LLVM API Documentation
00001 //===-- llvm/CodeGen/AsmPrinter/DbgValueHistoryCalculator.cpp -------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 00010 #include "DbgValueHistoryCalculator.h" 00011 #include "llvm/ADT/SmallVector.h" 00012 #include "llvm/CodeGen/MachineBasicBlock.h" 00013 #include "llvm/CodeGen/MachineFunction.h" 00014 #include "llvm/IR/DebugInfo.h" 00015 #include "llvm/Support/Debug.h" 00016 #include "llvm/Target/TargetRegisterInfo.h" 00017 #include <algorithm> 00018 #include <map> 00019 #include <set> 00020 00021 #define DEBUG_TYPE "dwarfdebug" 00022 00023 namespace llvm { 00024 00025 // \brief If @MI is a DBG_VALUE with debug value described by a 00026 // defined register, returns the number of this register. 00027 // In the other case, returns 0. 00028 static unsigned isDescribedByReg(const MachineInstr &MI) { 00029 assert(MI.isDebugValue()); 00030 assert(MI.getNumOperands() == 3); 00031 // If location of variable is described using a register (directly or 00032 // indirecltly), this register is always a first operand. 00033 return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : 0; 00034 } 00035 00036 void DbgValueHistoryMap::startInstrRange(const MDNode *Var, 00037 const MachineInstr &MI) { 00038 // Instruction range should start with a DBG_VALUE instruction for the 00039 // variable. 00040 assert(MI.isDebugValue() && getEntireVariable(MI.getDebugVariable()) == Var); 00041 auto &Ranges = VarInstrRanges[Var]; 00042 if (!Ranges.empty() && Ranges.back().second == nullptr && 00043 Ranges.back().first->isIdenticalTo(&MI)) { 00044 DEBUG(dbgs() << "Coalescing identical DBG_VALUE entries:\n" 00045 << "\t" << Ranges.back().first << "\t" << MI << "\n"); 00046 return; 00047 } 00048 Ranges.push_back(std::make_pair(&MI, nullptr)); 00049 } 00050 00051 void DbgValueHistoryMap::endInstrRange(const MDNode *Var, 00052 const MachineInstr &MI) { 00053 auto &Ranges = VarInstrRanges[Var]; 00054 // Verify that the current instruction range is not yet closed. 00055 assert(!Ranges.empty() && Ranges.back().second == nullptr); 00056 // For now, instruction ranges are not allowed to cross basic block 00057 // boundaries. 00058 assert(Ranges.back().first->getParent() == MI.getParent()); 00059 Ranges.back().second = &MI; 00060 } 00061 00062 unsigned DbgValueHistoryMap::getRegisterForVar(const MDNode *Var) const { 00063 const auto &I = VarInstrRanges.find(Var); 00064 if (I == VarInstrRanges.end()) 00065 return 0; 00066 const auto &Ranges = I->second; 00067 if (Ranges.empty() || Ranges.back().second != nullptr) 00068 return 0; 00069 return isDescribedByReg(*Ranges.back().first); 00070 } 00071 00072 namespace { 00073 // Maps physreg numbers to the variables they describe. 00074 typedef std::map<unsigned, SmallVector<const MDNode *, 1>> RegDescribedVarsMap; 00075 } 00076 00077 // \brief Claim that @Var is not described by @RegNo anymore. 00078 static void dropRegDescribedVar(RegDescribedVarsMap &RegVars, 00079 unsigned RegNo, const MDNode *Var) { 00080 const auto &I = RegVars.find(RegNo); 00081 assert(RegNo != 0U && I != RegVars.end()); 00082 auto &VarSet = I->second; 00083 const auto &VarPos = std::find(VarSet.begin(), VarSet.end(), Var); 00084 assert(VarPos != VarSet.end()); 00085 VarSet.erase(VarPos); 00086 // Don't keep empty sets in a map to keep it as small as possible. 00087 if (VarSet.empty()) 00088 RegVars.erase(I); 00089 } 00090 00091 // \brief Claim that @Var is now described by @RegNo. 00092 static void addRegDescribedVar(RegDescribedVarsMap &RegVars, 00093 unsigned RegNo, const MDNode *Var) { 00094 assert(RegNo != 0U); 00095 auto &VarSet = RegVars[RegNo]; 00096 assert(std::find(VarSet.begin(), VarSet.end(), Var) == VarSet.end()); 00097 VarSet.push_back(Var); 00098 } 00099 00100 // \brief Terminate the location range for variables described by register 00101 // @RegNo by inserting @ClobberingInstr to their history. 00102 static void clobberRegisterUses(RegDescribedVarsMap &RegVars, unsigned RegNo, 00103 DbgValueHistoryMap &HistMap, 00104 const MachineInstr &ClobberingInstr) { 00105 const auto &I = RegVars.find(RegNo); 00106 if (I == RegVars.end()) 00107 return; 00108 // Iterate over all variables described by this register and add this 00109 // instruction to their history, clobbering it. 00110 for (const auto &Var : I->second) 00111 HistMap.endInstrRange(Var, ClobberingInstr); 00112 RegVars.erase(I); 00113 } 00114 00115 // \brief Collect all registers clobbered by @MI and apply the functor 00116 // @Func to their RegNo. 00117 // @Func should be a functor with a void(unsigned) signature. We're 00118 // not using std::function here for performance reasons. It has a 00119 // small but measurable impact. By using a functor instead of a 00120 // std::set& here, we can avoid the overhead of constructing 00121 // temporaries in calculateDbgValueHistory, which has a significant 00122 // performance impact. 00123 template<typename Callable> 00124 static void applyToClobberedRegisters(const MachineInstr &MI, 00125 const TargetRegisterInfo *TRI, 00126 Callable Func) { 00127 for (const MachineOperand &MO : MI.operands()) { 00128 if (!MO.isReg() || !MO.isDef() || !MO.getReg()) 00129 continue; 00130 for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) 00131 Func(*AI); 00132 } 00133 } 00134 00135 // \brief Returns the first instruction in @MBB which corresponds to 00136 // the function epilogue, or nullptr if @MBB doesn't contain an epilogue. 00137 static const MachineInstr *getFirstEpilogueInst(const MachineBasicBlock &MBB) { 00138 auto LastMI = MBB.getLastNonDebugInstr(); 00139 if (LastMI == MBB.end() || !LastMI->isReturn()) 00140 return nullptr; 00141 // Assume that epilogue starts with instruction having the same debug location 00142 // as the return instruction. 00143 DebugLoc LastLoc = LastMI->getDebugLoc(); 00144 auto Res = LastMI; 00145 for (MachineBasicBlock::const_reverse_iterator I(std::next(LastMI)); I != MBB.rend(); 00146 ++I) { 00147 if (I->getDebugLoc() != LastLoc) 00148 return Res; 00149 Res = std::prev(I.base()); 00150 } 00151 // If all instructions have the same debug location, assume whole MBB is 00152 // an epilogue. 00153 return MBB.begin(); 00154 } 00155 00156 // \brief Collect registers that are modified in the function body (their 00157 // contents is changed outside of the prologue and epilogue). 00158 static void collectChangingRegs(const MachineFunction *MF, 00159 const TargetRegisterInfo *TRI, 00160 std::set<unsigned> &Regs) { 00161 for (const auto &MBB : *MF) { 00162 auto FirstEpilogueInst = getFirstEpilogueInst(MBB); 00163 00164 for (const auto &MI : MBB) { 00165 if (&MI == FirstEpilogueInst) 00166 break; 00167 if (!MI.getFlag(MachineInstr::FrameSetup)) 00168 applyToClobberedRegisters(MI, TRI, [&](unsigned r) { Regs.insert(r); }); 00169 } 00170 } 00171 } 00172 00173 void calculateDbgValueHistory(const MachineFunction *MF, 00174 const TargetRegisterInfo *TRI, 00175 DbgValueHistoryMap &Result) { 00176 std::set<unsigned> ChangingRegs; 00177 collectChangingRegs(MF, TRI, ChangingRegs); 00178 00179 RegDescribedVarsMap RegVars; 00180 for (const auto &MBB : *MF) { 00181 for (const auto &MI : MBB) { 00182 if (!MI.isDebugValue()) { 00183 // Not a DBG_VALUE instruction. It may clobber registers which describe 00184 // some variables. 00185 applyToClobberedRegisters(MI, TRI, [&](unsigned RegNo) { 00186 if (ChangingRegs.count(RegNo)) 00187 clobberRegisterUses(RegVars, RegNo, Result, MI); 00188 }); 00189 continue; 00190 } 00191 00192 assert(MI.getNumOperands() > 1 && "Invalid DBG_VALUE instruction!"); 00193 // Use the base variable (without any DW_OP_piece expressions) 00194 // as index into History. The full variables including the 00195 // piece expressions are attached to the MI. 00196 DIVariable Var = getEntireVariable(MI.getDebugVariable()); 00197 00198 if (unsigned PrevReg = Result.getRegisterForVar(Var)) 00199 dropRegDescribedVar(RegVars, PrevReg, Var); 00200 00201 Result.startInstrRange(Var, MI); 00202 00203 if (unsigned NewReg = isDescribedByReg(MI)) 00204 addRegDescribedVar(RegVars, NewReg, Var); 00205 } 00206 00207 // Make sure locations for register-described variables are valid only 00208 // until the end of the basic block (unless it's the last basic block, in 00209 // which case let their liveness run off to the end of the function). 00210 if (!MBB.empty() && &MBB != &MF->back()) { 00211 for (unsigned RegNo : ChangingRegs) 00212 clobberRegisterUses(RegVars, RegNo, Result, MBB.back()); 00213 } 00214 } 00215 } 00216 00217 }