LLVM API Documentation

InstructionSimplify.cpp
Go to the documentation of this file.
00001 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements routines for folding instructions into simpler forms
00011 // that do not require creating new instructions.  This does constant folding
00012 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
00013 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
00014 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
00015 // simplified: This is usually true and assuming it simplifies the logic (if
00016 // they have not been simplified then results are correct but maybe suboptimal).
00017 //
00018 //===----------------------------------------------------------------------===//
00019 
00020 #include "llvm/Analysis/InstructionSimplify.h"
00021 #include "llvm/ADT/SetVector.h"
00022 #include "llvm/ADT/Statistic.h"
00023 #include "llvm/Analysis/ConstantFolding.h"
00024 #include "llvm/Analysis/MemoryBuiltins.h"
00025 #include "llvm/Analysis/ValueTracking.h"
00026 #include "llvm/IR/ConstantRange.h"
00027 #include "llvm/IR/DataLayout.h"
00028 #include "llvm/IR/Dominators.h"
00029 #include "llvm/IR/GetElementPtrTypeIterator.h"
00030 #include "llvm/IR/GlobalAlias.h"
00031 #include "llvm/IR/Operator.h"
00032 #include "llvm/IR/PatternMatch.h"
00033 #include "llvm/IR/ValueHandle.h"
00034 using namespace llvm;
00035 using namespace llvm::PatternMatch;
00036 
00037 #define DEBUG_TYPE "instsimplify"
00038 
00039 enum { RecursionLimit = 3 };
00040 
00041 STATISTIC(NumExpand,  "Number of expansions");
00042 STATISTIC(NumReassoc, "Number of reassociations");
00043 
00044 namespace {
00045 struct Query {
00046   const DataLayout *DL;
00047   const TargetLibraryInfo *TLI;
00048   const DominatorTree *DT;
00049   AssumptionTracker *AT;
00050   const Instruction *CxtI;
00051 
00052   Query(const DataLayout *DL, const TargetLibraryInfo *tli,
00053         const DominatorTree *dt, AssumptionTracker *at = nullptr,
00054         const Instruction *cxti = nullptr)
00055     : DL(DL), TLI(tli), DT(dt), AT(at), CxtI(cxti) {}
00056 };
00057 } // end anonymous namespace
00058 
00059 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
00060 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
00061                             unsigned);
00062 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
00063                               unsigned);
00064 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
00065 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
00066 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
00067 
00068 /// getFalse - For a boolean type, or a vector of boolean type, return false, or
00069 /// a vector with every element false, as appropriate for the type.
00070 static Constant *getFalse(Type *Ty) {
00071   assert(Ty->getScalarType()->isIntegerTy(1) &&
00072          "Expected i1 type or a vector of i1!");
00073   return Constant::getNullValue(Ty);
00074 }
00075 
00076 /// getTrue - For a boolean type, or a vector of boolean type, return true, or
00077 /// a vector with every element true, as appropriate for the type.
00078 static Constant *getTrue(Type *Ty) {
00079   assert(Ty->getScalarType()->isIntegerTy(1) &&
00080          "Expected i1 type or a vector of i1!");
00081   return Constant::getAllOnesValue(Ty);
00082 }
00083 
00084 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
00085 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
00086                           Value *RHS) {
00087   CmpInst *Cmp = dyn_cast<CmpInst>(V);
00088   if (!Cmp)
00089     return false;
00090   CmpInst::Predicate CPred = Cmp->getPredicate();
00091   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
00092   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
00093     return true;
00094   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
00095     CRHS == LHS;
00096 }
00097 
00098 /// ValueDominatesPHI - Does the given value dominate the specified phi node?
00099 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
00100   Instruction *I = dyn_cast<Instruction>(V);
00101   if (!I)
00102     // Arguments and constants dominate all instructions.
00103     return true;
00104 
00105   // If we are processing instructions (and/or basic blocks) that have not been
00106   // fully added to a function, the parent nodes may still be null. Simply
00107   // return the conservative answer in these cases.
00108   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
00109     return false;
00110 
00111   // If we have a DominatorTree then do a precise test.
00112   if (DT) {
00113     if (!DT->isReachableFromEntry(P->getParent()))
00114       return true;
00115     if (!DT->isReachableFromEntry(I->getParent()))
00116       return false;
00117     return DT->dominates(I, P);
00118   }
00119 
00120   // Otherwise, if the instruction is in the entry block, and is not an invoke,
00121   // then it obviously dominates all phi nodes.
00122   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
00123       !isa<InvokeInst>(I))
00124     return true;
00125 
00126   return false;
00127 }
00128 
00129 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
00130 /// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
00131 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
00132 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
00133 /// Returns the simplified value, or null if no simplification was performed.
00134 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
00135                           unsigned OpcToExpand, const Query &Q,
00136                           unsigned MaxRecurse) {
00137   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
00138   // Recursion is always used, so bail out at once if we already hit the limit.
00139   if (!MaxRecurse--)
00140     return nullptr;
00141 
00142   // Check whether the expression has the form "(A op' B) op C".
00143   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
00144     if (Op0->getOpcode() == OpcodeToExpand) {
00145       // It does!  Try turning it into "(A op C) op' (B op C)".
00146       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
00147       // Do "A op C" and "B op C" both simplify?
00148       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
00149         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
00150           // They do! Return "L op' R" if it simplifies or is already available.
00151           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
00152           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
00153                                      && L == B && R == A)) {
00154             ++NumExpand;
00155             return LHS;
00156           }
00157           // Otherwise return "L op' R" if it simplifies.
00158           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
00159             ++NumExpand;
00160             return V;
00161           }
00162         }
00163     }
00164 
00165   // Check whether the expression has the form "A op (B op' C)".
00166   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
00167     if (Op1->getOpcode() == OpcodeToExpand) {
00168       // It does!  Try turning it into "(A op B) op' (A op C)".
00169       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
00170       // Do "A op B" and "A op C" both simplify?
00171       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
00172         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
00173           // They do! Return "L op' R" if it simplifies or is already available.
00174           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
00175           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
00176                                      && L == C && R == B)) {
00177             ++NumExpand;
00178             return RHS;
00179           }
00180           // Otherwise return "L op' R" if it simplifies.
00181           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
00182             ++NumExpand;
00183             return V;
00184           }
00185         }
00186     }
00187 
00188   return nullptr;
00189 }
00190 
00191 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary
00192 /// operations.  Returns the simpler value, or null if none was found.
00193 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
00194                                        const Query &Q, unsigned MaxRecurse) {
00195   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
00196   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
00197 
00198   // Recursion is always used, so bail out at once if we already hit the limit.
00199   if (!MaxRecurse--)
00200     return nullptr;
00201 
00202   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
00203   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
00204 
00205   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
00206   if (Op0 && Op0->getOpcode() == Opcode) {
00207     Value *A = Op0->getOperand(0);
00208     Value *B = Op0->getOperand(1);
00209     Value *C = RHS;
00210 
00211     // Does "B op C" simplify?
00212     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
00213       // It does!  Return "A op V" if it simplifies or is already available.
00214       // If V equals B then "A op V" is just the LHS.
00215       if (V == B) return LHS;
00216       // Otherwise return "A op V" if it simplifies.
00217       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
00218         ++NumReassoc;
00219         return W;
00220       }
00221     }
00222   }
00223 
00224   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
00225   if (Op1 && Op1->getOpcode() == Opcode) {
00226     Value *A = LHS;
00227     Value *B = Op1->getOperand(0);
00228     Value *C = Op1->getOperand(1);
00229 
00230     // Does "A op B" simplify?
00231     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
00232       // It does!  Return "V op C" if it simplifies or is already available.
00233       // If V equals B then "V op C" is just the RHS.
00234       if (V == B) return RHS;
00235       // Otherwise return "V op C" if it simplifies.
00236       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
00237         ++NumReassoc;
00238         return W;
00239       }
00240     }
00241   }
00242 
00243   // The remaining transforms require commutativity as well as associativity.
00244   if (!Instruction::isCommutative(Opcode))
00245     return nullptr;
00246 
00247   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
00248   if (Op0 && Op0->getOpcode() == Opcode) {
00249     Value *A = Op0->getOperand(0);
00250     Value *B = Op0->getOperand(1);
00251     Value *C = RHS;
00252 
00253     // Does "C op A" simplify?
00254     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
00255       // It does!  Return "V op B" if it simplifies or is already available.
00256       // If V equals A then "V op B" is just the LHS.
00257       if (V == A) return LHS;
00258       // Otherwise return "V op B" if it simplifies.
00259       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
00260         ++NumReassoc;
00261         return W;
00262       }
00263     }
00264   }
00265 
00266   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
00267   if (Op1 && Op1->getOpcode() == Opcode) {
00268     Value *A = LHS;
00269     Value *B = Op1->getOperand(0);
00270     Value *C = Op1->getOperand(1);
00271 
00272     // Does "C op A" simplify?
00273     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
00274       // It does!  Return "B op V" if it simplifies or is already available.
00275       // If V equals C then "B op V" is just the RHS.
00276       if (V == C) return RHS;
00277       // Otherwise return "B op V" if it simplifies.
00278       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
00279         ++NumReassoc;
00280         return W;
00281       }
00282     }
00283   }
00284 
00285   return nullptr;
00286 }
00287 
00288 /// ThreadBinOpOverSelect - In the case of a binary operation with a select
00289 /// instruction as an operand, try to simplify the binop by seeing whether
00290 /// evaluating it on both branches of the select results in the same value.
00291 /// Returns the common value if so, otherwise returns null.
00292 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
00293                                     const Query &Q, unsigned MaxRecurse) {
00294   // Recursion is always used, so bail out at once if we already hit the limit.
00295   if (!MaxRecurse--)
00296     return nullptr;
00297 
00298   SelectInst *SI;
00299   if (isa<SelectInst>(LHS)) {
00300     SI = cast<SelectInst>(LHS);
00301   } else {
00302     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
00303     SI = cast<SelectInst>(RHS);
00304   }
00305 
00306   // Evaluate the BinOp on the true and false branches of the select.
00307   Value *TV;
00308   Value *FV;
00309   if (SI == LHS) {
00310     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
00311     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
00312   } else {
00313     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
00314     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
00315   }
00316 
00317   // If they simplified to the same value, then return the common value.
00318   // If they both failed to simplify then return null.
00319   if (TV == FV)
00320     return TV;
00321 
00322   // If one branch simplified to undef, return the other one.
00323   if (TV && isa<UndefValue>(TV))
00324     return FV;
00325   if (FV && isa<UndefValue>(FV))
00326     return TV;
00327 
00328   // If applying the operation did not change the true and false select values,
00329   // then the result of the binop is the select itself.
00330   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
00331     return SI;
00332 
00333   // If one branch simplified and the other did not, and the simplified
00334   // value is equal to the unsimplified one, return the simplified value.
00335   // For example, select (cond, X, X & Z) & Z -> X & Z.
00336   if ((FV && !TV) || (TV && !FV)) {
00337     // Check that the simplified value has the form "X op Y" where "op" is the
00338     // same as the original operation.
00339     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
00340     if (Simplified && Simplified->getOpcode() == Opcode) {
00341       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
00342       // We already know that "op" is the same as for the simplified value.  See
00343       // if the operands match too.  If so, return the simplified value.
00344       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
00345       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
00346       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
00347       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
00348           Simplified->getOperand(1) == UnsimplifiedRHS)
00349         return Simplified;
00350       if (Simplified->isCommutative() &&
00351           Simplified->getOperand(1) == UnsimplifiedLHS &&
00352           Simplified->getOperand(0) == UnsimplifiedRHS)
00353         return Simplified;
00354     }
00355   }
00356 
00357   return nullptr;
00358 }
00359 
00360 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
00361 /// try to simplify the comparison by seeing whether both branches of the select
00362 /// result in the same value.  Returns the common value if so, otherwise returns
00363 /// null.
00364 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
00365                                   Value *RHS, const Query &Q,
00366                                   unsigned MaxRecurse) {
00367   // Recursion is always used, so bail out at once if we already hit the limit.
00368   if (!MaxRecurse--)
00369     return nullptr;
00370 
00371   // Make sure the select is on the LHS.
00372   if (!isa<SelectInst>(LHS)) {
00373     std::swap(LHS, RHS);
00374     Pred = CmpInst::getSwappedPredicate(Pred);
00375   }
00376   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
00377   SelectInst *SI = cast<SelectInst>(LHS);
00378   Value *Cond = SI->getCondition();
00379   Value *TV = SI->getTrueValue();
00380   Value *FV = SI->getFalseValue();
00381 
00382   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
00383   // Does "cmp TV, RHS" simplify?
00384   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
00385   if (TCmp == Cond) {
00386     // It not only simplified, it simplified to the select condition.  Replace
00387     // it with 'true'.
00388     TCmp = getTrue(Cond->getType());
00389   } else if (!TCmp) {
00390     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
00391     // condition then we can replace it with 'true'.  Otherwise give up.
00392     if (!isSameCompare(Cond, Pred, TV, RHS))
00393       return nullptr;
00394     TCmp = getTrue(Cond->getType());
00395   }
00396 
00397   // Does "cmp FV, RHS" simplify?
00398   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
00399   if (FCmp == Cond) {
00400     // It not only simplified, it simplified to the select condition.  Replace
00401     // it with 'false'.
00402     FCmp = getFalse(Cond->getType());
00403   } else if (!FCmp) {
00404     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
00405     // condition then we can replace it with 'false'.  Otherwise give up.
00406     if (!isSameCompare(Cond, Pred, FV, RHS))
00407       return nullptr;
00408     FCmp = getFalse(Cond->getType());
00409   }
00410 
00411   // If both sides simplified to the same value, then use it as the result of
00412   // the original comparison.
00413   if (TCmp == FCmp)
00414     return TCmp;
00415 
00416   // The remaining cases only make sense if the select condition has the same
00417   // type as the result of the comparison, so bail out if this is not so.
00418   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
00419     return nullptr;
00420   // If the false value simplified to false, then the result of the compare
00421   // is equal to "Cond && TCmp".  This also catches the case when the false
00422   // value simplified to false and the true value to true, returning "Cond".
00423   if (match(FCmp, m_Zero()))
00424     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
00425       return V;
00426   // If the true value simplified to true, then the result of the compare
00427   // is equal to "Cond || FCmp".
00428   if (match(TCmp, m_One()))
00429     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
00430       return V;
00431   // Finally, if the false value simplified to true and the true value to
00432   // false, then the result of the compare is equal to "!Cond".
00433   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
00434     if (Value *V =
00435         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
00436                         Q, MaxRecurse))
00437       return V;
00438 
00439   return nullptr;
00440 }
00441 
00442 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
00443 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
00444 /// it on the incoming phi values yields the same result for every value.  If so
00445 /// returns the common value, otherwise returns null.
00446 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
00447                                  const Query &Q, unsigned MaxRecurse) {
00448   // Recursion is always used, so bail out at once if we already hit the limit.
00449   if (!MaxRecurse--)
00450     return nullptr;
00451 
00452   PHINode *PI;
00453   if (isa<PHINode>(LHS)) {
00454     PI = cast<PHINode>(LHS);
00455     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
00456     if (!ValueDominatesPHI(RHS, PI, Q.DT))
00457       return nullptr;
00458   } else {
00459     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
00460     PI = cast<PHINode>(RHS);
00461     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
00462     if (!ValueDominatesPHI(LHS, PI, Q.DT))
00463       return nullptr;
00464   }
00465 
00466   // Evaluate the BinOp on the incoming phi values.
00467   Value *CommonValue = nullptr;
00468   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
00469     Value *Incoming = PI->getIncomingValue(i);
00470     // If the incoming value is the phi node itself, it can safely be skipped.
00471     if (Incoming == PI) continue;
00472     Value *V = PI == LHS ?
00473       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
00474       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
00475     // If the operation failed to simplify, or simplified to a different value
00476     // to previously, then give up.
00477     if (!V || (CommonValue && V != CommonValue))
00478       return nullptr;
00479     CommonValue = V;
00480   }
00481 
00482   return CommonValue;
00483 }
00484 
00485 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
00486 /// try to simplify the comparison by seeing whether comparing with all of the
00487 /// incoming phi values yields the same result every time.  If so returns the
00488 /// common result, otherwise returns null.
00489 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
00490                                const Query &Q, unsigned MaxRecurse) {
00491   // Recursion is always used, so bail out at once if we already hit the limit.
00492   if (!MaxRecurse--)
00493     return nullptr;
00494 
00495   // Make sure the phi is on the LHS.
00496   if (!isa<PHINode>(LHS)) {
00497     std::swap(LHS, RHS);
00498     Pred = CmpInst::getSwappedPredicate(Pred);
00499   }
00500   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
00501   PHINode *PI = cast<PHINode>(LHS);
00502 
00503   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
00504   if (!ValueDominatesPHI(RHS, PI, Q.DT))
00505     return nullptr;
00506 
00507   // Evaluate the BinOp on the incoming phi values.
00508   Value *CommonValue = nullptr;
00509   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
00510     Value *Incoming = PI->getIncomingValue(i);
00511     // If the incoming value is the phi node itself, it can safely be skipped.
00512     if (Incoming == PI) continue;
00513     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
00514     // If the operation failed to simplify, or simplified to a different value
00515     // to previously, then give up.
00516     if (!V || (CommonValue && V != CommonValue))
00517       return nullptr;
00518     CommonValue = V;
00519   }
00520 
00521   return CommonValue;
00522 }
00523 
00524 /// SimplifyAddInst - Given operands for an Add, see if we can
00525 /// fold the result.  If not, this returns null.
00526 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
00527                               const Query &Q, unsigned MaxRecurse) {
00528   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
00529     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
00530       Constant *Ops[] = { CLHS, CRHS };
00531       return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
00532                                       Q.DL, Q.TLI);
00533     }
00534 
00535     // Canonicalize the constant to the RHS.
00536     std::swap(Op0, Op1);
00537   }
00538 
00539   // X + undef -> undef
00540   if (match(Op1, m_Undef()))
00541     return Op1;
00542 
00543   // X + 0 -> X
00544   if (match(Op1, m_Zero()))
00545     return Op0;
00546 
00547   // X + (Y - X) -> Y
00548   // (Y - X) + X -> Y
00549   // Eg: X + -X -> 0
00550   Value *Y = nullptr;
00551   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
00552       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
00553     return Y;
00554 
00555   // X + ~X -> -1   since   ~X = -X-1
00556   if (match(Op0, m_Not(m_Specific(Op1))) ||
00557       match(Op1, m_Not(m_Specific(Op0))))
00558     return Constant::getAllOnesValue(Op0->getType());
00559 
00560   /// i1 add -> xor.
00561   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
00562     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
00563       return V;
00564 
00565   // Try some generic simplifications for associative operations.
00566   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
00567                                           MaxRecurse))
00568     return V;
00569 
00570   // Threading Add over selects and phi nodes is pointless, so don't bother.
00571   // Threading over the select in "A + select(cond, B, C)" means evaluating
00572   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
00573   // only if B and C are equal.  If B and C are equal then (since we assume
00574   // that operands have already been simplified) "select(cond, B, C)" should
00575   // have been simplified to the common value of B and C already.  Analysing
00576   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
00577   // for threading over phi nodes.
00578 
00579   return nullptr;
00580 }
00581 
00582 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
00583                              const DataLayout *DL, const TargetLibraryInfo *TLI,
00584                              const DominatorTree *DT, AssumptionTracker *AT,
00585                              const Instruction *CxtI) {
00586   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW,
00587                            Query (DL, TLI, DT, AT, CxtI), RecursionLimit);
00588 }
00589 
00590 /// \brief Compute the base pointer and cumulative constant offsets for V.
00591 ///
00592 /// This strips all constant offsets off of V, leaving it the base pointer, and
00593 /// accumulates the total constant offset applied in the returned constant. It
00594 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
00595 /// no constant offsets applied.
00596 ///
00597 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
00598 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
00599 /// folding.
00600 static Constant *stripAndComputeConstantOffsets(const DataLayout *DL,
00601                                                 Value *&V,
00602                                                 bool AllowNonInbounds = false) {
00603   assert(V->getType()->getScalarType()->isPointerTy());
00604 
00605   // Without DataLayout, just be conservative for now. Theoretically, more could
00606   // be done in this case.
00607   if (!DL)
00608     return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0);
00609 
00610   Type *IntPtrTy = DL->getIntPtrType(V->getType())->getScalarType();
00611   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
00612 
00613   // Even though we don't look through PHI nodes, we could be called on an
00614   // instruction in an unreachable block, which may be on a cycle.
00615   SmallPtrSet<Value *, 4> Visited;
00616   Visited.insert(V);
00617   do {
00618     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
00619       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
00620           !GEP->accumulateConstantOffset(*DL, Offset))
00621         break;
00622       V = GEP->getPointerOperand();
00623     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
00624       V = cast<Operator>(V)->getOperand(0);
00625     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
00626       if (GA->mayBeOverridden())
00627         break;
00628       V = GA->getAliasee();
00629     } else {
00630       break;
00631     }
00632     assert(V->getType()->getScalarType()->isPointerTy() &&
00633            "Unexpected operand type!");
00634   } while (Visited.insert(V));
00635 
00636   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
00637   if (V->getType()->isVectorTy())
00638     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
00639                                     OffsetIntPtr);
00640   return OffsetIntPtr;
00641 }
00642 
00643 /// \brief Compute the constant difference between two pointer values.
00644 /// If the difference is not a constant, returns zero.
00645 static Constant *computePointerDifference(const DataLayout *DL,
00646                                           Value *LHS, Value *RHS) {
00647   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
00648   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
00649 
00650   // If LHS and RHS are not related via constant offsets to the same base
00651   // value, there is nothing we can do here.
00652   if (LHS != RHS)
00653     return nullptr;
00654 
00655   // Otherwise, the difference of LHS - RHS can be computed as:
00656   //    LHS - RHS
00657   //  = (LHSOffset + Base) - (RHSOffset + Base)
00658   //  = LHSOffset - RHSOffset
00659   return ConstantExpr::getSub(LHSOffset, RHSOffset);
00660 }
00661 
00662 /// SimplifySubInst - Given operands for a Sub, see if we can
00663 /// fold the result.  If not, this returns null.
00664 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
00665                               const Query &Q, unsigned MaxRecurse) {
00666   if (Constant *CLHS = dyn_cast<Constant>(Op0))
00667     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
00668       Constant *Ops[] = { CLHS, CRHS };
00669       return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
00670                                       Ops, Q.DL, Q.TLI);
00671     }
00672 
00673   // X - undef -> undef
00674   // undef - X -> undef
00675   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
00676     return UndefValue::get(Op0->getType());
00677 
00678   // X - 0 -> X
00679   if (match(Op1, m_Zero()))
00680     return Op0;
00681 
00682   // X - X -> 0
00683   if (Op0 == Op1)
00684     return Constant::getNullValue(Op0->getType());
00685 
00686   // X - (0 - Y) -> X if the second sub is NUW.
00687   // If Y != 0, 0 - Y is a poison value.
00688   // If Y == 0, 0 - Y simplifies to 0.
00689   if (BinaryOperator::isNeg(Op1)) {
00690     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
00691       assert(BO->getOpcode() == Instruction::Sub &&
00692              "Expected a subtraction operator!");
00693       if (BO->hasNoUnsignedWrap())
00694         return Op0;
00695     }
00696   }
00697 
00698   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
00699   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
00700   Value *X = nullptr, *Y = nullptr, *Z = Op1;
00701   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
00702     // See if "V === Y - Z" simplifies.
00703     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
00704       // It does!  Now see if "X + V" simplifies.
00705       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
00706         // It does, we successfully reassociated!
00707         ++NumReassoc;
00708         return W;
00709       }
00710     // See if "V === X - Z" simplifies.
00711     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
00712       // It does!  Now see if "Y + V" simplifies.
00713       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
00714         // It does, we successfully reassociated!
00715         ++NumReassoc;
00716         return W;
00717       }
00718   }
00719 
00720   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
00721   // For example, X - (X + 1) -> -1
00722   X = Op0;
00723   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
00724     // See if "V === X - Y" simplifies.
00725     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
00726       // It does!  Now see if "V - Z" simplifies.
00727       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
00728         // It does, we successfully reassociated!
00729         ++NumReassoc;
00730         return W;
00731       }
00732     // See if "V === X - Z" simplifies.
00733     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
00734       // It does!  Now see if "V - Y" simplifies.
00735       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
00736         // It does, we successfully reassociated!
00737         ++NumReassoc;
00738         return W;
00739       }
00740   }
00741 
00742   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
00743   // For example, X - (X - Y) -> Y.
00744   Z = Op0;
00745   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
00746     // See if "V === Z - X" simplifies.
00747     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
00748       // It does!  Now see if "V + Y" simplifies.
00749       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
00750         // It does, we successfully reassociated!
00751         ++NumReassoc;
00752         return W;
00753       }
00754 
00755   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
00756   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
00757       match(Op1, m_Trunc(m_Value(Y))))
00758     if (X->getType() == Y->getType())
00759       // See if "V === X - Y" simplifies.
00760       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
00761         // It does!  Now see if "trunc V" simplifies.
00762         if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
00763           // It does, return the simplified "trunc V".
00764           return W;
00765 
00766   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
00767   if (match(Op0, m_PtrToInt(m_Value(X))) &&
00768       match(Op1, m_PtrToInt(m_Value(Y))))
00769     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
00770       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
00771 
00772   // i1 sub -> xor.
00773   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
00774     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
00775       return V;
00776 
00777   // Threading Sub over selects and phi nodes is pointless, so don't bother.
00778   // Threading over the select in "A - select(cond, B, C)" means evaluating
00779   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
00780   // only if B and C are equal.  If B and C are equal then (since we assume
00781   // that operands have already been simplified) "select(cond, B, C)" should
00782   // have been simplified to the common value of B and C already.  Analysing
00783   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
00784   // for threading over phi nodes.
00785 
00786   return nullptr;
00787 }
00788 
00789 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
00790                              const DataLayout *DL, const TargetLibraryInfo *TLI,
00791                              const DominatorTree *DT, AssumptionTracker *AT,
00792                              const Instruction *CxtI) {
00793   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW,
00794                            Query (DL, TLI, DT, AT, CxtI), RecursionLimit);
00795 }
00796 
00797 /// Given operands for an FAdd, see if we can fold the result.  If not, this
00798 /// returns null.
00799 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
00800                               const Query &Q, unsigned MaxRecurse) {
00801   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
00802     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
00803       Constant *Ops[] = { CLHS, CRHS };
00804       return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
00805                                       Ops, Q.DL, Q.TLI);
00806     }
00807 
00808     // Canonicalize the constant to the RHS.
00809     std::swap(Op0, Op1);
00810   }
00811 
00812   // fadd X, -0 ==> X
00813   if (match(Op1, m_NegZero()))
00814     return Op0;
00815 
00816   // fadd X, 0 ==> X, when we know X is not -0
00817   if (match(Op1, m_Zero()) &&
00818       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
00819     return Op0;
00820 
00821   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
00822   //   where nnan and ninf have to occur at least once somewhere in this
00823   //   expression
00824   Value *SubOp = nullptr;
00825   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
00826     SubOp = Op1;
00827   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
00828     SubOp = Op0;
00829   if (SubOp) {
00830     Instruction *FSub = cast<Instruction>(SubOp);
00831     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
00832         (FMF.noInfs() || FSub->hasNoInfs()))
00833       return Constant::getNullValue(Op0->getType());
00834   }
00835 
00836   return nullptr;
00837 }
00838 
00839 /// Given operands for an FSub, see if we can fold the result.  If not, this
00840 /// returns null.
00841 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
00842                               const Query &Q, unsigned MaxRecurse) {
00843   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
00844     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
00845       Constant *Ops[] = { CLHS, CRHS };
00846       return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
00847                                       Ops, Q.DL, Q.TLI);
00848     }
00849   }
00850 
00851   // fsub X, 0 ==> X
00852   if (match(Op1, m_Zero()))
00853     return Op0;
00854 
00855   // fsub X, -0 ==> X, when we know X is not -0
00856   if (match(Op1, m_NegZero()) &&
00857       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
00858     return Op0;
00859 
00860   // fsub 0, (fsub -0.0, X) ==> X
00861   Value *X;
00862   if (match(Op0, m_AnyZero())) {
00863     if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
00864       return X;
00865     if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
00866       return X;
00867   }
00868 
00869   // fsub nnan ninf x, x ==> 0.0
00870   if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1)
00871     return Constant::getNullValue(Op0->getType());
00872 
00873   return nullptr;
00874 }
00875 
00876 /// Given the operands for an FMul, see if we can fold the result
00877 static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
00878                                FastMathFlags FMF,
00879                                const Query &Q,
00880                                unsigned MaxRecurse) {
00881  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
00882     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
00883       Constant *Ops[] = { CLHS, CRHS };
00884       return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
00885                                       Ops, Q.DL, Q.TLI);
00886     }
00887 
00888     // Canonicalize the constant to the RHS.
00889     std::swap(Op0, Op1);
00890  }
00891 
00892  // fmul X, 1.0 ==> X
00893  if (match(Op1, m_FPOne()))
00894    return Op0;
00895 
00896  // fmul nnan nsz X, 0 ==> 0
00897  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
00898    return Op1;
00899 
00900  return nullptr;
00901 }
00902 
00903 /// SimplifyMulInst - Given operands for a Mul, see if we can
00904 /// fold the result.  If not, this returns null.
00905 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
00906                               unsigned MaxRecurse) {
00907   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
00908     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
00909       Constant *Ops[] = { CLHS, CRHS };
00910       return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
00911                                       Ops, Q.DL, Q.TLI);
00912     }
00913 
00914     // Canonicalize the constant to the RHS.
00915     std::swap(Op0, Op1);
00916   }
00917 
00918   // X * undef -> 0
00919   if (match(Op1, m_Undef()))
00920     return Constant::getNullValue(Op0->getType());
00921 
00922   // X * 0 -> 0
00923   if (match(Op1, m_Zero()))
00924     return Op1;
00925 
00926   // X * 1 -> X
00927   if (match(Op1, m_One()))
00928     return Op0;
00929 
00930   // (X / Y) * Y -> X if the division is exact.
00931   Value *X = nullptr;
00932   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
00933       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
00934     return X;
00935 
00936   // i1 mul -> and.
00937   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
00938     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
00939       return V;
00940 
00941   // Try some generic simplifications for associative operations.
00942   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
00943                                           MaxRecurse))
00944     return V;
00945 
00946   // Mul distributes over Add.  Try some generic simplifications based on this.
00947   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
00948                              Q, MaxRecurse))
00949     return V;
00950 
00951   // If the operation is with the result of a select instruction, check whether
00952   // operating on either branch of the select always yields the same value.
00953   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
00954     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
00955                                          MaxRecurse))
00956       return V;
00957 
00958   // If the operation is with the result of a phi instruction, check whether
00959   // operating on all incoming values of the phi always yields the same value.
00960   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
00961     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
00962                                       MaxRecurse))
00963       return V;
00964 
00965   return nullptr;
00966 }
00967 
00968 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
00969                              const DataLayout *DL, const TargetLibraryInfo *TLI,
00970                              const DominatorTree *DT, AssumptionTracker *AT,
00971                              const Instruction *CxtI) {
00972   return ::SimplifyFAddInst(Op0, Op1, FMF, Query (DL, TLI, DT, AT, CxtI),
00973                             RecursionLimit);
00974 }
00975 
00976 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
00977                              const DataLayout *DL, const TargetLibraryInfo *TLI,
00978                              const DominatorTree *DT, AssumptionTracker *AT,
00979                              const Instruction *CxtI) {
00980   return ::SimplifyFSubInst(Op0, Op1, FMF, Query (DL, TLI, DT, AT, CxtI),
00981                             RecursionLimit);
00982 }
00983 
00984 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
00985                               FastMathFlags FMF,
00986                               const DataLayout *DL,
00987                               const TargetLibraryInfo *TLI,
00988                               const DominatorTree *DT,
00989                               AssumptionTracker *AT,
00990                               const Instruction *CxtI) {
00991   return ::SimplifyFMulInst(Op0, Op1, FMF, Query (DL, TLI, DT, AT, CxtI),
00992                             RecursionLimit);
00993 }
00994 
00995 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *DL,
00996                              const TargetLibraryInfo *TLI,
00997                              const DominatorTree *DT, AssumptionTracker *AT,
00998                              const Instruction *CxtI) {
00999   return ::SimplifyMulInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
01000                            RecursionLimit);
01001 }
01002 
01003 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
01004 /// fold the result.  If not, this returns null.
01005 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
01006                           const Query &Q, unsigned MaxRecurse) {
01007   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
01008     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
01009       Constant *Ops[] = { C0, C1 };
01010       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
01011     }
01012   }
01013 
01014   bool isSigned = Opcode == Instruction::SDiv;
01015 
01016   // X / undef -> undef
01017   if (match(Op1, m_Undef()))
01018     return Op1;
01019 
01020   // undef / X -> 0
01021   if (match(Op0, m_Undef()))
01022     return Constant::getNullValue(Op0->getType());
01023 
01024   // 0 / X -> 0, we don't need to preserve faults!
01025   if (match(Op0, m_Zero()))
01026     return Op0;
01027 
01028   // X / 1 -> X
01029   if (match(Op1, m_One()))
01030     return Op0;
01031 
01032   if (Op0->getType()->isIntegerTy(1))
01033     // It can't be division by zero, hence it must be division by one.
01034     return Op0;
01035 
01036   // X / X -> 1
01037   if (Op0 == Op1)
01038     return ConstantInt::get(Op0->getType(), 1);
01039 
01040   // (X * Y) / Y -> X if the multiplication does not overflow.
01041   Value *X = nullptr, *Y = nullptr;
01042   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
01043     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
01044     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
01045     // If the Mul knows it does not overflow, then we are good to go.
01046     if ((isSigned && Mul->hasNoSignedWrap()) ||
01047         (!isSigned && Mul->hasNoUnsignedWrap()))
01048       return X;
01049     // If X has the form X = A / Y then X * Y cannot overflow.
01050     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
01051       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
01052         return X;
01053   }
01054 
01055   // (X rem Y) / Y -> 0
01056   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
01057       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
01058     return Constant::getNullValue(Op0->getType());
01059 
01060   // If the operation is with the result of a select instruction, check whether
01061   // operating on either branch of the select always yields the same value.
01062   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
01063     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
01064       return V;
01065 
01066   // If the operation is with the result of a phi instruction, check whether
01067   // operating on all incoming values of the phi always yields the same value.
01068   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
01069     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
01070       return V;
01071 
01072   return nullptr;
01073 }
01074 
01075 /// SimplifySDivInst - Given operands for an SDiv, see if we can
01076 /// fold the result.  If not, this returns null.
01077 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
01078                                unsigned MaxRecurse) {
01079   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
01080     return V;
01081 
01082   return nullptr;
01083 }
01084 
01085 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
01086                               const TargetLibraryInfo *TLI,
01087                               const DominatorTree *DT,
01088                               AssumptionTracker *AT,
01089                               const Instruction *CxtI) {
01090   return ::SimplifySDivInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
01091                             RecursionLimit);
01092 }
01093 
01094 /// SimplifyUDivInst - Given operands for a UDiv, see if we can
01095 /// fold the result.  If not, this returns null.
01096 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
01097                                unsigned MaxRecurse) {
01098   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
01099     return V;
01100 
01101   return nullptr;
01102 }
01103 
01104 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
01105                               const TargetLibraryInfo *TLI,
01106                               const DominatorTree *DT,
01107                               AssumptionTracker *AT,
01108                               const Instruction *CxtI) {
01109   return ::SimplifyUDivInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
01110                             RecursionLimit);
01111 }
01112 
01113 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
01114                                unsigned) {
01115   // undef / X -> undef    (the undef could be a snan).
01116   if (match(Op0, m_Undef()))
01117     return Op0;
01118 
01119   // X / undef -> undef
01120   if (match(Op1, m_Undef()))
01121     return Op1;
01122 
01123   return nullptr;
01124 }
01125 
01126 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
01127                               const TargetLibraryInfo *TLI,
01128                               const DominatorTree *DT,
01129                               AssumptionTracker *AT,
01130                               const Instruction *CxtI) {
01131   return ::SimplifyFDivInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
01132                             RecursionLimit);
01133 }
01134 
01135 /// SimplifyRem - Given operands for an SRem or URem, see if we can
01136 /// fold the result.  If not, this returns null.
01137 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
01138                           const Query &Q, unsigned MaxRecurse) {
01139   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
01140     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
01141       Constant *Ops[] = { C0, C1 };
01142       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
01143     }
01144   }
01145 
01146   // X % undef -> undef
01147   if (match(Op1, m_Undef()))
01148     return Op1;
01149 
01150   // undef % X -> 0
01151   if (match(Op0, m_Undef()))
01152     return Constant::getNullValue(Op0->getType());
01153 
01154   // 0 % X -> 0, we don't need to preserve faults!
01155   if (match(Op0, m_Zero()))
01156     return Op0;
01157 
01158   // X % 0 -> undef, we don't need to preserve faults!
01159   if (match(Op1, m_Zero()))
01160     return UndefValue::get(Op0->getType());
01161 
01162   // X % 1 -> 0
01163   if (match(Op1, m_One()))
01164     return Constant::getNullValue(Op0->getType());
01165 
01166   if (Op0->getType()->isIntegerTy(1))
01167     // It can't be remainder by zero, hence it must be remainder by one.
01168     return Constant::getNullValue(Op0->getType());
01169 
01170   // X % X -> 0
01171   if (Op0 == Op1)
01172     return Constant::getNullValue(Op0->getType());
01173 
01174   // (X % Y) % Y -> X % Y
01175   if ((Opcode == Instruction::SRem &&
01176        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
01177       (Opcode == Instruction::URem &&
01178        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
01179     return Op0;
01180 
01181   // If the operation is with the result of a select instruction, check whether
01182   // operating on either branch of the select always yields the same value.
01183   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
01184     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
01185       return V;
01186 
01187   // If the operation is with the result of a phi instruction, check whether
01188   // operating on all incoming values of the phi always yields the same value.
01189   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
01190     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
01191       return V;
01192 
01193   return nullptr;
01194 }
01195 
01196 /// SimplifySRemInst - Given operands for an SRem, see if we can
01197 /// fold the result.  If not, this returns null.
01198 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
01199                                unsigned MaxRecurse) {
01200   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
01201     return V;
01202 
01203   return nullptr;
01204 }
01205 
01206 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
01207                               const TargetLibraryInfo *TLI,
01208                               const DominatorTree *DT,
01209                               AssumptionTracker *AT,
01210                               const Instruction *CxtI) {
01211   return ::SimplifySRemInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
01212                             RecursionLimit);
01213 }
01214 
01215 /// SimplifyURemInst - Given operands for a URem, see if we can
01216 /// fold the result.  If not, this returns null.
01217 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
01218                                unsigned MaxRecurse) {
01219   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
01220     return V;
01221 
01222   return nullptr;
01223 }
01224 
01225 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *DL,
01226                               const TargetLibraryInfo *TLI,
01227                               const DominatorTree *DT,
01228                               AssumptionTracker *AT,
01229                               const Instruction *CxtI) {
01230   return ::SimplifyURemInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
01231                             RecursionLimit);
01232 }
01233 
01234 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
01235                                unsigned) {
01236   // undef % X -> undef    (the undef could be a snan).
01237   if (match(Op0, m_Undef()))
01238     return Op0;
01239 
01240   // X % undef -> undef
01241   if (match(Op1, m_Undef()))
01242     return Op1;
01243 
01244   return nullptr;
01245 }
01246 
01247 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
01248                               const TargetLibraryInfo *TLI,
01249                               const DominatorTree *DT,
01250                               AssumptionTracker *AT,
01251                               const Instruction *CxtI) {
01252   return ::SimplifyFRemInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
01253                             RecursionLimit);
01254 }
01255 
01256 /// isUndefShift - Returns true if a shift by \c Amount always yields undef.
01257 static bool isUndefShift(Value *Amount) {
01258   Constant *C = dyn_cast<Constant>(Amount);
01259   if (!C)
01260     return false;
01261 
01262   // X shift by undef -> undef because it may shift by the bitwidth.
01263   if (isa<UndefValue>(C))
01264     return true;
01265 
01266   // Shifting by the bitwidth or more is undefined.
01267   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
01268     if (CI->getValue().getLimitedValue() >=
01269         CI->getType()->getScalarSizeInBits())
01270       return true;
01271 
01272   // If all lanes of a vector shift are undefined the whole shift is.
01273   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
01274     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
01275       if (!isUndefShift(C->getAggregateElement(I)))
01276         return false;
01277     return true;
01278   }
01279 
01280   return false;
01281 }
01282 
01283 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
01284 /// fold the result.  If not, this returns null.
01285 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
01286                             const Query &Q, unsigned MaxRecurse) {
01287   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
01288     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
01289       Constant *Ops[] = { C0, C1 };
01290       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.DL, Q.TLI);
01291     }
01292   }
01293 
01294   // 0 shift by X -> 0
01295   if (match(Op0, m_Zero()))
01296     return Op0;
01297 
01298   // X shift by 0 -> X
01299   if (match(Op1, m_Zero()))
01300     return Op0;
01301 
01302   // Fold undefined shifts.
01303   if (isUndefShift(Op1))
01304     return UndefValue::get(Op0->getType());
01305 
01306   // If the operation is with the result of a select instruction, check whether
01307   // operating on either branch of the select always yields the same value.
01308   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
01309     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
01310       return V;
01311 
01312   // If the operation is with the result of a phi instruction, check whether
01313   // operating on all incoming values of the phi always yields the same value.
01314   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
01315     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
01316       return V;
01317 
01318   return nullptr;
01319 }
01320 
01321 /// SimplifyShlInst - Given operands for an Shl, see if we can
01322 /// fold the result.  If not, this returns null.
01323 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
01324                               const Query &Q, unsigned MaxRecurse) {
01325   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
01326     return V;
01327 
01328   // undef << X -> 0
01329   if (match(Op0, m_Undef()))
01330     return Constant::getNullValue(Op0->getType());
01331 
01332   // (X >> A) << A -> X
01333   Value *X;
01334   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
01335     return X;
01336   return nullptr;
01337 }
01338 
01339 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
01340                              const DataLayout *DL, const TargetLibraryInfo *TLI,
01341                              const DominatorTree *DT, AssumptionTracker *AT,
01342                              const Instruction *CxtI) {
01343   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (DL, TLI, DT, AT, CxtI),
01344                            RecursionLimit);
01345 }
01346 
01347 /// SimplifyLShrInst - Given operands for an LShr, see if we can
01348 /// fold the result.  If not, this returns null.
01349 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
01350                                const Query &Q, unsigned MaxRecurse) {
01351   if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
01352     return V;
01353 
01354   // X >> X -> 0
01355   if (Op0 == Op1)
01356     return Constant::getNullValue(Op0->getType());
01357 
01358   // undef >>l X -> 0
01359   if (match(Op0, m_Undef()))
01360     return Constant::getNullValue(Op0->getType());
01361 
01362   // (X << A) >> A -> X
01363   Value *X;
01364   if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
01365       cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
01366     return X;
01367 
01368   return nullptr;
01369 }
01370 
01371 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
01372                               const DataLayout *DL,
01373                               const TargetLibraryInfo *TLI,
01374                               const DominatorTree *DT,
01375                               AssumptionTracker *AT,
01376                               const Instruction *CxtI) {
01377   return ::SimplifyLShrInst(Op0, Op1, isExact, Query (DL, TLI, DT, AT, CxtI),
01378                             RecursionLimit);
01379 }
01380 
01381 /// SimplifyAShrInst - Given operands for an AShr, see if we can
01382 /// fold the result.  If not, this returns null.
01383 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
01384                                const Query &Q, unsigned MaxRecurse) {
01385   if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
01386     return V;
01387 
01388   // X >> X -> 0
01389   if (Op0 == Op1)
01390     return Constant::getNullValue(Op0->getType());
01391 
01392   // all ones >>a X -> all ones
01393   if (match(Op0, m_AllOnes()))
01394     return Op0;
01395 
01396   // undef >>a X -> all ones
01397   if (match(Op0, m_Undef()))
01398     return Constant::getAllOnesValue(Op0->getType());
01399 
01400   // (X << A) >> A -> X
01401   Value *X;
01402   if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
01403       cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
01404     return X;
01405 
01406   // Arithmetic shifting an all-sign-bit value is a no-op.
01407   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AT, Q.CxtI, Q.DT);
01408   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
01409     return Op0;
01410 
01411   return nullptr;
01412 }
01413 
01414 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
01415                               const DataLayout *DL,
01416                               const TargetLibraryInfo *TLI,
01417                               const DominatorTree *DT,
01418                               AssumptionTracker *AT,
01419                               const Instruction *CxtI) {
01420   return ::SimplifyAShrInst(Op0, Op1, isExact, Query (DL, TLI, DT, AT, CxtI),
01421                             RecursionLimit);
01422 }
01423 
01424 // Simplify (and (icmp ...) (icmp ...)) to true when we can tell that the range
01425 // of possible values cannot be satisfied.
01426 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
01427   ICmpInst::Predicate Pred0, Pred1;
01428   ConstantInt *CI1, *CI2;
01429   Value *V;
01430   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
01431                          m_ConstantInt(CI2))))
01432    return nullptr;
01433 
01434   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
01435     return nullptr;
01436 
01437   Type *ITy = Op0->getType();
01438 
01439   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
01440   bool isNSW = AddInst->hasNoSignedWrap();
01441   bool isNUW = AddInst->hasNoUnsignedWrap();
01442 
01443   const APInt &CI1V = CI1->getValue();
01444   const APInt &CI2V = CI2->getValue();
01445   const APInt Delta = CI2V - CI1V;
01446   if (CI1V.isStrictlyPositive()) {
01447     if (Delta == 2) {
01448       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
01449         return getFalse(ITy);
01450       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
01451         return getFalse(ITy);
01452     }
01453     if (Delta == 1) {
01454       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
01455         return getFalse(ITy);
01456       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
01457         return getFalse(ITy);
01458     }
01459   }
01460   if (CI1V.getBoolValue() && isNUW) {
01461     if (Delta == 2)
01462       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
01463         return getFalse(ITy);
01464     if (Delta == 1)
01465       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
01466         return getFalse(ITy);
01467   }
01468 
01469   return nullptr;
01470 }
01471 
01472 /// SimplifyAndInst - Given operands for an And, see if we can
01473 /// fold the result.  If not, this returns null.
01474 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
01475                               unsigned MaxRecurse) {
01476   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
01477     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
01478       Constant *Ops[] = { CLHS, CRHS };
01479       return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
01480                                       Ops, Q.DL, Q.TLI);
01481     }
01482 
01483     // Canonicalize the constant to the RHS.
01484     std::swap(Op0, Op1);
01485   }
01486 
01487   // X & undef -> 0
01488   if (match(Op1, m_Undef()))
01489     return Constant::getNullValue(Op0->getType());
01490 
01491   // X & X = X
01492   if (Op0 == Op1)
01493     return Op0;
01494 
01495   // X & 0 = 0
01496   if (match(Op1, m_Zero()))
01497     return Op1;
01498 
01499   // X & -1 = X
01500   if (match(Op1, m_AllOnes()))
01501     return Op0;
01502 
01503   // A & ~A  =  ~A & A  =  0
01504   if (match(Op0, m_Not(m_Specific(Op1))) ||
01505       match(Op1, m_Not(m_Specific(Op0))))
01506     return Constant::getNullValue(Op0->getType());
01507 
01508   // (A | ?) & A = A
01509   Value *A = nullptr, *B = nullptr;
01510   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
01511       (A == Op1 || B == Op1))
01512     return Op1;
01513 
01514   // A & (A | ?) = A
01515   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
01516       (A == Op0 || B == Op0))
01517     return Op0;
01518 
01519   // A & (-A) = A if A is a power of two or zero.
01520   if (match(Op0, m_Neg(m_Specific(Op1))) ||
01521       match(Op1, m_Neg(m_Specific(Op0)))) {
01522     if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true, 0, Q.AT, Q.CxtI, Q.DT))
01523       return Op0;
01524     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true, 0, Q.AT, Q.CxtI, Q.DT))
01525       return Op1;
01526   }
01527 
01528   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
01529     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
01530       if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
01531         return V;
01532       if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
01533         return V;
01534     }
01535   }
01536 
01537   // Try some generic simplifications for associative operations.
01538   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
01539                                           MaxRecurse))
01540     return V;
01541 
01542   // And distributes over Or.  Try some generic simplifications based on this.
01543   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
01544                              Q, MaxRecurse))
01545     return V;
01546 
01547   // And distributes over Xor.  Try some generic simplifications based on this.
01548   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
01549                              Q, MaxRecurse))
01550     return V;
01551 
01552   // If the operation is with the result of a select instruction, check whether
01553   // operating on either branch of the select always yields the same value.
01554   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
01555     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
01556                                          MaxRecurse))
01557       return V;
01558 
01559   // If the operation is with the result of a phi instruction, check whether
01560   // operating on all incoming values of the phi always yields the same value.
01561   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
01562     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
01563                                       MaxRecurse))
01564       return V;
01565 
01566   return nullptr;
01567 }
01568 
01569 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *DL,
01570                              const TargetLibraryInfo *TLI,
01571                              const DominatorTree *DT, AssumptionTracker *AT,
01572                              const Instruction *CxtI) {
01573   return ::SimplifyAndInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
01574                            RecursionLimit);
01575 }
01576 
01577 // Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union
01578 // contains all possible values.
01579 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
01580   ICmpInst::Predicate Pred0, Pred1;
01581   ConstantInt *CI1, *CI2;
01582   Value *V;
01583   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)),
01584                          m_ConstantInt(CI2))))
01585    return nullptr;
01586 
01587   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1))))
01588     return nullptr;
01589 
01590   Type *ITy = Op0->getType();
01591 
01592   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
01593   bool isNSW = AddInst->hasNoSignedWrap();
01594   bool isNUW = AddInst->hasNoUnsignedWrap();
01595 
01596   const APInt &CI1V = CI1->getValue();
01597   const APInt &CI2V = CI2->getValue();
01598   const APInt Delta = CI2V - CI1V;
01599   if (CI1V.isStrictlyPositive()) {
01600     if (Delta == 2) {
01601       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
01602         return getTrue(ITy);
01603       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
01604         return getTrue(ITy);
01605     }
01606     if (Delta == 1) {
01607       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
01608         return getTrue(ITy);
01609       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
01610         return getTrue(ITy);
01611     }
01612   }
01613   if (CI1V.getBoolValue() && isNUW) {
01614     if (Delta == 2)
01615       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
01616         return getTrue(ITy);
01617     if (Delta == 1)
01618       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
01619         return getTrue(ITy);
01620   }
01621 
01622   return nullptr;
01623 }
01624 
01625 /// SimplifyOrInst - Given operands for an Or, see if we can
01626 /// fold the result.  If not, this returns null.
01627 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
01628                              unsigned MaxRecurse) {
01629   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
01630     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
01631       Constant *Ops[] = { CLHS, CRHS };
01632       return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
01633                                       Ops, Q.DL, Q.TLI);
01634     }
01635 
01636     // Canonicalize the constant to the RHS.
01637     std::swap(Op0, Op1);
01638   }
01639 
01640   // X | undef -> -1
01641   if (match(Op1, m_Undef()))
01642     return Constant::getAllOnesValue(Op0->getType());
01643 
01644   // X | X = X
01645   if (Op0 == Op1)
01646     return Op0;
01647 
01648   // X | 0 = X
01649   if (match(Op1, m_Zero()))
01650     return Op0;
01651 
01652   // X | -1 = -1
01653   if (match(Op1, m_AllOnes()))
01654     return Op1;
01655 
01656   // A | ~A  =  ~A | A  =  -1
01657   if (match(Op0, m_Not(m_Specific(Op1))) ||
01658       match(Op1, m_Not(m_Specific(Op0))))
01659     return Constant::getAllOnesValue(Op0->getType());
01660 
01661   // (A & ?) | A = A
01662   Value *A = nullptr, *B = nullptr;
01663   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
01664       (A == Op1 || B == Op1))
01665     return Op1;
01666 
01667   // A | (A & ?) = A
01668   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
01669       (A == Op0 || B == Op0))
01670     return Op0;
01671 
01672   // ~(A & ?) | A = -1
01673   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
01674       (A == Op1 || B == Op1))
01675     return Constant::getAllOnesValue(Op1->getType());
01676 
01677   // A | ~(A & ?) = -1
01678   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
01679       (A == Op0 || B == Op0))
01680     return Constant::getAllOnesValue(Op0->getType());
01681 
01682   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
01683     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
01684       if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
01685         return V;
01686       if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
01687         return V;
01688     }
01689   }
01690 
01691   // Try some generic simplifications for associative operations.
01692   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
01693                                           MaxRecurse))
01694     return V;
01695 
01696   // Or distributes over And.  Try some generic simplifications based on this.
01697   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
01698                              MaxRecurse))
01699     return V;
01700 
01701   // If the operation is with the result of a select instruction, check whether
01702   // operating on either branch of the select always yields the same value.
01703   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
01704     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
01705                                          MaxRecurse))
01706       return V;
01707 
01708   // (A & C)|(B & D)
01709   Value *C = nullptr, *D = nullptr;
01710   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
01711       match(Op1, m_And(m_Value(B), m_Value(D)))) {
01712     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
01713     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
01714     if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
01715       // (A & C1)|(B & C2)
01716       // If we have: ((V + N) & C1) | (V & C2)
01717       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
01718       // replace with V+N.
01719       Value *V1, *V2;
01720       if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
01721           match(A, m_Add(m_Value(V1), m_Value(V2)))) {
01722         // Add commutes, try both ways.
01723         if (V1 == B && MaskedValueIsZero(V2, C2->getValue(), Q.DL,
01724                                          0, Q.AT, Q.CxtI, Q.DT))
01725           return A;
01726         if (V2 == B && MaskedValueIsZero(V1, C2->getValue(), Q.DL,
01727                                          0, Q.AT, Q.CxtI, Q.DT))
01728           return A;
01729       }
01730       // Or commutes, try both ways.
01731       if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
01732           match(B, m_Add(m_Value(V1), m_Value(V2)))) {
01733         // Add commutes, try both ways.
01734         if (V1 == A && MaskedValueIsZero(V2, C1->getValue(), Q.DL,
01735                                          0, Q.AT, Q.CxtI, Q.DT))
01736           return B;
01737         if (V2 == A && MaskedValueIsZero(V1, C1->getValue(), Q.DL,
01738                                          0, Q.AT, Q.CxtI, Q.DT))
01739           return B;
01740       }
01741     }
01742   }
01743 
01744   // If the operation is with the result of a phi instruction, check whether
01745   // operating on all incoming values of the phi always yields the same value.
01746   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
01747     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
01748       return V;
01749 
01750   return nullptr;
01751 }
01752 
01753 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *DL,
01754                             const TargetLibraryInfo *TLI,
01755                             const DominatorTree *DT, AssumptionTracker *AT,
01756                             const Instruction *CxtI) {
01757   return ::SimplifyOrInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
01758                           RecursionLimit);
01759 }
01760 
01761 /// SimplifyXorInst - Given operands for a Xor, see if we can
01762 /// fold the result.  If not, this returns null.
01763 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
01764                               unsigned MaxRecurse) {
01765   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
01766     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
01767       Constant *Ops[] = { CLHS, CRHS };
01768       return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
01769                                       Ops, Q.DL, Q.TLI);
01770     }
01771 
01772     // Canonicalize the constant to the RHS.
01773     std::swap(Op0, Op1);
01774   }
01775 
01776   // A ^ undef -> undef
01777   if (match(Op1, m_Undef()))
01778     return Op1;
01779 
01780   // A ^ 0 = A
01781   if (match(Op1, m_Zero()))
01782     return Op0;
01783 
01784   // A ^ A = 0
01785   if (Op0 == Op1)
01786     return Constant::getNullValue(Op0->getType());
01787 
01788   // A ^ ~A  =  ~A ^ A  =  -1
01789   if (match(Op0, m_Not(m_Specific(Op1))) ||
01790       match(Op1, m_Not(m_Specific(Op0))))
01791     return Constant::getAllOnesValue(Op0->getType());
01792 
01793   // Try some generic simplifications for associative operations.
01794   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
01795                                           MaxRecurse))
01796     return V;
01797 
01798   // Threading Xor over selects and phi nodes is pointless, so don't bother.
01799   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
01800   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
01801   // only if B and C are equal.  If B and C are equal then (since we assume
01802   // that operands have already been simplified) "select(cond, B, C)" should
01803   // have been simplified to the common value of B and C already.  Analysing
01804   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
01805   // for threading over phi nodes.
01806 
01807   return nullptr;
01808 }
01809 
01810 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *DL,
01811                              const TargetLibraryInfo *TLI,
01812                              const DominatorTree *DT, AssumptionTracker *AT,
01813                              const Instruction *CxtI) {
01814   return ::SimplifyXorInst(Op0, Op1, Query (DL, TLI, DT, AT, CxtI),
01815                            RecursionLimit);
01816 }
01817 
01818 static Type *GetCompareTy(Value *Op) {
01819   return CmpInst::makeCmpResultType(Op->getType());
01820 }
01821 
01822 /// ExtractEquivalentCondition - Rummage around inside V looking for something
01823 /// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
01824 /// otherwise return null.  Helper function for analyzing max/min idioms.
01825 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
01826                                          Value *LHS, Value *RHS) {
01827   SelectInst *SI = dyn_cast<SelectInst>(V);
01828   if (!SI)
01829     return nullptr;
01830   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
01831   if (!Cmp)
01832     return nullptr;
01833   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
01834   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
01835     return Cmp;
01836   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
01837       LHS == CmpRHS && RHS == CmpLHS)
01838     return Cmp;
01839   return nullptr;
01840 }
01841 
01842 // A significant optimization not implemented here is assuming that alloca
01843 // addresses are not equal to incoming argument values. They don't *alias*,
01844 // as we say, but that doesn't mean they aren't equal, so we take a
01845 // conservative approach.
01846 //
01847 // This is inspired in part by C++11 5.10p1:
01848 //   "Two pointers of the same type compare equal if and only if they are both
01849 //    null, both point to the same function, or both represent the same
01850 //    address."
01851 //
01852 // This is pretty permissive.
01853 //
01854 // It's also partly due to C11 6.5.9p6:
01855 //   "Two pointers compare equal if and only if both are null pointers, both are
01856 //    pointers to the same object (including a pointer to an object and a
01857 //    subobject at its beginning) or function, both are pointers to one past the
01858 //    last element of the same array object, or one is a pointer to one past the
01859 //    end of one array object and the other is a pointer to the start of a
01860 //    different array object that happens to immediately follow the first array
01861 //    object in the address space.)
01862 //
01863 // C11's version is more restrictive, however there's no reason why an argument
01864 // couldn't be a one-past-the-end value for a stack object in the caller and be
01865 // equal to the beginning of a stack object in the callee.
01866 //
01867 // If the C and C++ standards are ever made sufficiently restrictive in this
01868 // area, it may be possible to update LLVM's semantics accordingly and reinstate
01869 // this optimization.
01870 static Constant *computePointerICmp(const DataLayout *DL,
01871                                     const TargetLibraryInfo *TLI,
01872                                     CmpInst::Predicate Pred,
01873                                     Value *LHS, Value *RHS) {
01874   // First, skip past any trivial no-ops.
01875   LHS = LHS->stripPointerCasts();
01876   RHS = RHS->stripPointerCasts();
01877 
01878   // A non-null pointer is not equal to a null pointer.
01879   if (llvm::isKnownNonNull(LHS, TLI) && isa<ConstantPointerNull>(RHS) &&
01880       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
01881     return ConstantInt::get(GetCompareTy(LHS),
01882                             !CmpInst::isTrueWhenEqual(Pred));
01883 
01884   // We can only fold certain predicates on pointer comparisons.
01885   switch (Pred) {
01886   default:
01887     return nullptr;
01888 
01889     // Equality comaprisons are easy to fold.
01890   case CmpInst::ICMP_EQ:
01891   case CmpInst::ICMP_NE:
01892     break;
01893 
01894     // We can only handle unsigned relational comparisons because 'inbounds' on
01895     // a GEP only protects against unsigned wrapping.
01896   case CmpInst::ICMP_UGT:
01897   case CmpInst::ICMP_UGE:
01898   case CmpInst::ICMP_ULT:
01899   case CmpInst::ICMP_ULE:
01900     // However, we have to switch them to their signed variants to handle
01901     // negative indices from the base pointer.
01902     Pred = ICmpInst::getSignedPredicate(Pred);
01903     break;
01904   }
01905 
01906   // Strip off any constant offsets so that we can reason about them.
01907   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
01908   // here and compare base addresses like AliasAnalysis does, however there are
01909   // numerous hazards. AliasAnalysis and its utilities rely on special rules
01910   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
01911   // doesn't need to guarantee pointer inequality when it says NoAlias.
01912   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
01913   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
01914 
01915   // If LHS and RHS are related via constant offsets to the same base
01916   // value, we can replace it with an icmp which just compares the offsets.
01917   if (LHS == RHS)
01918     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
01919 
01920   // Various optimizations for (in)equality comparisons.
01921   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
01922     // Different non-empty allocations that exist at the same time have
01923     // different addresses (if the program can tell). Global variables always
01924     // exist, so they always exist during the lifetime of each other and all
01925     // allocas. Two different allocas usually have different addresses...
01926     //
01927     // However, if there's an @llvm.stackrestore dynamically in between two
01928     // allocas, they may have the same address. It's tempting to reduce the
01929     // scope of the problem by only looking at *static* allocas here. That would
01930     // cover the majority of allocas while significantly reducing the likelihood
01931     // of having an @llvm.stackrestore pop up in the middle. However, it's not
01932     // actually impossible for an @llvm.stackrestore to pop up in the middle of
01933     // an entry block. Also, if we have a block that's not attached to a
01934     // function, we can't tell if it's "static" under the current definition.
01935     // Theoretically, this problem could be fixed by creating a new kind of
01936     // instruction kind specifically for static allocas. Such a new instruction
01937     // could be required to be at the top of the entry block, thus preventing it
01938     // from being subject to a @llvm.stackrestore. Instcombine could even
01939     // convert regular allocas into these special allocas. It'd be nifty.
01940     // However, until then, this problem remains open.
01941     //
01942     // So, we'll assume that two non-empty allocas have different addresses
01943     // for now.
01944     //
01945     // With all that, if the offsets are within the bounds of their allocations
01946     // (and not one-past-the-end! so we can't use inbounds!), and their
01947     // allocations aren't the same, the pointers are not equal.
01948     //
01949     // Note that it's not necessary to check for LHS being a global variable
01950     // address, due to canonicalization and constant folding.
01951     if (isa<AllocaInst>(LHS) &&
01952         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
01953       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
01954       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
01955       uint64_t LHSSize, RHSSize;
01956       if (LHSOffsetCI && RHSOffsetCI &&
01957           getObjectSize(LHS, LHSSize, DL, TLI) &&
01958           getObjectSize(RHS, RHSSize, DL, TLI)) {
01959         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
01960         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
01961         if (!LHSOffsetValue.isNegative() &&
01962             !RHSOffsetValue.isNegative() &&
01963             LHSOffsetValue.ult(LHSSize) &&
01964             RHSOffsetValue.ult(RHSSize)) {
01965           return ConstantInt::get(GetCompareTy(LHS),
01966                                   !CmpInst::isTrueWhenEqual(Pred));
01967         }
01968       }
01969 
01970       // Repeat the above check but this time without depending on DataLayout
01971       // or being able to compute a precise size.
01972       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
01973           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
01974           LHSOffset->isNullValue() &&
01975           RHSOffset->isNullValue())
01976         return ConstantInt::get(GetCompareTy(LHS),
01977                                 !CmpInst::isTrueWhenEqual(Pred));
01978     }
01979 
01980     // Even if an non-inbounds GEP occurs along the path we can still optimize
01981     // equality comparisons concerning the result. We avoid walking the whole
01982     // chain again by starting where the last calls to
01983     // stripAndComputeConstantOffsets left off and accumulate the offsets.
01984     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
01985     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
01986     if (LHS == RHS)
01987       return ConstantExpr::getICmp(Pred,
01988                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
01989                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
01990   }
01991 
01992   // Otherwise, fail.
01993   return nullptr;
01994 }
01995 
01996 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
01997 /// fold the result.  If not, this returns null.
01998 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
01999                                const Query &Q, unsigned MaxRecurse) {
02000   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
02001   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
02002 
02003   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
02004     if (Constant *CRHS = dyn_cast<Constant>(RHS))
02005       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
02006 
02007     // If we have a constant, make sure it is on the RHS.
02008     std::swap(LHS, RHS);
02009     Pred = CmpInst::getSwappedPredicate(Pred);
02010   }
02011 
02012   Type *ITy = GetCompareTy(LHS); // The return type.
02013   Type *OpTy = LHS->getType();   // The operand type.
02014 
02015   // icmp X, X -> true/false
02016   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
02017   // because X could be 0.
02018   if (LHS == RHS || isa<UndefValue>(RHS))
02019     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
02020 
02021   // Special case logic when the operands have i1 type.
02022   if (OpTy->getScalarType()->isIntegerTy(1)) {
02023     switch (Pred) {
02024     default: break;
02025     case ICmpInst::ICMP_EQ:
02026       // X == 1 -> X
02027       if (match(RHS, m_One()))
02028         return LHS;
02029       break;
02030     case ICmpInst::ICMP_NE:
02031       // X != 0 -> X
02032       if (match(RHS, m_Zero()))
02033         return LHS;
02034       break;
02035     case ICmpInst::ICMP_UGT:
02036       // X >u 0 -> X
02037       if (match(RHS, m_Zero()))
02038         return LHS;
02039       break;
02040     case ICmpInst::ICMP_UGE:
02041       // X >=u 1 -> X
02042       if (match(RHS, m_One()))
02043         return LHS;
02044       break;
02045     case ICmpInst::ICMP_SLT:
02046       // X <s 0 -> X
02047       if (match(RHS, m_Zero()))
02048         return LHS;
02049       break;
02050     case ICmpInst::ICMP_SLE:
02051       // X <=s -1 -> X
02052       if (match(RHS, m_One()))
02053         return LHS;
02054       break;
02055     }
02056   }
02057 
02058   // If we are comparing with zero then try hard since this is a common case.
02059   if (match(RHS, m_Zero())) {
02060     bool LHSKnownNonNegative, LHSKnownNegative;
02061     switch (Pred) {
02062     default: llvm_unreachable("Unknown ICmp predicate!");
02063     case ICmpInst::ICMP_ULT:
02064       return getFalse(ITy);
02065     case ICmpInst::ICMP_UGE:
02066       return getTrue(ITy);
02067     case ICmpInst::ICMP_EQ:
02068     case ICmpInst::ICMP_ULE:
02069       if (isKnownNonZero(LHS, Q.DL, 0, Q.AT, Q.CxtI, Q.DT))
02070         return getFalse(ITy);
02071       break;
02072     case ICmpInst::ICMP_NE:
02073     case ICmpInst::ICMP_UGT:
02074       if (isKnownNonZero(LHS, Q.DL, 0, Q.AT, Q.CxtI, Q.DT))
02075         return getTrue(ITy);
02076       break;
02077     case ICmpInst::ICMP_SLT:
02078       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL,
02079                      0, Q.AT, Q.CxtI, Q.DT);
02080       if (LHSKnownNegative)
02081         return getTrue(ITy);
02082       if (LHSKnownNonNegative)
02083         return getFalse(ITy);
02084       break;
02085     case ICmpInst::ICMP_SLE:
02086       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL,
02087                      0, Q.AT, Q.CxtI, Q.DT);
02088       if (LHSKnownNegative)
02089         return getTrue(ITy);
02090       if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL,
02091                                                 0, Q.AT, Q.CxtI, Q.DT))
02092         return getFalse(ITy);
02093       break;
02094     case ICmpInst::ICMP_SGE:
02095       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL,
02096                      0, Q.AT, Q.CxtI, Q.DT);
02097       if (LHSKnownNegative)
02098         return getFalse(ITy);
02099       if (LHSKnownNonNegative)
02100         return getTrue(ITy);
02101       break;
02102     case ICmpInst::ICMP_SGT:
02103       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL,
02104                      0, Q.AT, Q.CxtI, Q.DT);
02105       if (LHSKnownNegative)
02106         return getFalse(ITy);
02107       if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.DL, 
02108                                                 0, Q.AT, Q.CxtI, Q.DT))
02109         return getTrue(ITy);
02110       break;
02111     }
02112   }
02113 
02114   // See if we are doing a comparison with a constant integer.
02115   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
02116     // Rule out tautological comparisons (eg., ult 0 or uge 0).
02117     ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
02118     if (RHS_CR.isEmptySet())
02119       return ConstantInt::getFalse(CI->getContext());
02120     if (RHS_CR.isFullSet())
02121       return ConstantInt::getTrue(CI->getContext());
02122 
02123     // Many binary operators with constant RHS have easy to compute constant
02124     // range.  Use them to check whether the comparison is a tautology.
02125     unsigned Width = CI->getBitWidth();
02126     APInt Lower = APInt(Width, 0);
02127     APInt Upper = APInt(Width, 0);
02128     ConstantInt *CI2;
02129     if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
02130       // 'urem x, CI2' produces [0, CI2).
02131       Upper = CI2->getValue();
02132     } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
02133       // 'srem x, CI2' produces (-|CI2|, |CI2|).
02134       Upper = CI2->getValue().abs();
02135       Lower = (-Upper) + 1;
02136     } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
02137       // 'udiv CI2, x' produces [0, CI2].
02138       Upper = CI2->getValue() + 1;
02139     } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
02140       // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
02141       APInt NegOne = APInt::getAllOnesValue(Width);
02142       if (!CI2->isZero())
02143         Upper = NegOne.udiv(CI2->getValue()) + 1;
02144     } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) {
02145       if (CI2->isMinSignedValue()) {
02146         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
02147         Lower = CI2->getValue();
02148         Upper = Lower.lshr(1) + 1;
02149       } else {
02150         // 'sdiv CI2, x' produces [-|CI2|, |CI2|].
02151         Upper = CI2->getValue().abs() + 1;
02152         Lower = (-Upper) + 1;
02153       }
02154     } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
02155       APInt IntMin = APInt::getSignedMinValue(Width);
02156       APInt IntMax = APInt::getSignedMaxValue(Width);
02157       APInt Val = CI2->getValue();
02158       if (Val.isAllOnesValue()) {
02159         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
02160         //    where CI2 != -1 and CI2 != 0 and CI2 != 1
02161         Lower = IntMin + 1;
02162         Upper = IntMax + 1;
02163       } else if (Val.countLeadingZeros() < Width - 1) {
02164         // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]
02165         //    where CI2 != -1 and CI2 != 0 and CI2 != 1
02166         Lower = IntMin.sdiv(Val);
02167         Upper = IntMax.sdiv(Val);
02168         if (Lower.sgt(Upper))
02169           std::swap(Lower, Upper);
02170         Upper = Upper + 1;
02171         assert(Upper != Lower && "Upper part of range has wrapped!");
02172       }
02173     } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) {
02174       // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)]
02175       Lower = CI2->getValue();
02176       Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
02177     } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) {
02178       if (CI2->isNegative()) {
02179         // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2]
02180         unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1;
02181         Lower = CI2->getValue().shl(ShiftAmount);
02182         Upper = CI2->getValue() + 1;
02183       } else {
02184         // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1]
02185         unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1;
02186         Lower = CI2->getValue();
02187         Upper = CI2->getValue().shl(ShiftAmount) + 1;
02188       }
02189     } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
02190       // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
02191       APInt NegOne = APInt::getAllOnesValue(Width);
02192       if (CI2->getValue().ult(Width))
02193         Upper = NegOne.lshr(CI2->getValue()) + 1;
02194     } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) {
02195       // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2].
02196       unsigned ShiftAmount = Width - 1;
02197       if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
02198         ShiftAmount = CI2->getValue().countTrailingZeros();
02199       Lower = CI2->getValue().lshr(ShiftAmount);
02200       Upper = CI2->getValue() + 1;
02201     } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
02202       // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
02203       APInt IntMin = APInt::getSignedMinValue(Width);
02204       APInt IntMax = APInt::getSignedMaxValue(Width);
02205       if (CI2->getValue().ult(Width)) {
02206         Lower = IntMin.ashr(CI2->getValue());
02207         Upper = IntMax.ashr(CI2->getValue()) + 1;
02208       }
02209     } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) {
02210       unsigned ShiftAmount = Width - 1;
02211       if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact())
02212         ShiftAmount = CI2->getValue().countTrailingZeros();
02213       if (CI2->isNegative()) {
02214         // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)]
02215         Lower = CI2->getValue();
02216         Upper = CI2->getValue().ashr(ShiftAmount) + 1;
02217       } else {
02218         // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2]
02219         Lower = CI2->getValue().ashr(ShiftAmount);
02220         Upper = CI2->getValue() + 1;
02221       }
02222     } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
02223       // 'or x, CI2' produces [CI2, UINT_MAX].
02224       Lower = CI2->getValue();
02225     } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
02226       // 'and x, CI2' produces [0, CI2].
02227       Upper = CI2->getValue() + 1;
02228     }
02229     if (Lower != Upper) {
02230       ConstantRange LHS_CR = ConstantRange(Lower, Upper);
02231       if (RHS_CR.contains(LHS_CR))
02232         return ConstantInt::getTrue(RHS->getContext());
02233       if (RHS_CR.inverse().contains(LHS_CR))
02234         return ConstantInt::getFalse(RHS->getContext());
02235     }
02236   }
02237 
02238   // Compare of cast, for example (zext X) != 0 -> X != 0
02239   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
02240     Instruction *LI = cast<CastInst>(LHS);
02241     Value *SrcOp = LI->getOperand(0);
02242     Type *SrcTy = SrcOp->getType();
02243     Type *DstTy = LI->getType();
02244 
02245     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
02246     // if the integer type is the same size as the pointer type.
02247     if (MaxRecurse && Q.DL && isa<PtrToIntInst>(LI) &&
02248         Q.DL->getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
02249       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
02250         // Transfer the cast to the constant.
02251         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
02252                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
02253                                         Q, MaxRecurse-1))
02254           return V;
02255       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
02256         if (RI->getOperand(0)->getType() == SrcTy)
02257           // Compare without the cast.
02258           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
02259                                           Q, MaxRecurse-1))
02260             return V;
02261       }
02262     }
02263 
02264     if (isa<ZExtInst>(LHS)) {
02265       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
02266       // same type.
02267       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
02268         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
02269           // Compare X and Y.  Note that signed predicates become unsigned.
02270           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
02271                                           SrcOp, RI->getOperand(0), Q,
02272                                           MaxRecurse-1))
02273             return V;
02274       }
02275       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
02276       // too.  If not, then try to deduce the result of the comparison.
02277       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
02278         // Compute the constant that would happen if we truncated to SrcTy then
02279         // reextended to DstTy.
02280         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
02281         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
02282 
02283         // If the re-extended constant didn't change then this is effectively
02284         // also a case of comparing two zero-extended values.
02285         if (RExt == CI && MaxRecurse)
02286           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
02287                                         SrcOp, Trunc, Q, MaxRecurse-1))
02288             return V;
02289 
02290         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
02291         // there.  Use this to work out the result of the comparison.
02292         if (RExt != CI) {
02293           switch (Pred) {
02294           default: llvm_unreachable("Unknown ICmp predicate!");
02295           // LHS <u RHS.
02296           case ICmpInst::ICMP_EQ:
02297           case ICmpInst::ICMP_UGT:
02298           case ICmpInst::ICMP_UGE:
02299             return ConstantInt::getFalse(CI->getContext());
02300 
02301           case ICmpInst::ICMP_NE:
02302           case ICmpInst::ICMP_ULT:
02303           case ICmpInst::ICMP_ULE:
02304             return ConstantInt::getTrue(CI->getContext());
02305 
02306           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
02307           // is non-negative then LHS <s RHS.
02308           case ICmpInst::ICMP_SGT:
02309           case ICmpInst::ICMP_SGE:
02310             return CI->getValue().isNegative() ?
02311               ConstantInt::getTrue(CI->getContext()) :
02312               ConstantInt::getFalse(CI->getContext());
02313 
02314           case ICmpInst::ICMP_SLT:
02315           case ICmpInst::ICMP_SLE:
02316             return CI->getValue().isNegative() ?
02317               ConstantInt::getFalse(CI->getContext()) :
02318               ConstantInt::getTrue(CI->getContext());
02319           }
02320         }
02321       }
02322     }
02323 
02324     if (isa<SExtInst>(LHS)) {
02325       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
02326       // same type.
02327       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
02328         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
02329           // Compare X and Y.  Note that the predicate does not change.
02330           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
02331                                           Q, MaxRecurse-1))
02332             return V;
02333       }
02334       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
02335       // too.  If not, then try to deduce the result of the comparison.
02336       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
02337         // Compute the constant that would happen if we truncated to SrcTy then
02338         // reextended to DstTy.
02339         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
02340         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
02341 
02342         // If the re-extended constant didn't change then this is effectively
02343         // also a case of comparing two sign-extended values.
02344         if (RExt == CI && MaxRecurse)
02345           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
02346             return V;
02347 
02348         // Otherwise the upper bits of LHS are all equal, while RHS has varying
02349         // bits there.  Use this to work out the result of the comparison.
02350         if (RExt != CI) {
02351           switch (Pred) {
02352           default: llvm_unreachable("Unknown ICmp predicate!");
02353           case ICmpInst::ICMP_EQ:
02354             return ConstantInt::getFalse(CI->getContext());
02355           case ICmpInst::ICMP_NE:
02356             return ConstantInt::getTrue(CI->getContext());
02357 
02358           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
02359           // LHS >s RHS.
02360           case ICmpInst::ICMP_SGT:
02361           case ICmpInst::ICMP_SGE:
02362             return CI->getValue().isNegative() ?
02363               ConstantInt::getTrue(CI->getContext()) :
02364               ConstantInt::getFalse(CI->getContext());
02365           case ICmpInst::ICMP_SLT:
02366           case ICmpInst::ICMP_SLE:
02367             return CI->getValue().isNegative() ?
02368               ConstantInt::getFalse(CI->getContext()) :
02369               ConstantInt::getTrue(CI->getContext());
02370 
02371           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
02372           // LHS >u RHS.
02373           case ICmpInst::ICMP_UGT:
02374           case ICmpInst::ICMP_UGE:
02375             // Comparison is true iff the LHS <s 0.
02376             if (MaxRecurse)
02377               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
02378                                               Constant::getNullValue(SrcTy),
02379                                               Q, MaxRecurse-1))
02380                 return V;
02381             break;
02382           case ICmpInst::ICMP_ULT:
02383           case ICmpInst::ICMP_ULE:
02384             // Comparison is true iff the LHS >=s 0.
02385             if (MaxRecurse)
02386               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
02387                                               Constant::getNullValue(SrcTy),
02388                                               Q, MaxRecurse-1))
02389                 return V;
02390             break;
02391           }
02392         }
02393       }
02394     }
02395   }
02396 
02397   // If a bit is known to be zero for A and known to be one for B,
02398   // then A and B cannot be equal.
02399   if (ICmpInst::isEquality(Pred)) {
02400     if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
02401       uint32_t BitWidth = CI->getBitWidth();
02402       APInt LHSKnownZero(BitWidth, 0);
02403       APInt LHSKnownOne(BitWidth, 0);
02404       computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL,
02405                        0, Q.AT, Q.CxtI, Q.DT);
02406       APInt RHSKnownZero(BitWidth, 0);
02407       APInt RHSKnownOne(BitWidth, 0);
02408       computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, Q.DL,
02409                        0, Q.AT, Q.CxtI, Q.DT);
02410       if (((LHSKnownOne & RHSKnownZero) != 0) ||
02411           ((LHSKnownZero & RHSKnownOne) != 0))
02412         return (Pred == ICmpInst::ICMP_EQ)
02413                    ? ConstantInt::getFalse(CI->getContext())
02414                    : ConstantInt::getTrue(CI->getContext());
02415     }
02416   }
02417 
02418   // Special logic for binary operators.
02419   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
02420   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
02421   if (MaxRecurse && (LBO || RBO)) {
02422     // Analyze the case when either LHS or RHS is an add instruction.
02423     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
02424     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
02425     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
02426     if (LBO && LBO->getOpcode() == Instruction::Add) {
02427       A = LBO->getOperand(0); B = LBO->getOperand(1);
02428       NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
02429         (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
02430         (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
02431     }
02432     if (RBO && RBO->getOpcode() == Instruction::Add) {
02433       C = RBO->getOperand(0); D = RBO->getOperand(1);
02434       NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
02435         (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
02436         (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
02437     }
02438 
02439     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
02440     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
02441       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
02442                                       Constant::getNullValue(RHS->getType()),
02443                                       Q, MaxRecurse-1))
02444         return V;
02445 
02446     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
02447     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
02448       if (Value *V = SimplifyICmpInst(Pred,
02449                                       Constant::getNullValue(LHS->getType()),
02450                                       C == LHS ? D : C, Q, MaxRecurse-1))
02451         return V;
02452 
02453     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
02454     if (A && C && (A == C || A == D || B == C || B == D) &&
02455         NoLHSWrapProblem && NoRHSWrapProblem) {
02456       // Determine Y and Z in the form icmp (X+Y), (X+Z).
02457       Value *Y, *Z;
02458       if (A == C) {
02459         // C + B == C + D  ->  B == D
02460         Y = B;
02461         Z = D;
02462       } else if (A == D) {
02463         // D + B == C + D  ->  B == C
02464         Y = B;
02465         Z = C;
02466       } else if (B == C) {
02467         // A + C == C + D  ->  A == D
02468         Y = A;
02469         Z = D;
02470       } else {
02471         assert(B == D);
02472         // A + D == C + D  ->  A == C
02473         Y = A;
02474         Z = C;
02475       }
02476       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
02477         return V;
02478     }
02479   }
02480 
02481   // 0 - (zext X) pred C
02482   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
02483     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
02484       if (RHSC->getValue().isStrictlyPositive()) {
02485         if (Pred == ICmpInst::ICMP_SLT)
02486           return ConstantInt::getTrue(RHSC->getContext());
02487         if (Pred == ICmpInst::ICMP_SGE)
02488           return ConstantInt::getFalse(RHSC->getContext());
02489         if (Pred == ICmpInst::ICMP_EQ)
02490           return ConstantInt::getFalse(RHSC->getContext());
02491         if (Pred == ICmpInst::ICMP_NE)
02492           return ConstantInt::getTrue(RHSC->getContext());
02493       }
02494       if (RHSC->getValue().isNonNegative()) {
02495         if (Pred == ICmpInst::ICMP_SLE)
02496           return ConstantInt::getTrue(RHSC->getContext());
02497         if (Pred == ICmpInst::ICMP_SGT)
02498           return ConstantInt::getFalse(RHSC->getContext());
02499       }
02500     }
02501   }
02502 
02503   // icmp pred (urem X, Y), Y
02504   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
02505     bool KnownNonNegative, KnownNegative;
02506     switch (Pred) {
02507     default:
02508       break;
02509     case ICmpInst::ICMP_SGT:
02510     case ICmpInst::ICMP_SGE:
02511       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL,
02512                      0, Q.AT, Q.CxtI, Q.DT);
02513       if (!KnownNonNegative)
02514         break;
02515       // fall-through
02516     case ICmpInst::ICMP_EQ:
02517     case ICmpInst::ICMP_UGT:
02518     case ICmpInst::ICMP_UGE:
02519       return getFalse(ITy);
02520     case ICmpInst::ICMP_SLT:
02521     case ICmpInst::ICMP_SLE:
02522       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL,
02523                      0, Q.AT, Q.CxtI, Q.DT);
02524       if (!KnownNonNegative)
02525         break;
02526       // fall-through
02527     case ICmpInst::ICMP_NE:
02528     case ICmpInst::ICMP_ULT:
02529     case ICmpInst::ICMP_ULE:
02530       return getTrue(ITy);
02531     }
02532   }
02533 
02534   // icmp pred X, (urem Y, X)
02535   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
02536     bool KnownNonNegative, KnownNegative;
02537     switch (Pred) {
02538     default:
02539       break;
02540     case ICmpInst::ICMP_SGT:
02541     case ICmpInst::ICMP_SGE:
02542       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL,
02543                      0, Q.AT, Q.CxtI, Q.DT);
02544       if (!KnownNonNegative)
02545         break;
02546       // fall-through
02547     case ICmpInst::ICMP_NE:
02548     case ICmpInst::ICMP_UGT:
02549     case ICmpInst::ICMP_UGE:
02550       return getTrue(ITy);
02551     case ICmpInst::ICMP_SLT:
02552     case ICmpInst::ICMP_SLE:
02553       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL,
02554                      0, Q.AT, Q.CxtI, Q.DT);
02555       if (!KnownNonNegative)
02556         break;
02557       // fall-through
02558     case ICmpInst::ICMP_EQ:
02559     case ICmpInst::ICMP_ULT:
02560     case ICmpInst::ICMP_ULE:
02561       return getFalse(ITy);
02562     }
02563   }
02564 
02565   // x udiv y <=u x.
02566   if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
02567     // icmp pred (X /u Y), X
02568     if (Pred == ICmpInst::ICMP_UGT)
02569       return getFalse(ITy);
02570     if (Pred == ICmpInst::ICMP_ULE)
02571       return getTrue(ITy);
02572   }
02573 
02574   // handle:
02575   //   CI2 << X == CI
02576   //   CI2 << X != CI
02577   //
02578   //   where CI2 is a power of 2 and CI isn't
02579   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
02580     const APInt *CI2Val, *CIVal = &CI->getValue();
02581     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
02582         CI2Val->isPowerOf2()) {
02583       if (!CIVal->isPowerOf2()) {
02584         // CI2 << X can equal zero in some circumstances,
02585         // this simplification is unsafe if CI is zero.
02586         //
02587         // We know it is safe if:
02588         // - The shift is nsw, we can't shift out the one bit.
02589         // - The shift is nuw, we can't shift out the one bit.
02590         // - CI2 is one
02591         // - CI isn't zero
02592         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
02593             *CI2Val == 1 || !CI->isZero()) {
02594           if (Pred == ICmpInst::ICMP_EQ)
02595             return ConstantInt::getFalse(RHS->getContext());
02596           if (Pred == ICmpInst::ICMP_NE)
02597             return ConstantInt::getTrue(RHS->getContext());
02598         }
02599       }
02600       if (CIVal->isSignBit() && *CI2Val == 1) {
02601         if (Pred == ICmpInst::ICMP_UGT)
02602           return ConstantInt::getFalse(RHS->getContext());
02603         if (Pred == ICmpInst::ICMP_ULE)
02604           return ConstantInt::getTrue(RHS->getContext());
02605       }
02606     }
02607   }
02608 
02609   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
02610       LBO->getOperand(1) == RBO->getOperand(1)) {
02611     switch (LBO->getOpcode()) {
02612     default: break;
02613     case Instruction::UDiv:
02614     case Instruction::LShr:
02615       if (ICmpInst::isSigned(Pred))
02616         break;
02617       // fall-through
02618     case Instruction::SDiv:
02619     case Instruction::AShr:
02620       if (!LBO->isExact() || !RBO->isExact())
02621         break;
02622       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
02623                                       RBO->getOperand(0), Q, MaxRecurse-1))
02624         return V;
02625       break;
02626     case Instruction::Shl: {
02627       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
02628       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
02629       if (!NUW && !NSW)
02630         break;
02631       if (!NSW && ICmpInst::isSigned(Pred))
02632         break;
02633       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
02634                                       RBO->getOperand(0), Q, MaxRecurse-1))
02635         return V;
02636       break;
02637     }
02638     }
02639   }
02640 
02641   // Simplify comparisons involving max/min.
02642   Value *A, *B;
02643   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
02644   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
02645 
02646   // Signed variants on "max(a,b)>=a -> true".
02647   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
02648     if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
02649     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
02650     // We analyze this as smax(A, B) pred A.
02651     P = Pred;
02652   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
02653              (A == LHS || B == LHS)) {
02654     if (A != LHS) std::swap(A, B); // A pred smax(A, B).
02655     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
02656     // We analyze this as smax(A, B) swapped-pred A.
02657     P = CmpInst::getSwappedPredicate(Pred);
02658   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
02659              (A == RHS || B == RHS)) {
02660     if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
02661     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
02662     // We analyze this as smax(-A, -B) swapped-pred -A.
02663     // Note that we do not need to actually form -A or -B thanks to EqP.
02664     P = CmpInst::getSwappedPredicate(Pred);
02665   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
02666              (A == LHS || B == LHS)) {
02667     if (A != LHS) std::swap(A, B); // A pred smin(A, B).
02668     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
02669     // We analyze this as smax(-A, -B) pred -A.
02670     // Note that we do not need to actually form -A or -B thanks to EqP.
02671     P = Pred;
02672   }
02673   if (P != CmpInst::BAD_ICMP_PREDICATE) {
02674     // Cases correspond to "max(A, B) p A".
02675     switch (P) {
02676     default:
02677       break;
02678     case CmpInst::ICMP_EQ:
02679     case CmpInst::ICMP_SLE:
02680       // Equivalent to "A EqP B".  This may be the same as the condition tested
02681       // in the max/min; if so, we can just return that.
02682       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
02683         return V;
02684       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
02685         return V;
02686       // Otherwise, see if "A EqP B" simplifies.
02687       if (MaxRecurse)
02688         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
02689           return V;
02690       break;
02691     case CmpInst::ICMP_NE:
02692     case CmpInst::ICMP_SGT: {
02693       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
02694       // Equivalent to "A InvEqP B".  This may be the same as the condition
02695       // tested in the max/min; if so, we can just return that.
02696       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
02697         return V;
02698       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
02699         return V;
02700       // Otherwise, see if "A InvEqP B" simplifies.
02701       if (MaxRecurse)
02702         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
02703           return V;
02704       break;
02705     }
02706     case CmpInst::ICMP_SGE:
02707       // Always true.
02708       return getTrue(ITy);
02709     case CmpInst::ICMP_SLT:
02710       // Always false.
02711       return getFalse(ITy);
02712     }
02713   }
02714 
02715   // Unsigned variants on "max(a,b)>=a -> true".
02716   P = CmpInst::BAD_ICMP_PREDICATE;
02717   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
02718     if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
02719     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
02720     // We analyze this as umax(A, B) pred A.
02721     P = Pred;
02722   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
02723              (A == LHS || B == LHS)) {
02724     if (A != LHS) std::swap(A, B); // A pred umax(A, B).
02725     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
02726     // We analyze this as umax(A, B) swapped-pred A.
02727     P = CmpInst::getSwappedPredicate(Pred);
02728   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
02729              (A == RHS || B == RHS)) {
02730     if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
02731     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
02732     // We analyze this as umax(-A, -B) swapped-pred -A.
02733     // Note that we do not need to actually form -A or -B thanks to EqP.
02734     P = CmpInst::getSwappedPredicate(Pred);
02735   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
02736              (A == LHS || B == LHS)) {
02737     if (A != LHS) std::swap(A, B); // A pred umin(A, B).
02738     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
02739     // We analyze this as umax(-A, -B) pred -A.
02740     // Note that we do not need to actually form -A or -B thanks to EqP.
02741     P = Pred;
02742   }
02743   if (P != CmpInst::BAD_ICMP_PREDICATE) {
02744     // Cases correspond to "max(A, B) p A".
02745     switch (P) {
02746     default:
02747       break;
02748     case CmpInst::ICMP_EQ:
02749     case CmpInst::ICMP_ULE:
02750       // Equivalent to "A EqP B".  This may be the same as the condition tested
02751       // in the max/min; if so, we can just return that.
02752       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
02753         return V;
02754       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
02755         return V;
02756       // Otherwise, see if "A EqP B" simplifies.
02757       if (MaxRecurse)
02758         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
02759           return V;
02760       break;
02761     case CmpInst::ICMP_NE:
02762     case CmpInst::ICMP_UGT: {
02763       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
02764       // Equivalent to "A InvEqP B".  This may be the same as the condition
02765       // tested in the max/min; if so, we can just return that.
02766       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
02767         return V;
02768       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
02769         return V;
02770       // Otherwise, see if "A InvEqP B" simplifies.
02771       if (MaxRecurse)
02772         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
02773           return V;
02774       break;
02775     }
02776     case CmpInst::ICMP_UGE:
02777       // Always true.
02778       return getTrue(ITy);
02779     case CmpInst::ICMP_ULT:
02780       // Always false.
02781       return getFalse(ITy);
02782     }
02783   }
02784 
02785   // Variants on "max(x,y) >= min(x,z)".
02786   Value *C, *D;
02787   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
02788       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
02789       (A == C || A == D || B == C || B == D)) {
02790     // max(x, ?) pred min(x, ?).
02791     if (Pred == CmpInst::ICMP_SGE)
02792       // Always true.
02793       return getTrue(ITy);
02794     if (Pred == CmpInst::ICMP_SLT)
02795       // Always false.
02796       return getFalse(ITy);
02797   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
02798              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
02799              (A == C || A == D || B == C || B == D)) {
02800     // min(x, ?) pred max(x, ?).
02801     if (Pred == CmpInst::ICMP_SLE)
02802       // Always true.
02803       return getTrue(ITy);
02804     if (Pred == CmpInst::ICMP_SGT)
02805       // Always false.
02806       return getFalse(ITy);
02807   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
02808              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
02809              (A == C || A == D || B == C || B == D)) {
02810     // max(x, ?) pred min(x, ?).
02811     if (Pred == CmpInst::ICMP_UGE)
02812       // Always true.
02813       return getTrue(ITy);
02814     if (Pred == CmpInst::ICMP_ULT)
02815       // Always false.
02816       return getFalse(ITy);
02817   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
02818              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
02819              (A == C || A == D || B == C || B == D)) {
02820     // min(x, ?) pred max(x, ?).
02821     if (Pred == CmpInst::ICMP_ULE)
02822       // Always true.
02823       return getTrue(ITy);
02824     if (Pred == CmpInst::ICMP_UGT)
02825       // Always false.
02826       return getFalse(ITy);
02827   }
02828 
02829   // Simplify comparisons of related pointers using a powerful, recursive
02830   // GEP-walk when we have target data available..
02831   if (LHS->getType()->isPointerTy())
02832     if (Constant *C = computePointerICmp(Q.DL, Q.TLI, Pred, LHS, RHS))
02833       return C;
02834 
02835   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
02836     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
02837       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
02838           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
02839           (ICmpInst::isEquality(Pred) ||
02840            (GLHS->isInBounds() && GRHS->isInBounds() &&
02841             Pred == ICmpInst::getSignedPredicate(Pred)))) {
02842         // The bases are equal and the indices are constant.  Build a constant
02843         // expression GEP with the same indices and a null base pointer to see
02844         // what constant folding can make out of it.
02845         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
02846         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
02847         Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
02848 
02849         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
02850         Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
02851         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
02852       }
02853     }
02854   }
02855 
02856   // If the comparison is with the result of a select instruction, check whether
02857   // comparing with either branch of the select always yields the same value.
02858   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
02859     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
02860       return V;
02861 
02862   // If the comparison is with the result of a phi instruction, check whether
02863   // doing the compare with each incoming phi value yields a common result.
02864   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
02865     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
02866       return V;
02867 
02868   return nullptr;
02869 }
02870 
02871 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
02872                               const DataLayout *DL,
02873                               const TargetLibraryInfo *TLI,
02874                               const DominatorTree *DT,
02875                               AssumptionTracker *AT,
02876                               Instruction *CxtI) {
02877   return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT, AT, CxtI),
02878                             RecursionLimit);
02879 }
02880 
02881 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
02882 /// fold the result.  If not, this returns null.
02883 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
02884                                const Query &Q, unsigned MaxRecurse) {
02885   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
02886   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
02887 
02888   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
02889     if (Constant *CRHS = dyn_cast<Constant>(RHS))
02890       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
02891 
02892     // If we have a constant, make sure it is on the RHS.
02893     std::swap(LHS, RHS);
02894     Pred = CmpInst::getSwappedPredicate(Pred);
02895   }
02896 
02897   // Fold trivial predicates.
02898   if (Pred == FCmpInst::FCMP_FALSE)
02899     return ConstantInt::get(GetCompareTy(LHS), 0);
02900   if (Pred == FCmpInst::FCMP_TRUE)
02901     return ConstantInt::get(GetCompareTy(LHS), 1);
02902 
02903   if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
02904     return UndefValue::get(GetCompareTy(LHS));
02905 
02906   // fcmp x,x -> true/false.  Not all compares are foldable.
02907   if (LHS == RHS) {
02908     if (CmpInst::isTrueWhenEqual(Pred))
02909       return ConstantInt::get(GetCompareTy(LHS), 1);
02910     if (CmpInst::isFalseWhenEqual(Pred))
02911       return ConstantInt::get(GetCompareTy(LHS), 0);
02912   }
02913 
02914   // Handle fcmp with constant RHS
02915   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
02916     // If the constant is a nan, see if we can fold the comparison based on it.
02917     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
02918       if (CFP->getValueAPF().isNaN()) {
02919         if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
02920           return ConstantInt::getFalse(CFP->getContext());
02921         assert(FCmpInst::isUnordered(Pred) &&
02922                "Comparison must be either ordered or unordered!");
02923         // True if unordered.
02924         return ConstantInt::getTrue(CFP->getContext());
02925       }
02926       // Check whether the constant is an infinity.
02927       if (CFP->getValueAPF().isInfinity()) {
02928         if (CFP->getValueAPF().isNegative()) {
02929           switch (Pred) {
02930           case FCmpInst::FCMP_OLT:
02931             // No value is ordered and less than negative infinity.
02932             return ConstantInt::getFalse(CFP->getContext());
02933           case FCmpInst::FCMP_UGE:
02934             // All values are unordered with or at least negative infinity.
02935             return ConstantInt::getTrue(CFP->getContext());
02936           default:
02937             break;
02938           }
02939         } else {
02940           switch (Pred) {
02941           case FCmpInst::FCMP_OGT:
02942             // No value is ordered and greater than infinity.
02943             return ConstantInt::getFalse(CFP->getContext());
02944           case FCmpInst::FCMP_ULE:
02945             // All values are unordered with and at most infinity.
02946             return ConstantInt::getTrue(CFP->getContext());
02947           default:
02948             break;
02949           }
02950         }
02951       }
02952     }
02953   }
02954 
02955   // If the comparison is with the result of a select instruction, check whether
02956   // comparing with either branch of the select always yields the same value.
02957   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
02958     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
02959       return V;
02960 
02961   // If the comparison is with the result of a phi instruction, check whether
02962   // doing the compare with each incoming phi value yields a common result.
02963   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
02964     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
02965       return V;
02966 
02967   return nullptr;
02968 }
02969 
02970 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
02971                               const DataLayout *DL,
02972                               const TargetLibraryInfo *TLI,
02973                               const DominatorTree *DT,
02974                               AssumptionTracker *AT,
02975                               const Instruction *CxtI) {
02976   return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT, AT, CxtI),
02977                             RecursionLimit);
02978 }
02979 
02980 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
02981 /// the result.  If not, this returns null.
02982 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
02983                                  Value *FalseVal, const Query &Q,
02984                                  unsigned MaxRecurse) {
02985   // select true, X, Y  -> X
02986   // select false, X, Y -> Y
02987   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
02988     if (CB->isAllOnesValue())
02989       return TrueVal;
02990     if (CB->isNullValue())
02991       return FalseVal;
02992   }
02993 
02994   // select C, X, X -> X
02995   if (TrueVal == FalseVal)
02996     return TrueVal;
02997 
02998   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
02999     if (isa<Constant>(TrueVal))
03000       return TrueVal;
03001     return FalseVal;
03002   }
03003   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
03004     return FalseVal;
03005   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
03006     return TrueVal;
03007 
03008   return nullptr;
03009 }
03010 
03011 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
03012                                 const DataLayout *DL,
03013                                 const TargetLibraryInfo *TLI,
03014                                 const DominatorTree *DT,
03015                                 AssumptionTracker *AT,
03016                                 const Instruction *CxtI) {
03017   return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
03018                               Query (DL, TLI, DT, AT, CxtI), RecursionLimit);
03019 }
03020 
03021 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
03022 /// fold the result.  If not, this returns null.
03023 static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
03024   // The type of the GEP pointer operand.
03025   PointerType *PtrTy = cast<PointerType>(Ops[0]->getType()->getScalarType());
03026   unsigned AS = PtrTy->getAddressSpace();
03027 
03028   // getelementptr P -> P.
03029   if (Ops.size() == 1)
03030     return Ops[0];
03031 
03032   // Compute the (pointer) type returned by the GEP instruction.
03033   Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
03034   Type *GEPTy = PointerType::get(LastType, AS);
03035   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
03036     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
03037 
03038   if (isa<UndefValue>(Ops[0]))
03039     return UndefValue::get(GEPTy);
03040 
03041   if (Ops.size() == 2) {
03042     // getelementptr P, 0 -> P.
03043     if (match(Ops[1], m_Zero()))
03044       return Ops[0];
03045 
03046     Type *Ty = PtrTy->getElementType();
03047     if (Q.DL && Ty->isSized()) {
03048       Value *P;
03049       uint64_t C;
03050       uint64_t TyAllocSize = Q.DL->getTypeAllocSize(Ty);
03051       // getelementptr P, N -> P if P points to a type of zero size.
03052       if (TyAllocSize == 0)
03053         return Ops[0];
03054 
03055       // The following transforms are only safe if the ptrtoint cast
03056       // doesn't truncate the pointers.
03057       if (Ops[1]->getType()->getScalarSizeInBits() ==
03058           Q.DL->getPointerSizeInBits(AS)) {
03059         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
03060           if (match(P, m_Zero()))
03061             return Constant::getNullValue(GEPTy);
03062           Value *Temp;
03063           if (match(P, m_PtrToInt(m_Value(Temp))))
03064             if (Temp->getType() == GEPTy)
03065               return Temp;
03066           return nullptr;
03067         };
03068 
03069         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
03070         if (TyAllocSize == 1 &&
03071             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
03072           if (Value *R = PtrToIntOrZero(P))
03073             return R;
03074 
03075         // getelementptr V, (ashr (sub P, V), C) -> Q
03076         // if P points to a type of size 1 << C.
03077         if (match(Ops[1],
03078                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
03079                          m_ConstantInt(C))) &&
03080             TyAllocSize == 1ULL << C)
03081           if (Value *R = PtrToIntOrZero(P))
03082             return R;
03083 
03084         // getelementptr V, (sdiv (sub P, V), C) -> Q
03085         // if P points to a type of size C.
03086         if (match(Ops[1],
03087                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
03088                          m_SpecificInt(TyAllocSize))))
03089           if (Value *R = PtrToIntOrZero(P))
03090             return R;
03091       }
03092     }
03093   }
03094 
03095   // Check to see if this is constant foldable.
03096   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
03097     if (!isa<Constant>(Ops[i]))
03098       return nullptr;
03099 
03100   return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
03101 }
03102 
03103 Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *DL,
03104                              const TargetLibraryInfo *TLI,
03105                              const DominatorTree *DT, AssumptionTracker *AT,
03106                              const Instruction *CxtI) {
03107   return ::SimplifyGEPInst(Ops, Query (DL, TLI, DT, AT, CxtI), RecursionLimit);
03108 }
03109 
03110 /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
03111 /// can fold the result.  If not, this returns null.
03112 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
03113                                       ArrayRef<unsigned> Idxs, const Query &Q,
03114                                       unsigned) {
03115   if (Constant *CAgg = dyn_cast<Constant>(Agg))
03116     if (Constant *CVal = dyn_cast<Constant>(Val))
03117       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
03118 
03119   // insertvalue x, undef, n -> x
03120   if (match(Val, m_Undef()))
03121     return Agg;
03122 
03123   // insertvalue x, (extractvalue y, n), n
03124   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
03125     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
03126         EV->getIndices() == Idxs) {
03127       // insertvalue undef, (extractvalue y, n), n -> y
03128       if (match(Agg, m_Undef()))
03129         return EV->getAggregateOperand();
03130 
03131       // insertvalue y, (extractvalue y, n), n -> y
03132       if (Agg == EV->getAggregateOperand())
03133         return Agg;
03134     }
03135 
03136   return nullptr;
03137 }
03138 
03139 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
03140                                      ArrayRef<unsigned> Idxs,
03141                                      const DataLayout *DL,
03142                                      const TargetLibraryInfo *TLI,
03143                                      const DominatorTree *DT,
03144                                      AssumptionTracker *AT,
03145                                      const Instruction *CxtI) {
03146   return ::SimplifyInsertValueInst(Agg, Val, Idxs,
03147                                    Query (DL, TLI, DT, AT, CxtI),
03148                                    RecursionLimit);
03149 }
03150 
03151 /// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
03152 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
03153   // If all of the PHI's incoming values are the same then replace the PHI node
03154   // with the common value.
03155   Value *CommonValue = nullptr;
03156   bool HasUndefInput = false;
03157   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
03158     Value *Incoming = PN->getIncomingValue(i);
03159     // If the incoming value is the phi node itself, it can safely be skipped.
03160     if (Incoming == PN) continue;
03161     if (isa<UndefValue>(Incoming)) {
03162       // Remember that we saw an undef value, but otherwise ignore them.
03163       HasUndefInput = true;
03164       continue;
03165     }
03166     if (CommonValue && Incoming != CommonValue)
03167       return nullptr;  // Not the same, bail out.
03168     CommonValue = Incoming;
03169   }
03170 
03171   // If CommonValue is null then all of the incoming values were either undef or
03172   // equal to the phi node itself.
03173   if (!CommonValue)
03174     return UndefValue::get(PN->getType());
03175 
03176   // If we have a PHI node like phi(X, undef, X), where X is defined by some
03177   // instruction, we cannot return X as the result of the PHI node unless it
03178   // dominates the PHI block.
03179   if (HasUndefInput)
03180     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
03181 
03182   return CommonValue;
03183 }
03184 
03185 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
03186   if (Constant *C = dyn_cast<Constant>(Op))
03187     return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.DL, Q.TLI);
03188 
03189   return nullptr;
03190 }
03191 
03192 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *DL,
03193                                const TargetLibraryInfo *TLI,
03194                                const DominatorTree *DT,
03195                                AssumptionTracker *AT,
03196                                const Instruction *CxtI) {
03197   return ::SimplifyTruncInst(Op, Ty, Query (DL, TLI, DT, AT, CxtI),
03198                              RecursionLimit);
03199 }
03200 
03201 //=== Helper functions for higher up the class hierarchy.
03202 
03203 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
03204 /// fold the result.  If not, this returns null.
03205 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
03206                             const Query &Q, unsigned MaxRecurse) {
03207   switch (Opcode) {
03208   case Instruction::Add:
03209     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
03210                            Q, MaxRecurse);
03211   case Instruction::FAdd:
03212     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
03213 
03214   case Instruction::Sub:
03215     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
03216                            Q, MaxRecurse);
03217   case Instruction::FSub:
03218     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
03219 
03220   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
03221   case Instruction::FMul:
03222     return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
03223   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
03224   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
03225   case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
03226   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
03227   case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
03228   case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
03229   case Instruction::Shl:
03230     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
03231                            Q, MaxRecurse);
03232   case Instruction::LShr:
03233     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
03234   case Instruction::AShr:
03235     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
03236   case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
03237   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
03238   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
03239   default:
03240     if (Constant *CLHS = dyn_cast<Constant>(LHS))
03241       if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
03242         Constant *COps[] = {CLHS, CRHS};
03243         return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.DL,
03244                                         Q.TLI);
03245       }
03246 
03247     // If the operation is associative, try some generic simplifications.
03248     if (Instruction::isAssociative(Opcode))
03249       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
03250         return V;
03251 
03252     // If the operation is with the result of a select instruction check whether
03253     // operating on either branch of the select always yields the same value.
03254     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
03255       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
03256         return V;
03257 
03258     // If the operation is with the result of a phi instruction, check whether
03259     // operating on all incoming values of the phi always yields the same value.
03260     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
03261       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
03262         return V;
03263 
03264     return nullptr;
03265   }
03266 }
03267 
03268 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
03269                            const DataLayout *DL, const TargetLibraryInfo *TLI,
03270                            const DominatorTree *DT, AssumptionTracker *AT,
03271                            const Instruction *CxtI) {
03272   return ::SimplifyBinOp(Opcode, LHS, RHS, Query (DL, TLI, DT, AT, CxtI),
03273                          RecursionLimit);
03274 }
03275 
03276 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
03277 /// fold the result.
03278 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
03279                               const Query &Q, unsigned MaxRecurse) {
03280   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
03281     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
03282   return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
03283 }
03284 
03285 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
03286                              const DataLayout *DL, const TargetLibraryInfo *TLI,
03287                              const DominatorTree *DT, AssumptionTracker *AT,
03288                              const Instruction *CxtI) {
03289   return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (DL, TLI, DT, AT, CxtI),
03290                            RecursionLimit);
03291 }
03292 
03293 static bool IsIdempotent(Intrinsic::ID ID) {
03294   switch (ID) {
03295   default: return false;
03296 
03297   // Unary idempotent: f(f(x)) = f(x)
03298   case Intrinsic::fabs:
03299   case Intrinsic::floor:
03300   case Intrinsic::ceil:
03301   case Intrinsic::trunc:
03302   case Intrinsic::rint:
03303   case Intrinsic::nearbyint:
03304   case Intrinsic::round:
03305     return true;
03306   }
03307 }
03308 
03309 template <typename IterTy>
03310 static Value *SimplifyIntrinsic(Intrinsic::ID IID, IterTy ArgBegin, IterTy ArgEnd,
03311                                 const Query &Q, unsigned MaxRecurse) {
03312   // Perform idempotent optimizations
03313   if (!IsIdempotent(IID))
03314     return nullptr;
03315 
03316   // Unary Ops
03317   if (std::distance(ArgBegin, ArgEnd) == 1)
03318     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
03319       if (II->getIntrinsicID() == IID)
03320         return II;
03321 
03322   return nullptr;
03323 }
03324 
03325 template <typename IterTy>
03326 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
03327                            const Query &Q, unsigned MaxRecurse) {
03328   Type *Ty = V->getType();
03329   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
03330     Ty = PTy->getElementType();
03331   FunctionType *FTy = cast<FunctionType>(Ty);
03332 
03333   // call undef -> undef
03334   if (isa<UndefValue>(V))
03335     return UndefValue::get(FTy->getReturnType());
03336 
03337   Function *F = dyn_cast<Function>(V);
03338   if (!F)
03339     return nullptr;
03340 
03341   if (unsigned IID = F->getIntrinsicID())
03342     if (Value *Ret =
03343         SimplifyIntrinsic((Intrinsic::ID) IID, ArgBegin, ArgEnd, Q, MaxRecurse))
03344       return Ret;
03345 
03346   if (!canConstantFoldCallTo(F))
03347     return nullptr;
03348 
03349   SmallVector<Constant *, 4> ConstantArgs;
03350   ConstantArgs.reserve(ArgEnd - ArgBegin);
03351   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
03352     Constant *C = dyn_cast<Constant>(*I);
03353     if (!C)
03354       return nullptr;
03355     ConstantArgs.push_back(C);
03356   }
03357 
03358   return ConstantFoldCall(F, ConstantArgs, Q.TLI);
03359 }
03360 
03361 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
03362                           User::op_iterator ArgEnd, const DataLayout *DL,
03363                           const TargetLibraryInfo *TLI,
03364                           const DominatorTree *DT, AssumptionTracker *AT,
03365                           const Instruction *CxtI) {
03366   return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AT, CxtI),
03367                         RecursionLimit);
03368 }
03369 
03370 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
03371                           const DataLayout *DL, const TargetLibraryInfo *TLI,
03372                           const DominatorTree *DT, AssumptionTracker *AT,
03373                           const Instruction *CxtI) {
03374   return ::SimplifyCall(V, Args.begin(), Args.end(),
03375                         Query(DL, TLI, DT, AT, CxtI), RecursionLimit);
03376 }
03377 
03378 /// SimplifyInstruction - See if we can compute a simplified version of this
03379 /// instruction.  If not, this returns null.
03380 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *DL,
03381                                  const TargetLibraryInfo *TLI,
03382                                  const DominatorTree *DT,
03383                                  AssumptionTracker *AT) {
03384   Value *Result;
03385 
03386   switch (I->getOpcode()) {
03387   default:
03388     Result = ConstantFoldInstruction(I, DL, TLI);
03389     break;
03390   case Instruction::FAdd:
03391     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
03392                               I->getFastMathFlags(), DL, TLI, DT, AT, I);
03393     break;
03394   case Instruction::Add:
03395     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
03396                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
03397                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
03398                              DL, TLI, DT, AT, I);
03399     break;
03400   case Instruction::FSub:
03401     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
03402                               I->getFastMathFlags(), DL, TLI, DT, AT, I);
03403     break;
03404   case Instruction::Sub:
03405     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
03406                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
03407                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
03408                              DL, TLI, DT, AT, I);
03409     break;
03410   case Instruction::FMul:
03411     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
03412                               I->getFastMathFlags(), DL, TLI, DT, AT, I);
03413     break;
03414   case Instruction::Mul:
03415     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1),
03416                              DL, TLI, DT, AT, I);
03417     break;
03418   case Instruction::SDiv:
03419     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1),
03420                               DL, TLI, DT, AT, I);
03421     break;
03422   case Instruction::UDiv:
03423     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1),
03424                               DL, TLI, DT, AT, I);
03425     break;
03426   case Instruction::FDiv:
03427     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
03428                               DL, TLI, DT, AT, I);
03429     break;
03430   case Instruction::SRem:
03431     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1),
03432                               DL, TLI, DT, AT, I);
03433     break;
03434   case Instruction::URem:
03435     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1),
03436                               DL, TLI, DT, AT, I);
03437     break;
03438   case Instruction::FRem:
03439     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
03440                               DL, TLI, DT, AT, I);
03441     break;
03442   case Instruction::Shl:
03443     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
03444                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
03445                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
03446                              DL, TLI, DT, AT, I);
03447     break;
03448   case Instruction::LShr:
03449     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
03450                               cast<BinaryOperator>(I)->isExact(),
03451                               DL, TLI, DT, AT, I);
03452     break;
03453   case Instruction::AShr:
03454     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
03455                               cast<BinaryOperator>(I)->isExact(),
03456                               DL, TLI, DT, AT, I);
03457     break;
03458   case Instruction::And:
03459     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1),
03460                              DL, TLI, DT, AT, I);
03461     break;
03462   case Instruction::Or:
03463     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
03464                             AT, I);
03465     break;
03466   case Instruction::Xor:
03467     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1),
03468                              DL, TLI, DT, AT, I);
03469     break;
03470   case Instruction::ICmp:
03471     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
03472                               I->getOperand(0), I->getOperand(1),
03473                               DL, TLI, DT, AT, I);
03474     break;
03475   case Instruction::FCmp:
03476     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
03477                               I->getOperand(0), I->getOperand(1),
03478                               DL, TLI, DT, AT, I);
03479     break;
03480   case Instruction::Select:
03481     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
03482                                 I->getOperand(2), DL, TLI, DT, AT, I);
03483     break;
03484   case Instruction::GetElementPtr: {
03485     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
03486     Result = SimplifyGEPInst(Ops, DL, TLI, DT, AT, I);
03487     break;
03488   }
03489   case Instruction::InsertValue: {
03490     InsertValueInst *IV = cast<InsertValueInst>(I);
03491     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
03492                                      IV->getInsertedValueOperand(),
03493                                      IV->getIndices(), DL, TLI, DT, AT, I);
03494     break;
03495   }
03496   case Instruction::PHI:
03497     Result = SimplifyPHINode(cast<PHINode>(I), Query (DL, TLI, DT, AT, I));
03498     break;
03499   case Instruction::Call: {
03500     CallSite CS(cast<CallInst>(I));
03501     Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
03502                           DL, TLI, DT, AT, I);
03503     break;
03504   }
03505   case Instruction::Trunc:
03506     Result = SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT,
03507                                AT, I);
03508     break;
03509   }
03510 
03511   /// If called on unreachable code, the above logic may report that the
03512   /// instruction simplified to itself.  Make life easier for users by
03513   /// detecting that case here, returning a safe value instead.
03514   return Result == I ? UndefValue::get(I->getType()) : Result;
03515 }
03516 
03517 /// \brief Implementation of recursive simplification through an instructions
03518 /// uses.
03519 ///
03520 /// This is the common implementation of the recursive simplification routines.
03521 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
03522 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
03523 /// instructions to process and attempt to simplify it using
03524 /// InstructionSimplify.
03525 ///
03526 /// This routine returns 'true' only when *it* simplifies something. The passed
03527 /// in simplified value does not count toward this.
03528 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
03529                                               const DataLayout *DL,
03530                                               const TargetLibraryInfo *TLI,
03531                                               const DominatorTree *DT,
03532                                               AssumptionTracker *AT) {
03533   bool Simplified = false;
03534   SmallSetVector<Instruction *, 8> Worklist;
03535 
03536   // If we have an explicit value to collapse to, do that round of the
03537   // simplification loop by hand initially.
03538   if (SimpleV) {
03539     for (User *U : I->users())
03540       if (U != I)
03541         Worklist.insert(cast<Instruction>(U));
03542 
03543     // Replace the instruction with its simplified value.
03544     I->replaceAllUsesWith(SimpleV);
03545 
03546     // Gracefully handle edge cases where the instruction is not wired into any
03547     // parent block.
03548     if (I->getParent())
03549       I->eraseFromParent();
03550   } else {
03551     Worklist.insert(I);
03552   }
03553 
03554   // Note that we must test the size on each iteration, the worklist can grow.
03555   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
03556     I = Worklist[Idx];
03557 
03558     // See if this instruction simplifies.
03559     SimpleV = SimplifyInstruction(I, DL, TLI, DT, AT);
03560     if (!SimpleV)
03561       continue;
03562 
03563     Simplified = true;
03564 
03565     // Stash away all the uses of the old instruction so we can check them for
03566     // recursive simplifications after a RAUW. This is cheaper than checking all
03567     // uses of To on the recursive step in most cases.
03568     for (User *U : I->users())
03569       Worklist.insert(cast<Instruction>(U));
03570 
03571     // Replace the instruction with its simplified value.
03572     I->replaceAllUsesWith(SimpleV);
03573 
03574     // Gracefully handle edge cases where the instruction is not wired into any
03575     // parent block.
03576     if (I->getParent())
03577       I->eraseFromParent();
03578   }
03579   return Simplified;
03580 }
03581 
03582 bool llvm::recursivelySimplifyInstruction(Instruction *I,
03583                                           const DataLayout *DL,
03584                                           const TargetLibraryInfo *TLI,
03585                                           const DominatorTree *DT,
03586                                           AssumptionTracker *AT) {
03587   return replaceAndRecursivelySimplifyImpl(I, nullptr, DL, TLI, DT, AT);
03588 }
03589 
03590 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
03591                                          const DataLayout *DL,
03592                                          const TargetLibraryInfo *TLI,
03593                                          const DominatorTree *DT,
03594                                          AssumptionTracker *AT) {
03595   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
03596   assert(SimpleV && "Must provide a simplified value.");
03597   return replaceAndRecursivelySimplifyImpl(I, SimpleV, DL, TLI, DT, AT);
03598 }