry = GCMap.size();
00605       }
00606     }
00607   }
00608 
00609   // Emit abbrev for globals, now that we know # sections and max alignment.
00610   unsigned SimpleGVarAbbrev = 0;
00611   if (!M->global_empty()) {
00612     // Add an abbrev for common globals with no visibility or thread localness.
00613     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
00614     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
00615     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
00616                               Log2_32_Ceil(MaxGlobalType+1)));
00617     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
00618     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
00619     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
00620     if (MaxAlignment == 0)                                      // Alignment.
00621       Abbv->Add(BitCodeAbbrevOp(0));
00622     else {
00623       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
00624       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
00625                                Log2_32_Ceil(MaxEncAlignment+1)));
00626     }
00627     if (SectionMap.empty())                                    // Section.
00628       Abbv->Add(BitCodeAbbrevOp(0));
00629     else
00630       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
00631                                Log2_32_Ceil(SectionMap.size()+1)));
00632     // Don't bother emitting vis + thread local.
00633     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
00634   }
00635 
00636   // Emit the global variable information.
00637   SmallVector<unsigned, 64> Vals;
00638   for (const GlobalVariable &GV : M->globals()) {
00639     unsigned AbbrevToUse = 0;
00640 
00641     // GLOBALVAR: [type, isconst, initid,
00642     //             linkage, alignment, section, visibility, threadlocal,
00643     //             unnamed_addr, externally_initialized, dllstorageclass]
00644     Vals.push_back(VE.getTypeID(GV.getType()));
00645     Vals.push_back(GV.isConstant());
00646     Vals.push_back(GV.isDeclaration() ? 0 :
00647                    (VE.getValueID(GV.getInitializer()) + 1));
00648     Vals.push_back(getEncodedLinkage(GV));
00649     Vals.push_back(Log2_32(GV.getAlignment())+1);
00650     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
00651     if (GV.isThreadLocal() ||
00652         GV.getVisibility() != GlobalValue::DefaultVisibility ||
00653         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
00654         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
00655         GV.hasComdat()) {
00656       Vals.push_back(getEncodedVisibility(GV));
00657       Vals.push_back(getEncodedThreadLocalMode(GV));
00658       Vals.push_back(GV.hasUnnamedAddr());
00659       Vals.push_back(GV.isExternallyInitialized());
00660       Vals.push_back(getEncodedDLLStorageClass(GV));
00661       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
00662     } else {
00663       AbbrevToUse = SimpleGVarAbbrev;
00664     }
00665 
00666     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
00667     Vals.clear();
00668   }
00669 
00670   // Emit the function proto information.
00671   for (const Function &F : *M) {
00672     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
00673     //             section, visibility, gc, unnamed_addr, prefix]
00674     Vals.push_back(VE.getTypeID(F.getType()));
00675     Vals.push_back(F.getCallingConv());
00676     Vals.push_back(F.isDeclaration());
00677     Vals.push_back(getEncodedLinkage(F));
00678     Vals.push_back(VE.getAttributeID(F.getAttributes()));
00679     Vals.push_back(Log2_32(F.getAlignment())+1);
00680     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
00681     Vals.push_back(getEncodedVisibility(F));
00682     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
00683     Vals.push_back(F.hasUnnamedAddr());
00684     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
00685                                       : 0);
00686     Vals.push_back(getEncodedDLLStorageClass(F));
00687     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
00688 
00689     unsigned AbbrevToUse = 0;
00690     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
00691     Vals.clear();
00692   }
00693 
00694   // Emit the alias information.
00695   for (const GlobalAlias &A : M->aliases()) {
00696     // ALIAS: [alias type, aliasee val#, linkage, visibility]
00697     Vals.push_back(VE.getTypeID(A.getType()));
00698     Vals.push_back(VE.getValueID(A.getAliasee()));
00699     Vals.push_back(getEncodedLinkage(A));
00700     Vals.push_back(getEncodedVisibility(A));
00701     Vals.push_back(getEncodedDLLStorageClass(A));
00702     Vals.push_back(getEncodedThreadLocalMode(A));
00703     Vals.push_back(A.hasUnnamedAddr());
00704     unsigned AbbrevToUse = 0;
00705     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
00706     Vals.clear();
00707   }
00708 }
00709 
00710 static uint64_t GetOptimizationFlags(const Value *V) {
00711   uint64_t Flags = 0;
00712 
00713   if (const OverflowingBinaryOperator *OBO =
00714         dyn_cast<OverflowingBinaryOperator>(V)) {
00715     if (OBO->hasNoSignedWrap())
00716       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
00717     if (OBO->hasNoUnsignedWrap())
00718       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
00719   } else if (const PossiblyExactOperator *PEO =
00720                dyn_cast<PossiblyExactOperator>(V)) {
00721     if (PEO->isExact())
00722       Flags |= 1 << bitc::PEO_EXACT;
00723   } else if (const FPMathOperator *FPMO =
00724              dyn_cast<const FPMathOperator>(V)) {
00725     if (FPMO->hasUnsafeAlgebra())
00726       Flags |= FastMathFlags::UnsafeAlgebra;
00727     if (FPMO->hasNoNaNs())
00728       Flags |= FastMathFlags::NoNaNs;
00729     if (FPMO->hasNoInfs())
00730       Flags |= FastMathFlags::NoInfs;
00731     if (FPMO->hasNoSignedZeros())
00732       Flags |= FastMathFlags::NoSignedZeros;
00733     if (FPMO->hasAllowReciprocal())
00734       Flags |= FastMathFlags::AllowReciprocal;
00735   }
00736 
00737   return Flags;
00738 }
00739 
00740 static void WriteMDNode(const MDNode *N,
00741                         const ValueEnumerator &VE,
00742                         BitstreamWriter &Stream,
00743                         SmallVectorImpl<uint64_t> &Record) {
00744   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
00745     if (N->getOperand(i)) {
00746       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
00747       Record.push_back(VE.getValueID(N->getOperand(i)));
00748     } else {
00749       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
00750       Record.push_back(0);
00751     }
00752   }
00753   unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
00754                                            bitc::METADATA_NODE;
00755   Stream.EmitRecord(MDCode, Record, 0);
00756   Record.clear();
00757 }
00758 
00759 static void WriteModuleMetadata(const Module *M,
00760                                 const ValueEnumerator &VE,
00761                                 BitstreamWriter &Stream) {
00762   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
00763   bool StartedMetadataBlock = false;
00764   unsigned MDSAbbrev = 0;
00765   SmallVector<uint64_t, 64> Record;
00766   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
00767 
00768     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
00769       if (!N->isFunctionLocal() || !N->getFunction()) {
00770         if (!StartedMetadataBlock) {
00771           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
00772           StartedMetadataBlock = true;
00773         }
00774         WriteMDNode(N, VE, Stream, Record);
00775       }
00776     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
00777       if (!StartedMetadataBlock)  {
00778         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
00779 
00780         // Abbrev for METADATA_STRING.
00781         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
00782         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
00783         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
00784         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
00785         MDSAbbrev = Stream.EmitAbbrev(Abbv);
00786         StartedMetadataBlock = true;
00787       }
00788 
00789       // Code: [strchar x N]
00790       Record.append(MDS->begin(), MDS->end());
00791 
00792       // Emit the finished record.
00793       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
00794       Record.clear();
00795     }
00796   }
00797 
00798   // Write named metadata.
00799   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
00800        E = M->named_metadata_end(); I != E; ++I) {
00801     const NamedMDNode *NMD = I;
00802     if (!StartedMetadataBlock)  {
00803       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
00804       StartedMetadataBlock = true;
00805     }
00806 
00807     // Write name.
00808     StringRef Str = NMD->getName();
00809     for (unsigned i = 0, e = Str.size(); i != e; ++i)
00810       Record.push_back(Str[i]);
00811     Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
00812     Record.clear();
00813 
00814     // Write named metadata operands.
00815     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
00816       Record.push_back(VE.getValueID(NMD->getOperand(i)));
00817     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
00818     Record.clear();
00819   }
00820 
00821   if (StartedMetadataBlock)
00822     Stream.ExitBlock();
00823 }
00824 
00825 static void WriteFunctionLocalMetadata(const Function &F,
00826                                        const ValueEnumerator &VE,
00827                                        BitstreamWriter &Stream) {
00828   bool StartedMetadataBlock = false;
00829   SmallVector<uint64_t, 64> Record;
00830   const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues();
00831   for (unsigned i = 0, e = Vals.size(); i != e; ++i)
00832     if (const MDNode *N = Vals[i])
00833       if (N->isFunctionLocal() && N->getFunction() == &F) {
00834         if (!StartedMetadataBlock) {
00835           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
00836           StartedMetadataBlock = true;
00837         }
00838         WriteMDNode(N, VE, Stream, Record);
00839       }
00840 
00841   if (StartedMetadataBlock)
00842     Stream.ExitBlock();
00843 }
00844 
00845 static void WriteMetadataAttachment(const Function &F,
00846                                     const ValueEnumerator &VE,
00847                                     BitstreamWriter &Stream) {
00848   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
00849 
00850   SmallVector<uint64_t, 64> Record;
00851 
00852   // Write metadata attachments
00853   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
00854   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
00855 
00856   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
00857     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
00858          I != E; ++I) {
00859       MDs.clear();
00860       I->getAllMetadataOtherThanDebugLoc(MDs);
00861 
00862       // If no metadata, ignore instruction.
00863       if (MDs.empty()) continue;
00864 
00865       Record.push_back(VE.getInstructionID(I));
00866 
00867       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
00868         Record.push_back(MDs[i].first);
00869         Record.push_back(VE.getValueID(MDs[i].second));
00870       }
00871       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
00872       Record.clear();
00873     }
00874 
00875   Stream.ExitBlock();
00876 }
00877 
00878 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
00879   SmallVector<uint64_t, 64> Record;
00880 
00881   // Write metadata kinds
00882   // METADATA_KIND - [n x [id, name]]
00883   SmallVector<StringRef, 8> Names;
00884   M->getMDKindNames(Names);
00885 
00886   if (Names.empty()) return;
00887 
00888   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
00889 
00890   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
00891     Record.push_back(MDKindID);
00892     StringRef KName = Names[MDKindID];
00893     Record.append(KName.begin(), KName.end());
00894 
00895     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
00896     Record.clear();
00897   }
00898 
00899   Stream.ExitBlock();
00900 }
00901 
00902 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
00903   if ((int64_t)V >= 0)
00904     Vals.push_back(V << 1);
00905   else
00906     Vals.push_back((-V << 1) | 1);
00907 }
00908 
00909 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
00910                            const ValueEnumerator &VE,
00911                            BitstreamWriter &Stream, bool isGlobal) {
00912   if (FirstVal == LastVal) return;
00913 
00914   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
00915 
00916   unsigned AggregateAbbrev = 0;
00917   unsigned String8Abbrev = 0;
00918   unsigned CString7Abbrev = 0;
00919   unsigned CString6Abbrev = 0;
00920   // If this is a constant pool for the module, emit module-specific abbrevs.
00921   if (isGlobal) {
00922     // Abbrev for CST_CODE_AGGREGATE.
00923     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
00924     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
00925     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
00926     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
00927     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
00928 
00929     // Abbrev for CST_CODE_STRING.
00930     Abbv = new BitCodeAbbrev();
00931     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
00932     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
00933     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
00934     String8Abbrev = Stream.EmitAbbrev(Abbv);
00935     // Abbrev for CST_CODE_CSTRING.
00936     Abbv = new BitCodeAbbrev();
00937     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
00938     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
00939     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
00940     CString7Abbrev = Stream.EmitAbbrev(Abbv);
00941     // Abbrev for CST_CODE_CSTRING.
00942     Abbv = new BitCodeAbbrev();
00943     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
00944     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
00945     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
00946     CString6Abbrev = Stream.EmitAbbrev(Abbv);
00947   }
00948 
00949   SmallVector<uint64_t, 64> Record;
00950 
00951   const ValueEnumerator::ValueList &Vals = VE.getValues();
00952   Type *LastTy = nullptr;
00953   for (unsigned i = FirstVal; i != LastVal; ++i) {
00954     const Value *V = Vals[i].first;
00955     // If we need to switch types, do so now.
00956     if (V->getType() != LastTy) {
00957       LastTy = V->getType();
00958       Record.push_back(VE.getTypeID(LastTy));
00959       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
00960                         CONSTANTS_SETTYPE_ABBREV);
00961       Record.clear();
00962     }
00963 
00964     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
00965       Record.push_back(unsigned(IA->hasSideEffects()) |
00966                        unsigned(IA->isAlignStack()) << 1 |
00967                        unsigned(IA->getDialect()&1) << 2);
00968 
00969       // Add the asm string.
00970       const std::string &AsmStr = IA->getAsmString();
00971       Record.push_back(AsmStr.size());
00972       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
00973         Record.push_back(AsmStr[i]);
00974 
00975       // Add the constraint string.
00976       const std::string &ConstraintStr = IA->getConstraintString();
00977       Record.push_back(ConstraintStr.size());
00978       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
00979         Record.push_back(ConstraintStr[i]);
00980       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
00981       Record.clear();
00982       continue;
00983     }
00984     const Constant *C = cast<Constant>(V);
00985     unsigned Code = -1U;
00986     unsigned AbbrevToUse = 0;
00987     if (C->isNullValue()) {
00988       Code = bitc::CST_CODE_NULL;
00989     } else if (isa<UndefValue>(C)) {
00990       Code = bitc::CST_CODE_UNDEF;
00991     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
00992       if (IV->getBitWidth() <= 64) {
00993         uint64_t V = IV->getSExtValue();
00994         emitSignedInt64(Record, V);
00995         Code = bitc::CST_CODE_INTEGER;
00996         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
00997       } else {                             // Wide integers, > 64 bits in size.
00998         // We have an arbitrary precision integer value to write whose
00999         // bit width is > 64. However, in canonical unsigned integer
01000         // format it is likely that the high bits are going to be zero.
01001         // So, we only write the number of active words.
01002         unsigned NWords = IV->getValue().getActiveWords();
01003         const uint64_t *RawWords = IV->getValue().getRawData();
01004         for (unsigned i = 0; i != NWords; ++i) {
01005           emitSignedInt64(Record, RawWords[i]);
01006         }
01007         Code = bitc::CST_CODE_WIDE_INTEGER;
01008       }
01009     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
01010       Code = bitc::CST_CODE_FLOAT;
01011       Type *Ty = CFP->getType();
01012       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
01013         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
01014       } else if (Ty->isX86_FP80Ty()) {
01015         // api needed to prevent premature destruction
01016         // bits are not in the same order as a normal i80 APInt, compensate.
01017         APInt api = CFP->getValueAPF().bitcastToAPInt();
01018         const uint64_t *p = api.getRawData();
01019         Record.push_back((p[1] << 48) | (p[0] >> 16));
01020         Record.push_back(p[0] & 0xffffLL);
01021       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
01022         APInt api = CFP->getValueAPF().bitcastToAPInt();
01023         const uint64_t *p = api.getRawData();
01024         Record.push_back(p[0]);
01025         Record.push_back(p[1]);
01026       } else {
01027         assert (0 && "Unknown FP type!");
01028       }
01029     } else if (isa<ConstantDataSequential>(C) &&
01030                cast<ConstantDataSequential>(C)->isString()) {
01031       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
01032       // Emit constant strings specially.
01033       unsigned NumElts = Str->getNumElements();
01034       // If this is a null-terminated string, use the denser CSTRING encoding.
01035       if (Str->isCString()) {
01036         Code = bitc::CST_CODE_CSTRING;
01037         --NumElts;  // Don't encode the null, which isn't allowed by char6.
01038       } else {
01039         Code = bitc::CST_CODE_STRING;
01040         AbbrevToUse = String8Abbrev;
01041       }
01042       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
01043       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
01044       for (unsigned i = 0; i != NumElts; ++i) {
01045         unsigned char V = Str->getElementAsInteger(i);
01046         Record.push_back(V);
01047         isCStr7 &= (V & 128) == 0;
01048         if (isCStrChar6)
01049           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
01050       }
01051 
01052       if (isCStrChar6)
01053         AbbrevToUse = CString6Abbrev;
01054       else if (isCStr7)
01055         AbbrevToUse = CString7Abbrev;
01056     } else if (const ConstantDataSequential *CDS =
01057                   dyn_cast<ConstantDataSequential>(C)) {
01058       Code = bitc::CST_CODE_DATA;
01059       Type *EltTy = CDS->getType()->getElementType();
01060       if (isa<IntegerType>(EltTy)) {
01061         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
01062           Record.push_back(CDS->getElementAsInteger(i));
01063       } else if (EltTy->isFloatTy()) {
01064         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
01065           union { float F; uint32_t I; };
01066           F = CDS->getElementAsFloat(i);
01067           Record.push_back(I);
01068         }
01069       } else {
01070         assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
01071         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
01072           union { double F; uint64_t I; };
01073           F = CDS->getElementAsDouble(i);
01074           Record.push_back(I);
01075         }
01076       }
01077     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
01078                isa<ConstantVector>(C)) {
01079       Code = bitc::CST_CODE_AGGREGATE;
01080       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
01081         Record.push_back(VE.getValueID(C->getOperand(i)));
01082       AbbrevToUse = AggregateAbbrev;
01083     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
01084       switch (CE->getOpcode()) {
01085       default:
01086         if (Instruction::isCast(CE->getOpcode())) {
01087           Code = bitc::CST_CODE_CE_CAST;
01088           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
01089           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
01090           Record.push_back(VE.getValueID(C->getOperand(0)));
01091           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
01092         } else {
01093           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
01094           Code = bitc::CST_CODE_CE_BINOP;
01095           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
01096           Record.push_back(VE.getValueID(C->getOperand(0)));
01097           Record.push_back(VE.getValueID(C->getOperand(1)));
01098           uint64_t Flags = GetOptimizationFlags(CE);
01099           if (Flags != 0)
01100             Record.push_back(Flags);
01101         }
01102         break;
01103       case Instruction::GetElementPtr:
01104         Code = bitc::CST_CODE_CE_GEP;
01105         if (cast<GEPOperator>(C)->isInBounds())
01106           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
01107         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
01108           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
01109           Record.push_back(VE.getValueID(C->getOperand(i)));
01110         }
01111         break;
01112       case Instruction::Select:
01113         Code = bitc::CST_CODE_CE_SELECT;
01114         Record.push_back(VE.getValueID(C->getOperand(0)));
01115         Record.push_back(VE.getValueID(C->getOperand(1)));
01116         Record.push_back(VE.getValueID(C->getOperand(2)));
01117         break;
01118       case Instruction::ExtractElement:
01119         Code = bitc::CST_CODE_CE_EXTRACTELT;
01120         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
01121         Record.push_back(VE.getValueID(C->getOperand(0)));
01122         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
01123         Record.push_back(VE.getValueID(C->getOperand(1)));
01124         break;
01125       case Instruction::InsertElement:
01126         Code = bitc::CST_CODE_CE_INSERTELT;
01127         Record.push_back(VE.getValueID(C->getOperand(0)));
01128         Record.push_back(VE.getValueID(C->getOperand(1)));
01129         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
01130         Record.push_back(VE.getValueID(C->getOperand(2)));
01131         break;
01132       case Instruction::ShuffleVector:
01133         // If the return type and argument types are the same, this is a
01134         // standard shufflevector instruction.  If the types are different,
01135         // then the shuffle is widening or truncating the input vectors, and
01136         // the argument type must also be encoded.
01137         if (C->getType() == C->getOperand(0)->getType()) {
01138           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
01139         } else {
01140           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
01141           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
01142         }
01143         Record.push_back(VE.getValueID(C->getOperand(0)));
01144         Record.push_back(VE.getValueID(C->getOperand(1)));
01145         Record.push_back(VE.getValueID(C->getOperand(2)));
01146         break;
01147       case Instruction::ICmp:
01148       case Instruction::FCmp:
01149         Code = bitc::CST_CODE_CE_CMP;
01150         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
01151         Record.push_back(VE.getValueID(C->getOperand(0)));
01152         Record.push_back(VE.getValueID(C->getOperand(1)));
01153         Record.push_back(CE->getPredicate());
01154         break;
01155       }
01156     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
01157       Code = bitc::CST_CODE_BLOCKADDRESS;
01158       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
01159       Record.push_back(VE.getValueID(BA->getFunction()));
01160       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
01161     } else {
01162 #ifndef NDEBUG
01163       C->dump();
01164 #endif
01165       llvm_unreachable("Unknown constant!");
01166     }
01167     Stream.EmitRecord(Code, Record, AbbrevToUse);
01168     Record.clear();
01169   }
01170 
01171   Stream.ExitBlock();
01172 }
01173 
01174 static void WriteModuleConstants(const ValueEnumerator &VE,
01175                                  BitstreamWriter &Stream) {
01176   const ValueEnumerator::ValueList &Vals = VE.getValues();
01177 
01178   // Find the first constant to emit, which is the first non-globalvalue value.
01179   // We know globalvalues have been emitted by WriteModuleInfo.
01180   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
01181     if (!isa<GlobalValue>(Vals[i].first)) {
01182       WriteConstants(i, Vals.size(), VE, Stream, true);
01183       return;
01184     }
01185   }
01186 }
01187 
01188 /// PushValueAndType - The file has to encode both the value and type id for
01189 /// many values, because we need to know what type to create for forward
01190 /// references.  However, most operands are not forward references, so this type
01191 /// field is not needed.
01192 ///
01193 /// This function adds V's value ID to Vals.  If the value ID is higher than the
01194 /// instruction ID, then it is a forward reference, and it also includes the
01195 /// type ID.  The value ID that is written is encoded relative to the InstID.
01196 static bool PushValueAndType(const Value *V, unsigned InstID,
01197                              SmallVectorImpl<unsigned> &Vals,
01198                              ValueEnumerator &VE) {
01199   unsigned ValID = VE.getValueID(V);
01200   // Make encoding relative to the InstID.
01201   Vals.push_back(InstID - ValID);
01202   if (ValID >= InstID) {
01203     Vals.push_back(VE.getTypeID(V->getType()));
01204     return true;
01205   }
01206   return false;
01207 }
01208 
01209 /// pushValue - Like PushValueAndType, but where the type of the value is
01210 /// omitted (perhaps it was already encoded in an earlier operand).
01211 static void pushValue(const Value *V, unsigned InstID,
01212                       SmallVectorImpl<unsigned> &Vals,
01213                       ValueEnumerator &VE) {
01214   unsigned ValID = VE.getValueID(V);
01215   Vals.push_back(InstID - ValID);
01216 }
01217 
01218 static void pushValueSigned(const Value *V, unsigned InstID,
01219                             SmallVectorImpl<uint64_t> &Vals,
01220                             ValueEnumerator &VE) {
01221   unsigned ValID = VE.getValueID(V);
01222   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
01223   emitSignedInt64(Vals, diff);
01224 }
01225 
01226 /// WriteInstruction - Emit an instruction to the specified stream.
01227 static void WriteInstruction(const Instruction &I, unsigned InstID,
01228                              ValueEnumerator &VE, BitstreamWriter &Stream,
01229                              SmallVectorImpl<unsigned> &Vals) {
01230   unsigned Code = 0;
01231   unsigned AbbrevToUse = 0;
01232   VE.setInstructionID(&I);
01233   switch (I.getOpcode()) {
01234   default:
01235     if (Instruction::isCast(I.getOpcode())) {
01236       Code = bitc::FUNC_CODE_INST_CAST;
01237       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
01238         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
01239       Vals.push_back(VE.getTypeID(I.getType()));
01240       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
01241     } else {
01242       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
01243       Code = bitc::FUNC_CODE_INST_BINOP;
01244       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
01245         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
01246       pushValue(I.getOperand(1), InstID, Vals, VE);
01247       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
01248       uint64_t Flags = GetOptimizationFlags(&I);
01249       if (Flags != 0) {
01250         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
01251           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
01252         Vals.push_back(Flags);
01253       }
01254     }
01255     break;
01256 
01257   case Instruction::GetElementPtr:
01258     Code = bitc::FUNC_CODE_INST_GEP;
01259     if (cast<GEPOperator>(&I)->isInBounds())
01260       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
01261     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
01262       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
01263     break;
01264   case Instruction::ExtractValue: {
01265     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
01266     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
01267     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
01268     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
01269       Vals.push_back(*i);
01270     break;
01271   }
01272   case Instruction::InsertValue: {
01273     Code = bitc::FUNC_CODE_INST_INSERTVAL;
01274     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
01275     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
01276     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
01277     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
01278       Vals.push_back(*i);
01279     break;
01280   }
01281   case Instruction::Select:
01282     Code = bitc::FUNC_CODE_INST_VSELECT;
01283     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
01284     pushValue(I.getOperand(2), InstID, Vals, VE);
01285     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
01286     break;
01287   case Instruction::ExtractElement:
01288     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
01289     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
01290     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
01291     break;
01292   case Instruction::InsertElement:
01293     Code = bitc::FUNC_CODE_INST_INSERTELT;
01294     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
01295     pushValue(I.getOperand(1), InstID, Vals, VE);
01296     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
01297     break;
01298   case Instruction::ShuffleVector:
01299     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
01300     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
01301     pushValue(I.getOperand(1), InstID, Vals, VE);
01302     pushValue(I.getOperand(2), InstID, Vals, VE);
01303     break;
01304   case Instruction::ICmp:
01305   case Instruction::FCmp:
01306     // compare returning Int1Ty or vector of Int1Ty
01307     Code = bitc::FUNC_CODE_INST_CMP2;
01308     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
01309     pushValue(I.getOperand(1), InstID, Vals, VE);
01310     Vals.push_back(cast<CmpInst>(I).getPredicate());
01311     break;
01312 
01313   case Instruction::Ret:
01314     {
01315       Code = bitc::FUNC_CODE_INST_RET;
01316       unsigned NumOperands = I.getNumOperands();
01317       if (NumOperands == 0)
01318         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
01319       else if (NumOperands == 1) {
01320         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
01321           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
01322       } else {
01323         for (unsigned i = 0, e = NumOperands; i != e; ++i)
01324           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
01325       }
01326     }
01327     break;
01328   case Instruction::Br:
01329     {
01330       Code = bitc::FUNC_CODE_INST_BR;
01331       const BranchInst &II = cast<BranchInst>(I);
01332       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
01333       if (II.isConditional()) {
01334         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
01335         pushValue(II.getCondition(), InstID, Vals, VE);
01336       }
01337     }
01338     break;
01339   case Instruction::Switch:
01340     {
01341       Code = bitc::FUNC_CODE_INST_SWITCH;
01342       const SwitchInst &SI = cast<SwitchInst>(I);
01343       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
01344       pushValue(SI.getCondition(), InstID, Vals, VE);
01345       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
01346       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
01347            i != e; ++i) {
01348         Vals.push_back(VE.getValueID(i.getCaseValue()));
01349         Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
01350       }
01351     }
01352     break;
01353   case Instruction::IndirectBr:
01354     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
01355     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
01356     // Encode the address operand as relative, but not the basic blocks.
01357     pushValue(I.getOperand(0), InstID, Vals, VE);
01358     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
01359       Vals.push_back(VE.getValueID(I.getOperand(i)));
01360     break;
01361 
01362   case Instruction::Invoke: {
01363     const InvokeInst *II = cast<InvokeInst>(&I);
01364     const Value *Callee(II->getCalledValue());
01365     PointerType *PTy = cast<PointerType>(Callee->getType());
01366     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
01367     Code = bitc::FUNC_CODE_INST_INVOKE;
01368 
01369     Vals.push_back(VE.getAttributeID(II->getAttributes()));
01370     Vals.push_back(II->getCallingConv());
01371     Vals.push_back(VE.getValueID(II->getNormalDest()));
01372     Vals.push_back(VE.getValueID(II->getUnwindDest()));
01373     PushValueAndType(Callee, InstID, Vals, VE);
01374 
01375     // Emit value #'s for the fixed parameters.
01376     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
01377       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
01378 
01379     // Emit type/value pairs for varargs params.
01380     if (FTy->isVarArg()) {
01381       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
01382            i != e; ++i)
01383         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
01384     }
01385     break;
01386   }
01387   case Instruction::Resume:
01388     Code = bitc::FUNC_CODE_INST_RESUME;
01389     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
01390     break;
01391   case Instruction::Unreachable:
01392     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
01393     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
01394     break;
01395 
01396   case Instruction::PHI: {
01397     const PHINode &PN = cast<PHINode>(I);
01398     Code = bitc::FUNC_CODE_INST_PHI;
01399     // With the newer instruction encoding, forward references could give
01400     // negative valued IDs.  This is most common for PHIs, so we use
01401     // signed VBRs.
01402     SmallVector<uint64_t, 128> Vals64;
01403     Vals64.push_back(VE.getTypeID(PN.getType()));
01404     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
01405       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
01406       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
01407     }
01408     // Emit a Vals64 vector and exit.
01409     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
01410     Vals64.clear();
01411     return;
01412   }
01413 
01414   case Instruction::LandingPad: {
01415     const LandingPadInst &LP = cast<LandingPadInst>(I);
01416     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
01417     Vals.push_back(VE.getTypeID(LP.getType()));
01418     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
01419     Vals.push_back(LP.isCleanup());
01420     Vals.push_back(LP.getNumClauses());
01421     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
01422       if (LP.isCatch(I))
01423         Vals.push_back(LandingPadInst::Catch);
01424       else
01425         Vals.push_back(LandingPadInst::Filter);
01426       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
01427     }
01428     break;
01429   }
01430 
01431   case Instruction::Alloca: {
01432     Code = bitc::FUNC_CODE_INST_ALLOCA;
01433     Vals.push_back(VE.getTypeID(I.getType()));
01434     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
01435     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
01436     const AllocaInst &AI = cast<AllocaInst>(I);
01437     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
01438     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
01439            "not enough bits for maximum alignment");
01440     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
01441     AlignRecord |= AI.isUsedWithInAlloca() << 5;
01442     Vals.push_back(AlignRecord);
01443     break;
01444   }
01445 
01446   case Instruction::Load:
01447     if (cast<LoadInst>(I).isAtomic()) {
01448       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
01449       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
01450     } else {
01451       Code = bitc::FUNC_CODE_INST_LOAD;
01452       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
01453         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
01454     }
01455     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
01456     Vals.push_back(cast<LoadInst>(I).isVolatile());
01457     if (cast<LoadInst>(I).isAtomic()) {
01458       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
01459       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
01460     }
01461     break;
01462   case Instruction::Store:
01463     if (cast<StoreInst>(I).isAtomic())
01464       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
01465     else
01466       Code = bitc::FUNC_CODE_INST_STORE;
01467     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
01468     pushValue(I.getOperand(0), InstID, Vals, VE);         // val.
01469     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
01470     Vals.push_back(cast<StoreInst>(I).isVolatile());
01471     if (cast<StoreInst>(I).isAtomic()) {
01472       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
01473       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
01474     }
01475     break;
01476   case Instruction::AtomicCmpXchg:
01477     Code = bitc::FUNC_CODE_INST_CMPXCHG;
01478     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
01479     pushValue(I.getOperand(1), InstID, Vals, VE);         // cmp.
01480     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
01481     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
01482     Vals.push_back(GetEncodedOrdering(
01483                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
01484     Vals.push_back(GetEncodedSynchScope(
01485                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
01486     Vals.push_back(GetEncodedOrdering(
01487                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
01488     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
01489     break;
01490   case Instruction::AtomicRMW:
01491     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
01492     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
01493     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
01494     Vals.push_back(GetEncodedRMWOperation(
01495                      cast<AtomicRMWInst>(I).getOperation()));
01496     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
01497     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
01498     Vals.push_back(GetEncodedSynchScope(
01499                      cast<AtomicRMWInst>(I).getSynchScope()));
01500     break;
01501   case Instruction::Fence:
01502     Code = bitc::FUNC_CODE_INST_FENCE;
01503     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
01504     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
01505     break;
01506   case Instruction::Call: {
01507     const CallInst &CI = cast<CallInst>(I);
01508     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
01509     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
01510 
01511     Code = bitc::FUNC_CODE_INST_CALL;
01512 
01513     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
01514     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
01515                    unsigned(CI.isMustTailCall()) << 14);
01516     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
01517 
01518     // Emit value #'s for the fixed parameters.
01519     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
01520       // Check for labels (can happen with asm labels).
01521       if (FTy->getParamType(i)->isLabelTy())
01522         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
01523       else
01524         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
01525     }
01526 
01527     // Emit type/value pairs for varargs params.
01528     if (FTy->isVarArg()) {
01529       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
01530            i != e; ++i)
01531         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
01532     }
01533     break;
01534   }
01535   case Instruction::VAArg:
01536     Code = bitc::FUNC_CODE_INST_VAARG;
01537     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
01538     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
01539     Vals.push_back(VE.getTypeID(I.getType())); // restype.
01540     break;
01541   }
01542 
01543   Stream.EmitRecord(Code, Vals, AbbrevToUse);
01544   Vals.clear();
01545 }
01546 
01547 // Emit names for globals/functions etc.
01548 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
01549                                   const ValueEnumerator &VE,
01550                                   BitstreamWriter &Stream) {
01551   if (VST.empty()) return;
01552   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
01553 
01554   // FIXME: Set up the abbrev, we know how many values there are!
01555   // FIXME: We know if the type names can use 7-bit ascii.
01556   SmallVector<unsigned, 64> NameVals;
01557 
01558   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
01559        SI != SE; ++SI) {
01560 
01561     const ValueName &Name = *SI;
01562 
01563     // Figure out the encoding to use for the name.
01564     bool is7Bit = true;
01565     bool isChar6 = true;
01566     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
01567          C != E; ++C) {
01568       if (isChar6)
01569         isChar6 = BitCodeAbbrevOp::isChar6(*C);
01570       if ((unsigned char)*C & 128) {
01571         is7Bit = false;
01572         break;  // don't bother scanning the rest.
01573       }
01574     }
01575 
01576     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
01577 
01578     // VST_ENTRY:   [valueid, namechar x N]
01579     // VST_BBENTRY: [bbid, namechar x N]
01580     unsigned Code;
01581     if (isa<BasicBlock>(SI->getValue())) {
01582       Code = bitc::VST_CODE_BBENTRY;
01583       if (isChar6)
01584         AbbrevToUse = VST_BBENTRY_6_ABBREV;
01585     } else {
01586       Code = bitc::VST_CODE_ENTRY;
01587       if (isChar6)
01588         AbbrevToUse = VST_ENTRY_6_ABBREV;
01589       else if (is7Bit)
01590         AbbrevToUse = VST_ENTRY_7_ABBREV;
01591     }
01592 
01593     NameVals.push_back(VE.getValueID(SI->getValue()));
01594     for (const char *P = Name.getKeyData(),
01595          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
01596       NameVals.push_back((unsigned char)*P);
01597 
01598     // Emit the finished record.
01599     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
01600     NameVals.clear();
01601   }
01602   Stream.ExitBlock();
01603 }
01604 
01605 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
01606                          BitstreamWriter &Stream) {
01607   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
01608   unsigned Code;
01609   if (isa<BasicBlock>(Order.V))
01610     Code = bitc::USELIST_CODE_BB;
01611   else
01612     Code = bitc::USELIST_CODE_DEFAULT;
01613 
01614   SmallVector<uint64_t, 64> Record;
01615   for (unsigned I : Order.Shuffle)
01616     Record.push_back(I);
01617   Record.push_back(VE.getValueID(Order.V));
01618   Stream.EmitRecord(Code, Record);
01619 }
01620 
01621 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
01622                               BitstreamWriter &Stream) {
01623   auto hasMore = [&]() {
01624     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
01625   };
01626   if (!hasMore())
01627     // Nothing to do.
01628     return;
01629 
01630   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
01631   while (hasMore()) {
01632     WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
01633     VE.UseListOrders.pop_back();
01634   }
01635   Stream.ExitBlock();
01636 }
01637 
01638 /// WriteFunction - Emit a function body to the module stream.
01639 static void WriteFunction(const Function &F, ValueEnumerator &VE,
01640                           BitstreamWriter &Stream) {
01641   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
01642   VE.incorporateFunction(F);
01643 
01644   SmallVector<unsigned, 64> Vals;
01645 
01646   // Emit the number of basic blocks, so the reader can create them ahead of
01647   // time.
01648   Vals.push_back(VE.getBasicBlocks().size());
01649   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
01650   Vals.clear();
01651 
01652   // If there are function-local constants, emit them now.
01653   unsigned CstStart, CstEnd;
01654   VE.getFunctionConstantRange(CstStart, CstEnd);
01655   WriteConstants(CstStart, CstEnd, VE, Stream, false);
01656 
01657   // If there is function-local metadata, emit it now.
01658   WriteFunctionLocalMetadata(F, VE, Stream);
01659 
01660   // Keep a running idea of what the instruction ID is.
01661   unsigned InstID = CstEnd;
01662 
01663   bool NeedsMetadataAttachment = false;
01664 
01665   DebugLoc LastDL;
01666 
01667   // Finally, emit all the instructions, in order.
01668   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
01669     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
01670          I != E; ++I) {
01671       WriteInstruction(*I, InstID, VE, Stream, Vals);
01672 
01673       if (!I->getType()->isVoidTy())
01674         ++InstID;
01675 
01676       // If the instruction has metadata, write a metadata attachment later.
01677       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
01678 
01679       // If the instruction has a debug location, emit it.
01680       DebugLoc DL = I->getDebugLoc();
01681       if (DL.isUnknown()) {
01682         // nothing todo.
01683       } else if (DL == LastDL) {
01684         // Just repeat the same debug loc as last time.
01685         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
01686       } else {
01687         MDNode *Scope, *IA;
01688         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
01689 
01690         Vals.push_back(DL.getLine());
01691         Vals.push_back(DL.getCol());
01692         Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
01693         Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
01694         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
01695         Vals.clear();
01696 
01697         LastDL = DL;
01698       }
01699     }
01700 
01701   // Emit names for all the instructions etc.
01702   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
01703 
01704   if (NeedsMetadataAttachment)
01705     WriteMetadataAttachment(F, VE, Stream);
01706   if (shouldPreserveBitcodeUseListOrder())
01707     WriteUseListBlock(&F, VE, Stream);
01708   VE.purgeFunction();
01709   Stream.ExitBlock();
01710 }
01711 
01712 // Emit blockinfo, which defines the standard abbreviations etc.
01713 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
01714   // We only want to emit block info records for blocks that have multiple
01715   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
01716   // Other blocks can define their abbrevs inline.
01717   Stream.EnterBlockInfoBlock(2);
01718 
01719   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
01720     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
01721     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
01722     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
01723     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
01724     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
01725     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
01726                                    Abbv) != VST_ENTRY_8_ABBREV)
01727       llvm_unreachable("Unexpected abbrev ordering!");
01728   }
01729 
01730   { // 7-bit fixed width VST_ENTRY strings.
01731     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
01732     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
01733     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
01734     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
01735     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
01736     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
01737                                    Abbv) != VST_ENTRY_7_ABBREV)
01738       llvm_unreachable("Unexpected abbrev ordering!");
01739   }
01740   { // 6-bit char6 VST_ENTRY strings.
01741     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
01742     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
01743     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
01744     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
01745     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
01746     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
01747                                    Abbv) != VST_ENTRY_6_ABBREV)
01748       llvm_unreachable("Unexpected abbrev ordering!");
01749   }
01750   { // 6-bit char6 VST_BBENTRY strings.
01751     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
01752     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
01753     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
01754     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
01755     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
01756     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
01757                                    Abbv) != VST_BBENTRY_6_ABBREV)
01758       llvm_unreachable("Unexpected abbrev ordering!");
01759   }
01760 
01761 
01762 
01763   { // SETTYPE abbrev for CONSTANTS_BLOCK.
01764     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
01765     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
01766     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
01767                               Log2_32_Ceil(VE.getTypes().size()+1)));
01768     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
01769                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
01770       llvm_unreachable("Unexpected abbrev ordering!");
01771   }
01772 
01773   { // INTEGER abbrev for CONSTANTS_BLOCK.
01774     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
01775     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
01776     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
01777     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
01778                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
01779       llvm_unreachable("Unexpected abbrev ordering!");
01780   }
01781 
01782   { // CE_CAST abbrev for CONSTANTS_BLOCK.
01783     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
01784     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
01785     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
01786     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
01787                               Log2_32_Ceil(VE.getTypes().size()+1)));
01788     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
01789 
01790     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
01791                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
01792       llvm_unreachable("Unexpected abbrev ordering!");
01793   }
01794   { // NULL abbrev for CONSTANTS_BLOCK.
01795     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
01796     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
01797     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
01798                                    Abbv) != CONSTANTS_NULL_Abbrev)
01799       llvm_unreachable("Unexpected abbrev ordering!");
01800   }
01801 
01802   // FIXME: This should only use space for first class types!
01803 
01804   { // INST_LOAD abbrev for FUNCTION_BLOCK.
01805     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
01806     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
01807     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
01808     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
01809     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
01810     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
01811                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
01812       llvm_unreachable("Unexpected abbrev ordering!");
01813   }
01814   { // INST_BINOP abbrev for FUNCTION_BLOCK.
01815     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
01816     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
01817     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
01818     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
01819     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
01820     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
01821                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
01822       llvm_unreachable("Unexpected abbrev ordering!");
01823   }
01824   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
01825     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
01826     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
01827     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
01828     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
01829     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
01830     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
01831     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
01832                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
01833       llvm_unreachable("Unexpected abbrev ordering!");
01834   }
01835   { // INST_CAST abbrev for FUNCTION_BLOCK.
01836     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
01837     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
01838     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
01839     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
01840                               Log2_32_Ceil(VE.getTypes().size()+1)));
01841     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
01842     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
01843                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
01844       llvm_unreachable("Unexpected abbrev ordering!");
01845   }
01846 
01847   { // INST_RET abbrev for FUNCTION_BLOCK.
01848     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
01849     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
01850     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
01851                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
01852       llvm_unreachable("Unexpected abbrev ordering!");
01853   }
01854   { // INST_RET abbrev for FUNCTION_BLOCK.
01855     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
01856     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
01857     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
01858     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
01859                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
01860       llvm_unreachable("Unexpected abbrev ordering!");
01861   }
01862   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
01863     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
01864     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
01865     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
01866                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
01867       llvm_unreachable("Unexpected abbrev ordering!");
01868   }
01869 
01870   Stream.ExitBlock();
01871 }
01872 
01873 /// WriteModule - Emit the specified module to the bitstream.
01874 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
01875   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
01876 
01877   SmallVector<unsigned, 1> Vals;
01878   unsigned CurVersion = 1;
01879   Vals.push_back(CurVersion);
01880   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
01881 
01882   // Analyze the module, enumerating globals, functions, etc.
01883   ValueEnumerator VE(M);
01884 
01885   // Emit blockinfo, which defines the standard abbreviations etc.
01886   WriteBlockInfo(VE, Stream);
01887 
01888   // Emit information about attribute groups.
01889   WriteAttributeGroupTable(VE, Stream);
01890 
01891   // Emit information about parameter attributes.
01892   WriteAttributeTable(VE, Stream);
01893 
01894   // Emit information describing all of the types in the module.
01895   WriteTypeTable(VE, Stream);
01896 
01897   writeComdats(VE, Stream);
01898 
01899   // Emit top-level description of module, including target triple, inline asm,
01900   // descriptors for global variables, and function prototype info.
01901   WriteModuleInfo(M, VE, Stream);
01902 
01903   // Emit constants.
01904   WriteModuleConstants(VE, Stream);
01905 
01906   // Emit metadata.
01907   WriteModuleMetadata(M, VE, Stream);
01908 
01909   // Emit metadata.
01910   WriteModuleMetadataStore(M, Stream);
01911 
01912   // Emit names for globals/functions etc.
01913   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
01914 
01915   // Emit module-level use-lists.
01916   if (shouldPreserveBitcodeUseListOrder())
01917     WriteUseListBlock(nullptr, VE, Stream);
01918 
01919   // Emit function bodies.
01920   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
01921     if (!F->isDeclaration())
01922       WriteFunction(*F, VE, Stream);
01923 
01924   Stream.ExitBlock();
01925 }
01926 
01927 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
01928 /// header and trailer to make it compatible with the system archiver.  To do
01929 /// this we emit the following header, and then emit a trailer that pads the
01930 /// file out to be a multiple of 16 bytes.
01931 ///
01932 /// struct bc_header {
01933 ///   uint32_t Magic;         // 0x0B17C0DE
01934 ///   uint32_t Version;       // Version, currently always 0.
01935 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
01936 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
01937 ///   uint32_t CPUType;       // CPU specifier.
01938 ///   ... potentially more later ...
01939 /// };
01940 enum {
01941   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
01942   DarwinBCHeaderSize = 5*4
01943 };
01944 
01945 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
01946                                uint32_t &Position) {
01947   Buffer[Position + 0] = (unsigned char) (Value >>  0);
01948   Buffer[Position + 1] = (unsigned char) (Value >>  8);
01949   Buffer[Position + 2] = (unsigned char) (Value >> 16);
01950   Buffer[Position + 3] = (unsigned char) (Value >> 24);
01951   Position += 4;
01952 }
01953 
01954 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
01955                                          const Triple &TT) {
01956   unsigned CPUType = ~0U;
01957 
01958   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
01959   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
01960   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
01961   // specific constants here because they are implicitly part of the Darwin ABI.
01962   enum {
01963     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
01964     DARWIN_CPU_TYPE_X86        = 7,
01965     DARWIN_CPU_TYPE_ARM        = 12,
01966     DARWIN_CPU_TYPE_POWERPC    = 18
01967   };
01968 
01969   Triple::ArchType Arch = TT.getArch();
01970   if (Arch == Triple::x86_64)
01971     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
01972   else if (Arch == Triple::x86)
01973     CPUType = DARWIN_CPU_TYPE_X86;
01974   else if (Arch == Triple::ppc)
01975     CPUType = DARWIN_CPU_TYPE_POWERPC;
01976   else if (Arch == Triple::ppc64)
01977     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
01978   else if (Arch == Triple::arm || Arch == Triple::thumb)
01979     CPUType = DARWIN_CPU_TYPE_ARM;
01980 
01981   // Traditional Bitcode starts after header.
01982   assert(Buffer.size() >= DarwinBCHeaderSize &&
01983          "Expected header size to be reserved");
01984   unsigned BCOffset = DarwinBCHeaderSize;
01985   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
01986 
01987   // Write the magic and version.
01988   unsigned Position = 0;
01989   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
01990   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
01991   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
01992   WriteInt32ToBuffer(BCSize     , Buffer, Position);
01993   WriteInt32ToBuffer(CPUType    , Buffer, Position);
01994 
01995   // If the file is not a multiple of 16 bytes, insert dummy padding.
01996   while (Buffer.size() & 15)
01997     Buffer.push_back(0);
01998 }
01999 
02000 /// WriteBitcodeToFile - Write the specified module to the specified output
02001 /// stream.
02002 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
02003   SmallVector<char, 0> Buffer;
02004   Buffer.reserve(256*1024);
02005 
02006   // If this is darwin or another generic macho target, reserve space for the
02007   // header.
02008   Triple TT(M->getTargetTriple());
02009   if (TT.isOSDarwin())
02010     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
02011 
02012   // Emit the module into the buffer.
02013   {
02014     BitstreamWriter Stream(Buffer);
02015 
02016     // Emit the file header.
02017     Stream.Emit((unsigned)'B', 8);
02018     Stream.Emit((unsigned)'C', 8);
02019     Stream.Emit(0x0, 4);
02020     Stream.Emit(0xC, 4);
02021     Stream.Emit(0xE, 4);
02022     Stream.Emit(0xD, 4);
02023 
02024     // Emit the module.
02025     WriteModule(M, Stream);
02026   }
02027 
02028   if (TT.isOSDarwin())
02029     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
02030 
02031   // Write the generated bitstream to "Out".
02032   Out.write((char*)&Buffer.front(), Buffer.size());
02033 }