LLVM API Documentation

MCJIT.cpp
Go to the documentation of this file.
00001 //===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 
00010 #include "MCJIT.h"
00011 #include "llvm/ExecutionEngine/GenericValue.h"
00012 #include "llvm/ExecutionEngine/JITEventListener.h"
00013 #include "llvm/ExecutionEngine/JITMemoryManager.h"
00014 #include "llvm/ExecutionEngine/MCJIT.h"
00015 #include "llvm/ExecutionEngine/ObjectBuffer.h"
00016 #include "llvm/ExecutionEngine/ObjectImage.h"
00017 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
00018 #include "llvm/IR/DataLayout.h"
00019 #include "llvm/IR/DerivedTypes.h"
00020 #include "llvm/IR/Function.h"
00021 #include "llvm/IR/Mangler.h"
00022 #include "llvm/IR/Module.h"
00023 #include "llvm/MC/MCAsmInfo.h"
00024 #include "llvm/Object/Archive.h"
00025 #include "llvm/PassManager.h"
00026 #include "llvm/Support/DynamicLibrary.h"
00027 #include "llvm/Support/ErrorHandling.h"
00028 #include "llvm/Support/MemoryBuffer.h"
00029 #include "llvm/Support/MutexGuard.h"
00030 #include "llvm/Target/TargetLowering.h"
00031 #include "llvm/Target/TargetSubtargetInfo.h"
00032 
00033 using namespace llvm;
00034 
00035 namespace {
00036 
00037 static struct RegisterJIT {
00038   RegisterJIT() { MCJIT::Register(); }
00039 } JITRegistrator;
00040 
00041 }
00042 
00043 extern "C" void LLVMLinkInMCJIT() {
00044 }
00045 
00046 ExecutionEngine *MCJIT::createJIT(std::unique_ptr<Module> M,
00047                                   std::string *ErrorStr,
00048                                   RTDyldMemoryManager *MemMgr,
00049                                   std::unique_ptr<TargetMachine> TM) {
00050   // Try to register the program as a source of symbols to resolve against.
00051   //
00052   // FIXME: Don't do this here.
00053   sys::DynamicLibrary::LoadLibraryPermanently(nullptr, nullptr);
00054 
00055   return new MCJIT(std::move(M), std::move(TM),
00056                    MemMgr ? MemMgr : new SectionMemoryManager());
00057 }
00058 
00059 MCJIT::MCJIT(std::unique_ptr<Module> M, std::unique_ptr<TargetMachine> tm,
00060              RTDyldMemoryManager *MM)
00061     : ExecutionEngine(std::move(M)), TM(std::move(tm)), Ctx(nullptr),
00062       MemMgr(this, MM), Dyld(&MemMgr), ObjCache(nullptr) {
00063   // FIXME: We are managing our modules, so we do not want the base class
00064   // ExecutionEngine to manage them as well. To avoid double destruction
00065   // of the first (and only) module added in ExecutionEngine constructor
00066   // we remove it from EE and will destruct it ourselves.
00067   //
00068   // It may make sense to move our module manager (based on SmallStPtr) back
00069   // into EE if the JIT and Interpreter can live with it.
00070   // If so, additional functions: addModule, removeModule, FindFunctionNamed,
00071   // runStaticConstructorsDestructors could be moved back to EE as well.
00072   //
00073   std::unique_ptr<Module> First = std::move(Modules[0]);
00074   Modules.clear();
00075 
00076   OwnedModules.addModule(std::move(First));
00077   setDataLayout(TM->getSubtargetImpl()->getDataLayout());
00078 }
00079 
00080 MCJIT::~MCJIT() {
00081   MutexGuard locked(lock);
00082 
00083   Dyld.deregisterEHFrames();
00084 
00085   for (auto &Obj : LoadedObjects)
00086     if (Obj)
00087       NotifyFreeingObject(*Obj);
00088 
00089   Archives.clear();
00090 }
00091 
00092 void MCJIT::addModule(std::unique_ptr<Module> M) {
00093   MutexGuard locked(lock);
00094   OwnedModules.addModule(std::move(M));
00095 }
00096 
00097 bool MCJIT::removeModule(Module *M) {
00098   MutexGuard locked(lock);
00099   return OwnedModules.removeModule(M);
00100 }
00101 
00102 void MCJIT::addObjectFile(std::unique_ptr<object::ObjectFile> Obj) {
00103   std::unique_ptr<ObjectImage> LoadedObject = Dyld.loadObject(std::move(Obj));
00104   if (!LoadedObject || Dyld.hasError())
00105     report_fatal_error(Dyld.getErrorString());
00106 
00107   NotifyObjectEmitted(*LoadedObject);
00108 
00109   LoadedObjects.push_back(std::move(LoadedObject));
00110 }
00111 
00112 void MCJIT::addObjectFile(object::OwningBinary<object::ObjectFile> Obj) {
00113   addObjectFile(std::move(Obj.getBinary()));
00114   Buffers.push_back(std::move(Obj.getBuffer()));
00115 }
00116 
00117 void MCJIT::addArchive(object::OwningBinary<object::Archive> A) {
00118   Archives.push_back(std::move(A));
00119 }
00120 
00121 void MCJIT::setObjectCache(ObjectCache* NewCache) {
00122   MutexGuard locked(lock);
00123   ObjCache = NewCache;
00124 }
00125 
00126 std::unique_ptr<ObjectBufferStream> MCJIT::emitObject(Module *M) {
00127   MutexGuard locked(lock);
00128 
00129   // This must be a module which has already been added but not loaded to this
00130   // MCJIT instance, since these conditions are tested by our caller,
00131   // generateCodeForModule.
00132 
00133   PassManager PM;
00134 
00135   M->setDataLayout(TM->getSubtargetImpl()->getDataLayout());
00136   PM.add(new DataLayoutPass());
00137 
00138   // The RuntimeDyld will take ownership of this shortly
00139   std::unique_ptr<ObjectBufferStream> CompiledObject(new ObjectBufferStream());
00140 
00141   // Turn the machine code intermediate representation into bytes in memory
00142   // that may be executed.
00143   if (TM->addPassesToEmitMC(PM, Ctx, CompiledObject->getOStream(),
00144                             !getVerifyModules())) {
00145     report_fatal_error("Target does not support MC emission!");
00146   }
00147 
00148   // Initialize passes.
00149   PM.run(*M);
00150   // Flush the output buffer to get the generated code into memory
00151   CompiledObject->flush();
00152 
00153   // If we have an object cache, tell it about the new object.
00154   // Note that we're using the compiled image, not the loaded image (as below).
00155   if (ObjCache) {
00156     // MemoryBuffer is a thin wrapper around the actual memory, so it's OK
00157     // to create a temporary object here and delete it after the call.
00158     MemoryBufferRef MB = CompiledObject->getMemBuffer();
00159     ObjCache->notifyObjectCompiled(M, MB);
00160   }
00161 
00162   return CompiledObject;
00163 }
00164 
00165 void MCJIT::generateCodeForModule(Module *M) {
00166   // Get a thread lock to make sure we aren't trying to load multiple times
00167   MutexGuard locked(lock);
00168 
00169   // This must be a module which has already been added to this MCJIT instance.
00170   assert(OwnedModules.ownsModule(M) &&
00171          "MCJIT::generateCodeForModule: Unknown module.");
00172 
00173   // Re-compilation is not supported
00174   if (OwnedModules.hasModuleBeenLoaded(M))
00175     return;
00176 
00177   std::unique_ptr<ObjectBuffer> ObjectToLoad;
00178   // Try to load the pre-compiled object from cache if possible
00179   if (ObjCache) {
00180     if (std::unique_ptr<MemoryBuffer> PreCompiledObject =
00181             ObjCache->getObject(M))
00182       ObjectToLoad =
00183           llvm::make_unique<ObjectBuffer>(std::move(PreCompiledObject));
00184   }
00185 
00186   // If the cache did not contain a suitable object, compile the object
00187   if (!ObjectToLoad) {
00188     ObjectToLoad = emitObject(M);
00189     assert(ObjectToLoad && "Compilation did not produce an object.");
00190   }
00191 
00192   // Load the object into the dynamic linker.
00193   // MCJIT now owns the ObjectImage pointer (via its LoadedObjects list).
00194   std::unique_ptr<ObjectImage> LoadedObject =
00195       Dyld.loadObject(std::move(ObjectToLoad));
00196   if (!LoadedObject)
00197     report_fatal_error(Dyld.getErrorString());
00198 
00199   // FIXME: Make this optional, maybe even move it to a JIT event listener
00200   LoadedObject->registerWithDebugger();
00201 
00202   NotifyObjectEmitted(*LoadedObject);
00203 
00204   LoadedObjects.push_back(std::move(LoadedObject));
00205 
00206   OwnedModules.markModuleAsLoaded(M);
00207 }
00208 
00209 void MCJIT::finalizeLoadedModules() {
00210   MutexGuard locked(lock);
00211 
00212   // Resolve any outstanding relocations.
00213   Dyld.resolveRelocations();
00214 
00215   OwnedModules.markAllLoadedModulesAsFinalized();
00216 
00217   // Register EH frame data for any module we own which has been loaded
00218   Dyld.registerEHFrames();
00219 
00220   // Set page permissions.
00221   MemMgr.finalizeMemory();
00222 }
00223 
00224 // FIXME: Rename this.
00225 void MCJIT::finalizeObject() {
00226   MutexGuard locked(lock);
00227 
00228   // Generate code for module is going to move objects out of the 'added' list,
00229   // so we need to copy that out before using it:
00230   SmallVector<Module*, 16> ModsToAdd;
00231   for (auto M : OwnedModules.added())
00232     ModsToAdd.push_back(M);
00233 
00234   for (auto M : ModsToAdd)
00235     generateCodeForModule(M);
00236 
00237   finalizeLoadedModules();
00238 }
00239 
00240 void MCJIT::finalizeModule(Module *M) {
00241   MutexGuard locked(lock);
00242 
00243   // This must be a module which has already been added to this MCJIT instance.
00244   assert(OwnedModules.ownsModule(M) && "MCJIT::finalizeModule: Unknown module.");
00245 
00246   // If the module hasn't been compiled, just do that.
00247   if (!OwnedModules.hasModuleBeenLoaded(M))
00248     generateCodeForModule(M);
00249 
00250   finalizeLoadedModules();
00251 }
00252 
00253 uint64_t MCJIT::getExistingSymbolAddress(const std::string &Name) {
00254   Mangler Mang(TM->getSubtargetImpl()->getDataLayout());
00255   SmallString<128> FullName;
00256   Mang.getNameWithPrefix(FullName, Name);
00257   return Dyld.getSymbolLoadAddress(FullName);
00258 }
00259 
00260 Module *MCJIT::findModuleForSymbol(const std::string &Name,
00261                                    bool CheckFunctionsOnly) {
00262   MutexGuard locked(lock);
00263 
00264   // If it hasn't already been generated, see if it's in one of our modules.
00265   for (ModulePtrSet::iterator I = OwnedModules.begin_added(),
00266                               E = OwnedModules.end_added();
00267        I != E; ++I) {
00268     Module *M = *I;
00269     Function *F = M->getFunction(Name);
00270     if (F && !F->isDeclaration())
00271       return M;
00272     if (!CheckFunctionsOnly) {
00273       GlobalVariable *G = M->getGlobalVariable(Name);
00274       if (G && !G->isDeclaration())
00275         return M;
00276       // FIXME: Do we need to worry about global aliases?
00277     }
00278   }
00279   // We didn't find the symbol in any of our modules.
00280   return nullptr;
00281 }
00282 
00283 uint64_t MCJIT::getSymbolAddress(const std::string &Name,
00284                                  bool CheckFunctionsOnly)
00285 {
00286   MutexGuard locked(lock);
00287 
00288   // First, check to see if we already have this symbol.
00289   uint64_t Addr = getExistingSymbolAddress(Name);
00290   if (Addr)
00291     return Addr;
00292 
00293   for (object::OwningBinary<object::Archive> &OB : Archives) {
00294     object::Archive *A = OB.getBinary().get();
00295     // Look for our symbols in each Archive
00296     object::Archive::child_iterator ChildIt = A->findSym(Name);
00297     if (ChildIt != A->child_end()) {
00298       // FIXME: Support nested archives?
00299       ErrorOr<std::unique_ptr<object::Binary>> ChildBinOrErr =
00300           ChildIt->getAsBinary();
00301       if (ChildBinOrErr.getError())
00302         continue;
00303       std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
00304       if (ChildBin->isObject()) {
00305         std::unique_ptr<object::ObjectFile> OF(
00306             static_cast<object::ObjectFile *>(ChildBin.release()));
00307         // This causes the object file to be loaded.
00308         addObjectFile(std::move(OF));
00309         // The address should be here now.
00310         Addr = getExistingSymbolAddress(Name);
00311         if (Addr)
00312           return Addr;
00313       }
00314     }
00315   }
00316 
00317   // If it hasn't already been generated, see if it's in one of our modules.
00318   Module *M = findModuleForSymbol(Name, CheckFunctionsOnly);
00319   if (M) {
00320     generateCodeForModule(M);
00321 
00322     // Check the RuntimeDyld table again, it should be there now.
00323     return getExistingSymbolAddress(Name);
00324   }
00325 
00326   // If a LazyFunctionCreator is installed, use it to get/create the function.
00327   // FIXME: Should we instead have a LazySymbolCreator callback?
00328   if (LazyFunctionCreator)
00329     Addr = (uint64_t)LazyFunctionCreator(Name);
00330 
00331   return Addr;
00332 }
00333 
00334 uint64_t MCJIT::getGlobalValueAddress(const std::string &Name) {
00335   MutexGuard locked(lock);
00336   uint64_t Result = getSymbolAddress(Name, false);
00337   if (Result != 0)
00338     finalizeLoadedModules();
00339   return Result;
00340 }
00341 
00342 uint64_t MCJIT::getFunctionAddress(const std::string &Name) {
00343   MutexGuard locked(lock);
00344   uint64_t Result = getSymbolAddress(Name, true);
00345   if (Result != 0)
00346     finalizeLoadedModules();
00347   return Result;
00348 }
00349 
00350 // Deprecated.  Use getFunctionAddress instead.
00351 void *MCJIT::getPointerToFunction(Function *F) {
00352   MutexGuard locked(lock);
00353 
00354   if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
00355     bool AbortOnFailure = !F->hasExternalWeakLinkage();
00356     void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
00357     addGlobalMapping(F, Addr);
00358     return Addr;
00359   }
00360 
00361   Module *M = F->getParent();
00362   bool HasBeenAddedButNotLoaded = OwnedModules.hasModuleBeenAddedButNotLoaded(M);
00363 
00364   // Make sure the relevant module has been compiled and loaded.
00365   if (HasBeenAddedButNotLoaded)
00366     generateCodeForModule(M);
00367   else if (!OwnedModules.hasModuleBeenLoaded(M))
00368     // If this function doesn't belong to one of our modules, we're done.
00369     return nullptr;
00370 
00371   // FIXME: Should the Dyld be retaining module information? Probably not.
00372   //
00373   // This is the accessor for the target address, so make sure to check the
00374   // load address of the symbol, not the local address.
00375   Mangler Mang(TM->getSubtargetImpl()->getDataLayout());
00376   SmallString<128> Name;
00377   TM->getNameWithPrefix(Name, F, Mang);
00378   return (void*)Dyld.getSymbolLoadAddress(Name);
00379 }
00380 
00381 void MCJIT::runStaticConstructorsDestructorsInModulePtrSet(
00382     bool isDtors, ModulePtrSet::iterator I, ModulePtrSet::iterator E) {
00383   for (; I != E; ++I) {
00384     ExecutionEngine::runStaticConstructorsDestructors(**I, isDtors);
00385   }
00386 }
00387 
00388 void MCJIT::runStaticConstructorsDestructors(bool isDtors) {
00389   // Execute global ctors/dtors for each module in the program.
00390   runStaticConstructorsDestructorsInModulePtrSet(
00391       isDtors, OwnedModules.begin_added(), OwnedModules.end_added());
00392   runStaticConstructorsDestructorsInModulePtrSet(
00393       isDtors, OwnedModules.begin_loaded(), OwnedModules.end_loaded());
00394   runStaticConstructorsDestructorsInModulePtrSet(
00395       isDtors, OwnedModules.begin_finalized(), OwnedModules.end_finalized());
00396 }
00397 
00398 Function *MCJIT::FindFunctionNamedInModulePtrSet(const char *FnName,
00399                                                  ModulePtrSet::iterator I,
00400                                                  ModulePtrSet::iterator E) {
00401   for (; I != E; ++I) {
00402     if (Function *F = (*I)->getFunction(FnName))
00403       return F;
00404   }
00405   return nullptr;
00406 }
00407 
00408 Function *MCJIT::FindFunctionNamed(const char *FnName) {
00409   Function *F = FindFunctionNamedInModulePtrSet(
00410       FnName, OwnedModules.begin_added(), OwnedModules.end_added());
00411   if (!F)
00412     F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_loaded(),
00413                                         OwnedModules.end_loaded());
00414   if (!F)
00415     F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_finalized(),
00416                                         OwnedModules.end_finalized());
00417   return F;
00418 }
00419 
00420 GenericValue MCJIT::runFunction(Function *F,
00421                                 const std::vector<GenericValue> &ArgValues) {
00422   assert(F && "Function *F was null at entry to run()");
00423 
00424   void *FPtr = getPointerToFunction(F);
00425   assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
00426   FunctionType *FTy = F->getFunctionType();
00427   Type *RetTy = FTy->getReturnType();
00428 
00429   assert((FTy->getNumParams() == ArgValues.size() ||
00430           (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
00431          "Wrong number of arguments passed into function!");
00432   assert(FTy->getNumParams() == ArgValues.size() &&
00433          "This doesn't support passing arguments through varargs (yet)!");
00434 
00435   // Handle some common cases first.  These cases correspond to common `main'
00436   // prototypes.
00437   if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
00438     switch (ArgValues.size()) {
00439     case 3:
00440       if (FTy->getParamType(0)->isIntegerTy(32) &&
00441           FTy->getParamType(1)->isPointerTy() &&
00442           FTy->getParamType(2)->isPointerTy()) {
00443         int (*PF)(int, char **, const char **) =
00444           (int(*)(int, char **, const char **))(intptr_t)FPtr;
00445 
00446         // Call the function.
00447         GenericValue rv;
00448         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
00449                                  (char **)GVTOP(ArgValues[1]),
00450                                  (const char **)GVTOP(ArgValues[2])));
00451         return rv;
00452       }
00453       break;
00454     case 2:
00455       if (FTy->getParamType(0)->isIntegerTy(32) &&
00456           FTy->getParamType(1)->isPointerTy()) {
00457         int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
00458 
00459         // Call the function.
00460         GenericValue rv;
00461         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
00462                                  (char **)GVTOP(ArgValues[1])));
00463         return rv;
00464       }
00465       break;
00466     case 1:
00467       if (FTy->getNumParams() == 1 &&
00468           FTy->getParamType(0)->isIntegerTy(32)) {
00469         GenericValue rv;
00470         int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
00471         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
00472         return rv;
00473       }
00474       break;
00475     }
00476   }
00477 
00478   // Handle cases where no arguments are passed first.
00479   if (ArgValues.empty()) {
00480     GenericValue rv;
00481     switch (RetTy->getTypeID()) {
00482     default: llvm_unreachable("Unknown return type for function call!");
00483     case Type::IntegerTyID: {
00484       unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
00485       if (BitWidth == 1)
00486         rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
00487       else if (BitWidth <= 8)
00488         rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
00489       else if (BitWidth <= 16)
00490         rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
00491       else if (BitWidth <= 32)
00492         rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
00493       else if (BitWidth <= 64)
00494         rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
00495       else
00496         llvm_unreachable("Integer types > 64 bits not supported");
00497       return rv;
00498     }
00499     case Type::VoidTyID:
00500       rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
00501       return rv;
00502     case Type::FloatTyID:
00503       rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
00504       return rv;
00505     case Type::DoubleTyID:
00506       rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
00507       return rv;
00508     case Type::X86_FP80TyID:
00509     case Type::FP128TyID:
00510     case Type::PPC_FP128TyID:
00511       llvm_unreachable("long double not supported yet");
00512     case Type::PointerTyID:
00513       return PTOGV(((void*(*)())(intptr_t)FPtr)());
00514     }
00515   }
00516 
00517   llvm_unreachable("Full-featured argument passing not supported yet!");
00518 }
00519 
00520 void *MCJIT::getPointerToNamedFunction(StringRef Name, bool AbortOnFailure) {
00521   if (!isSymbolSearchingDisabled()) {
00522     void *ptr = MemMgr.getPointerToNamedFunction(Name, false);
00523     if (ptr)
00524       return ptr;
00525   }
00526 
00527   /// If a LazyFunctionCreator is installed, use it to get/create the function.
00528   if (LazyFunctionCreator)
00529     if (void *RP = LazyFunctionCreator(Name))
00530       return RP;
00531 
00532   if (AbortOnFailure) {
00533     report_fatal_error("Program used external function '"+Name+
00534                        "' which could not be resolved!");
00535   }
00536   return nullptr;
00537 }
00538 
00539 void MCJIT::RegisterJITEventListener(JITEventListener *L) {
00540   if (!L)
00541     return;
00542   MutexGuard locked(lock);
00543   EventListeners.push_back(L);
00544 }
00545 void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
00546   if (!L)
00547     return;
00548   MutexGuard locked(lock);
00549   auto I = std::find(EventListeners.rbegin(), EventListeners.rend(), L);
00550   if (I != EventListeners.rend()) {
00551     std::swap(*I, EventListeners.back());
00552     EventListeners.pop_back();
00553   }
00554 }
00555 void MCJIT::NotifyObjectEmitted(const ObjectImage& Obj) {
00556   MutexGuard locked(lock);
00557   MemMgr.notifyObjectLoaded(this, &Obj);
00558   for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
00559     EventListeners[I]->NotifyObjectEmitted(Obj);
00560   }
00561 }
00562 void MCJIT::NotifyFreeingObject(const ObjectImage& Obj) {
00563   MutexGuard locked(lock);
00564   for (JITEventListener *L : EventListeners)
00565     L->NotifyFreeingObject(Obj);
00566 }
00567 
00568 uint64_t LinkingMemoryManager::getSymbolAddress(const std::string &Name) {
00569   uint64_t Result = ParentEngine->getSymbolAddress(Name, false);
00570   // If the symbols wasn't found and it begins with an underscore, try again
00571   // without the underscore.
00572   if (!Result && Name[0] == '_')
00573     Result = ParentEngine->getSymbolAddress(Name.substr(1), false);
00574   if (Result)
00575     return Result;
00576   if (ParentEngine->isSymbolSearchingDisabled())
00577     return 0;
00578   return ClientMM->getSymbolAddress(Name);
00579 }