LLVM API Documentation
00001 //===------ MemoryBuiltins.cpp - Identify calls to memory builtins --------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This family of functions identifies calls to builtin functions that allocate 00011 // or free memory. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "llvm/Analysis/MemoryBuiltins.h" 00016 #include "llvm/ADT/STLExtras.h" 00017 #include "llvm/ADT/Statistic.h" 00018 #include "llvm/Analysis/ValueTracking.h" 00019 #include "llvm/IR/DataLayout.h" 00020 #include "llvm/IR/GlobalVariable.h" 00021 #include "llvm/IR/Instructions.h" 00022 #include "llvm/IR/Intrinsics.h" 00023 #include "llvm/IR/Metadata.h" 00024 #include "llvm/IR/Module.h" 00025 #include "llvm/Support/Debug.h" 00026 #include "llvm/Support/MathExtras.h" 00027 #include "llvm/Support/raw_ostream.h" 00028 #include "llvm/Target/TargetLibraryInfo.h" 00029 #include "llvm/Transforms/Utils/Local.h" 00030 using namespace llvm; 00031 00032 #define DEBUG_TYPE "memory-builtins" 00033 00034 enum AllocType { 00035 OpNewLike = 1<<0, // allocates; never returns null 00036 MallocLike = 1<<1 | OpNewLike, // allocates; may return null 00037 CallocLike = 1<<2, // allocates + bzero 00038 ReallocLike = 1<<3, // reallocates 00039 StrDupLike = 1<<4, 00040 AllocLike = MallocLike | CallocLike | StrDupLike, 00041 AnyAlloc = AllocLike | ReallocLike 00042 }; 00043 00044 struct AllocFnsTy { 00045 LibFunc::Func Func; 00046 AllocType AllocTy; 00047 unsigned char NumParams; 00048 // First and Second size parameters (or -1 if unused) 00049 signed char FstParam, SndParam; 00050 }; 00051 00052 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 00053 // know which functions are nounwind, noalias, nocapture parameters, etc. 00054 static const AllocFnsTy AllocationFnData[] = { 00055 {LibFunc::malloc, MallocLike, 1, 0, -1}, 00056 {LibFunc::valloc, MallocLike, 1, 0, -1}, 00057 {LibFunc::Znwj, OpNewLike, 1, 0, -1}, // new(unsigned int) 00058 {LibFunc::ZnwjRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new(unsigned int, nothrow) 00059 {LibFunc::Znwm, OpNewLike, 1, 0, -1}, // new(unsigned long) 00060 {LibFunc::ZnwmRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new(unsigned long, nothrow) 00061 {LibFunc::Znaj, OpNewLike, 1, 0, -1}, // new[](unsigned int) 00062 {LibFunc::ZnajRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new[](unsigned int, nothrow) 00063 {LibFunc::Znam, OpNewLike, 1, 0, -1}, // new[](unsigned long) 00064 {LibFunc::ZnamRKSt9nothrow_t, MallocLike, 2, 0, -1}, // new[](unsigned long, nothrow) 00065 {LibFunc::calloc, CallocLike, 2, 0, 1}, 00066 {LibFunc::realloc, ReallocLike, 2, 1, -1}, 00067 {LibFunc::reallocf, ReallocLike, 2, 1, -1}, 00068 {LibFunc::strdup, StrDupLike, 1, -1, -1}, 00069 {LibFunc::strndup, StrDupLike, 2, 1, -1} 00070 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 00071 }; 00072 00073 00074 static Function *getCalledFunction(const Value *V, bool LookThroughBitCast) { 00075 if (LookThroughBitCast) 00076 V = V->stripPointerCasts(); 00077 00078 CallSite CS(const_cast<Value*>(V)); 00079 if (!CS.getInstruction()) 00080 return nullptr; 00081 00082 if (CS.isNoBuiltin()) 00083 return nullptr; 00084 00085 Function *Callee = CS.getCalledFunction(); 00086 if (!Callee || !Callee->isDeclaration()) 00087 return nullptr; 00088 return Callee; 00089 } 00090 00091 /// \brief Returns the allocation data for the given value if it is a call to a 00092 /// known allocation function, and NULL otherwise. 00093 static const AllocFnsTy *getAllocationData(const Value *V, AllocType AllocTy, 00094 const TargetLibraryInfo *TLI, 00095 bool LookThroughBitCast = false) { 00096 // Skip intrinsics 00097 if (isa<IntrinsicInst>(V)) 00098 return nullptr; 00099 00100 Function *Callee = getCalledFunction(V, LookThroughBitCast); 00101 if (!Callee) 00102 return nullptr; 00103 00104 // Make sure that the function is available. 00105 StringRef FnName = Callee->getName(); 00106 LibFunc::Func TLIFn; 00107 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 00108 return nullptr; 00109 00110 unsigned i = 0; 00111 bool found = false; 00112 for ( ; i < array_lengthof(AllocationFnData); ++i) { 00113 if (AllocationFnData[i].Func == TLIFn) { 00114 found = true; 00115 break; 00116 } 00117 } 00118 if (!found) 00119 return nullptr; 00120 00121 const AllocFnsTy *FnData = &AllocationFnData[i]; 00122 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 00123 return nullptr; 00124 00125 // Check function prototype. 00126 int FstParam = FnData->FstParam; 00127 int SndParam = FnData->SndParam; 00128 FunctionType *FTy = Callee->getFunctionType(); 00129 00130 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 00131 FTy->getNumParams() == FnData->NumParams && 00132 (FstParam < 0 || 00133 (FTy->getParamType(FstParam)->isIntegerTy(32) || 00134 FTy->getParamType(FstParam)->isIntegerTy(64))) && 00135 (SndParam < 0 || 00136 FTy->getParamType(SndParam)->isIntegerTy(32) || 00137 FTy->getParamType(SndParam)->isIntegerTy(64))) 00138 return FnData; 00139 return nullptr; 00140 } 00141 00142 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { 00143 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V); 00144 return CS && CS.hasFnAttr(Attribute::NoAlias); 00145 } 00146 00147 00148 /// \brief Tests if a value is a call or invoke to a library function that 00149 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 00150 /// like). 00151 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, 00152 bool LookThroughBitCast) { 00153 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast); 00154 } 00155 00156 /// \brief Tests if a value is a call or invoke to a function that returns a 00157 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). 00158 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, 00159 bool LookThroughBitCast) { 00160 // it's safe to consider realloc as noalias since accessing the original 00161 // pointer is undefined behavior 00162 return isAllocationFn(V, TLI, LookThroughBitCast) || 00163 hasNoAliasAttr(V, LookThroughBitCast); 00164 } 00165 00166 /// \brief Tests if a value is a call or invoke to a library function that 00167 /// allocates uninitialized memory (such as malloc). 00168 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 00169 bool LookThroughBitCast) { 00170 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast); 00171 } 00172 00173 /// \brief Tests if a value is a call or invoke to a library function that 00174 /// allocates zero-filled memory (such as calloc). 00175 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 00176 bool LookThroughBitCast) { 00177 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast); 00178 } 00179 00180 /// \brief Tests if a value is a call or invoke to a library function that 00181 /// allocates memory (either malloc, calloc, or strdup like). 00182 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 00183 bool LookThroughBitCast) { 00184 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast); 00185 } 00186 00187 /// \brief Tests if a value is a call or invoke to a library function that 00188 /// reallocates memory (such as realloc). 00189 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 00190 bool LookThroughBitCast) { 00191 return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast); 00192 } 00193 00194 /// \brief Tests if a value is a call or invoke to a library function that 00195 /// allocates memory and never returns null (such as operator new). 00196 bool llvm::isOperatorNewLikeFn(const Value *V, const TargetLibraryInfo *TLI, 00197 bool LookThroughBitCast) { 00198 return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast); 00199 } 00200 00201 /// extractMallocCall - Returns the corresponding CallInst if the instruction 00202 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we 00203 /// ignore InvokeInst here. 00204 const CallInst *llvm::extractMallocCall(const Value *I, 00205 const TargetLibraryInfo *TLI) { 00206 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr; 00207 } 00208 00209 static Value *computeArraySize(const CallInst *CI, const DataLayout *DL, 00210 const TargetLibraryInfo *TLI, 00211 bool LookThroughSExt = false) { 00212 if (!CI) 00213 return nullptr; 00214 00215 // The size of the malloc's result type must be known to determine array size. 00216 Type *T = getMallocAllocatedType(CI, TLI); 00217 if (!T || !T->isSized() || !DL) 00218 return nullptr; 00219 00220 unsigned ElementSize = DL->getTypeAllocSize(T); 00221 if (StructType *ST = dyn_cast<StructType>(T)) 00222 ElementSize = DL->getStructLayout(ST)->getSizeInBytes(); 00223 00224 // If malloc call's arg can be determined to be a multiple of ElementSize, 00225 // return the multiple. Otherwise, return NULL. 00226 Value *MallocArg = CI->getArgOperand(0); 00227 Value *Multiple = nullptr; 00228 if (ComputeMultiple(MallocArg, ElementSize, Multiple, 00229 LookThroughSExt)) 00230 return Multiple; 00231 00232 return nullptr; 00233 } 00234 00235 /// isArrayMalloc - Returns the corresponding CallInst if the instruction 00236 /// is a call to malloc whose array size can be determined and the array size 00237 /// is not constant 1. Otherwise, return NULL. 00238 const CallInst *llvm::isArrayMalloc(const Value *I, 00239 const DataLayout *DL, 00240 const TargetLibraryInfo *TLI) { 00241 const CallInst *CI = extractMallocCall(I, TLI); 00242 Value *ArraySize = computeArraySize(CI, DL, TLI); 00243 00244 if (ConstantInt *ConstSize = dyn_cast_or_null<ConstantInt>(ArraySize)) 00245 if (ConstSize->isOne()) 00246 return CI; 00247 00248 // CI is a non-array malloc or we can't figure out that it is an array malloc. 00249 return nullptr; 00250 } 00251 00252 /// getMallocType - Returns the PointerType resulting from the malloc call. 00253 /// The PointerType depends on the number of bitcast uses of the malloc call: 00254 /// 0: PointerType is the calls' return type. 00255 /// 1: PointerType is the bitcast's result type. 00256 /// >1: Unique PointerType cannot be determined, return NULL. 00257 PointerType *llvm::getMallocType(const CallInst *CI, 00258 const TargetLibraryInfo *TLI) { 00259 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); 00260 00261 PointerType *MallocType = nullptr; 00262 unsigned NumOfBitCastUses = 0; 00263 00264 // Determine if CallInst has a bitcast use. 00265 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end(); 00266 UI != E;) 00267 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) { 00268 MallocType = cast<PointerType>(BCI->getDestTy()); 00269 NumOfBitCastUses++; 00270 } 00271 00272 // Malloc call has 1 bitcast use, so type is the bitcast's destination type. 00273 if (NumOfBitCastUses == 1) 00274 return MallocType; 00275 00276 // Malloc call was not bitcast, so type is the malloc function's return type. 00277 if (NumOfBitCastUses == 0) 00278 return cast<PointerType>(CI->getType()); 00279 00280 // Type could not be determined. 00281 return nullptr; 00282 } 00283 00284 /// getMallocAllocatedType - Returns the Type allocated by malloc call. 00285 /// The Type depends on the number of bitcast uses of the malloc call: 00286 /// 0: PointerType is the malloc calls' return type. 00287 /// 1: PointerType is the bitcast's result type. 00288 /// >1: Unique PointerType cannot be determined, return NULL. 00289 Type *llvm::getMallocAllocatedType(const CallInst *CI, 00290 const TargetLibraryInfo *TLI) { 00291 PointerType *PT = getMallocType(CI, TLI); 00292 return PT ? PT->getElementType() : nullptr; 00293 } 00294 00295 /// getMallocArraySize - Returns the array size of a malloc call. If the 00296 /// argument passed to malloc is a multiple of the size of the malloced type, 00297 /// then return that multiple. For non-array mallocs, the multiple is 00298 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be 00299 /// determined. 00300 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout *DL, 00301 const TargetLibraryInfo *TLI, 00302 bool LookThroughSExt) { 00303 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); 00304 return computeArraySize(CI, DL, TLI, LookThroughSExt); 00305 } 00306 00307 00308 /// extractCallocCall - Returns the corresponding CallInst if the instruction 00309 /// is a calloc call. 00310 const CallInst *llvm::extractCallocCall(const Value *I, 00311 const TargetLibraryInfo *TLI) { 00312 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; 00313 } 00314 00315 00316 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 00317 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 00318 const CallInst *CI = dyn_cast<CallInst>(I); 00319 if (!CI || isa<IntrinsicInst>(CI)) 00320 return nullptr; 00321 Function *Callee = CI->getCalledFunction(); 00322 if (Callee == nullptr || !Callee->isDeclaration()) 00323 return nullptr; 00324 00325 StringRef FnName = Callee->getName(); 00326 LibFunc::Func TLIFn; 00327 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 00328 return nullptr; 00329 00330 unsigned ExpectedNumParams; 00331 if (TLIFn == LibFunc::free || 00332 TLIFn == LibFunc::ZdlPv || // operator delete(void*) 00333 TLIFn == LibFunc::ZdaPv) // operator delete[](void*) 00334 ExpectedNumParams = 1; 00335 else if (TLIFn == LibFunc::ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) 00336 TLIFn == LibFunc::ZdaPvRKSt9nothrow_t) // delete[](void*, nothrow) 00337 ExpectedNumParams = 2; 00338 else 00339 return nullptr; 00340 00341 // Check free prototype. 00342 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 00343 // attribute will exist. 00344 FunctionType *FTy = Callee->getFunctionType(); 00345 if (!FTy->getReturnType()->isVoidTy()) 00346 return nullptr; 00347 if (FTy->getNumParams() != ExpectedNumParams) 00348 return nullptr; 00349 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext())) 00350 return nullptr; 00351 00352 return CI; 00353 } 00354 00355 00356 00357 //===----------------------------------------------------------------------===// 00358 // Utility functions to compute size of objects. 00359 // 00360 00361 00362 /// \brief Compute the size of the object pointed by Ptr. Returns true and the 00363 /// object size in Size if successful, and false otherwise. 00364 /// If RoundToAlign is true, then Size is rounded up to the aligment of allocas, 00365 /// byval arguments, and global variables. 00366 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout *DL, 00367 const TargetLibraryInfo *TLI, bool RoundToAlign) { 00368 if (!DL) 00369 return false; 00370 00371 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), RoundToAlign); 00372 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 00373 if (!Visitor.bothKnown(Data)) 00374 return false; 00375 00376 APInt ObjSize = Data.first, Offset = Data.second; 00377 // check for overflow 00378 if (Offset.slt(0) || ObjSize.ult(Offset)) 00379 Size = 0; 00380 else 00381 Size = (ObjSize - Offset).getZExtValue(); 00382 return true; 00383 } 00384 00385 00386 STATISTIC(ObjectVisitorArgument, 00387 "Number of arguments with unsolved size and offset"); 00388 STATISTIC(ObjectVisitorLoad, 00389 "Number of load instructions with unsolved size and offset"); 00390 00391 00392 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) { 00393 if (RoundToAlign && Align) 00394 return APInt(IntTyBits, RoundUpToAlignment(Size.getZExtValue(), Align)); 00395 return Size; 00396 } 00397 00398 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout *DL, 00399 const TargetLibraryInfo *TLI, 00400 LLVMContext &Context, 00401 bool RoundToAlign) 00402 : DL(DL), TLI(TLI), RoundToAlign(RoundToAlign) { 00403 // Pointer size must be rechecked for each object visited since it could have 00404 // a different address space. 00405 } 00406 00407 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 00408 IntTyBits = DL->getPointerTypeSizeInBits(V->getType()); 00409 Zero = APInt::getNullValue(IntTyBits); 00410 00411 V = V->stripPointerCasts(); 00412 if (Instruction *I = dyn_cast<Instruction>(V)) { 00413 // If we have already seen this instruction, bail out. Cycles can happen in 00414 // unreachable code after constant propagation. 00415 if (!SeenInsts.insert(I)) 00416 return unknown(); 00417 00418 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 00419 return visitGEPOperator(*GEP); 00420 return visit(*I); 00421 } 00422 if (Argument *A = dyn_cast<Argument>(V)) 00423 return visitArgument(*A); 00424 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 00425 return visitConstantPointerNull(*P); 00426 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 00427 return visitGlobalAlias(*GA); 00428 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 00429 return visitGlobalVariable(*GV); 00430 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 00431 return visitUndefValue(*UV); 00432 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 00433 if (CE->getOpcode() == Instruction::IntToPtr) 00434 return unknown(); // clueless 00435 if (CE->getOpcode() == Instruction::GetElementPtr) 00436 return visitGEPOperator(cast<GEPOperator>(*CE)); 00437 } 00438 00439 DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V 00440 << '\n'); 00441 return unknown(); 00442 } 00443 00444 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 00445 if (!I.getAllocatedType()->isSized()) 00446 return unknown(); 00447 00448 APInt Size(IntTyBits, DL->getTypeAllocSize(I.getAllocatedType())); 00449 if (!I.isArrayAllocation()) 00450 return std::make_pair(align(Size, I.getAlignment()), Zero); 00451 00452 Value *ArraySize = I.getArraySize(); 00453 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 00454 Size *= C->getValue().zextOrSelf(IntTyBits); 00455 return std::make_pair(align(Size, I.getAlignment()), Zero); 00456 } 00457 return unknown(); 00458 } 00459 00460 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 00461 // no interprocedural analysis is done at the moment 00462 if (!A.hasByValOrInAllocaAttr()) { 00463 ++ObjectVisitorArgument; 00464 return unknown(); 00465 } 00466 PointerType *PT = cast<PointerType>(A.getType()); 00467 APInt Size(IntTyBits, DL->getTypeAllocSize(PT->getElementType())); 00468 return std::make_pair(align(Size, A.getParamAlignment()), Zero); 00469 } 00470 00471 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) { 00472 const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc, 00473 TLI); 00474 if (!FnData) 00475 return unknown(); 00476 00477 // handle strdup-like functions separately 00478 if (FnData->AllocTy == StrDupLike) { 00479 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0))); 00480 if (!Size) 00481 return unknown(); 00482 00483 // strndup limits strlen 00484 if (FnData->FstParam > 0) { 00485 ConstantInt *Arg= dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 00486 if (!Arg) 00487 return unknown(); 00488 00489 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 00490 if (Size.ugt(MaxSize)) 00491 Size = MaxSize + 1; 00492 } 00493 return std::make_pair(Size, Zero); 00494 } 00495 00496 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 00497 if (!Arg) 00498 return unknown(); 00499 00500 APInt Size = Arg->getValue().zextOrSelf(IntTyBits); 00501 // size determined by just 1 parameter 00502 if (FnData->SndParam < 0) 00503 return std::make_pair(Size, Zero); 00504 00505 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam)); 00506 if (!Arg) 00507 return unknown(); 00508 00509 Size *= Arg->getValue().zextOrSelf(IntTyBits); 00510 return std::make_pair(Size, Zero); 00511 00512 // TODO: handle more standard functions (+ wchar cousins): 00513 // - strdup / strndup 00514 // - strcpy / strncpy 00515 // - strcat / strncat 00516 // - memcpy / memmove 00517 // - strcat / strncat 00518 // - memset 00519 } 00520 00521 SizeOffsetType 00522 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull&) { 00523 return std::make_pair(Zero, Zero); 00524 } 00525 00526 SizeOffsetType 00527 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 00528 return unknown(); 00529 } 00530 00531 SizeOffsetType 00532 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 00533 // Easy cases were already folded by previous passes. 00534 return unknown(); 00535 } 00536 00537 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { 00538 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 00539 APInt Offset(IntTyBits, 0); 00540 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(*DL, Offset)) 00541 return unknown(); 00542 00543 return std::make_pair(PtrData.first, PtrData.second + Offset); 00544 } 00545 00546 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 00547 if (GA.mayBeOverridden()) 00548 return unknown(); 00549 return compute(GA.getAliasee()); 00550 } 00551 00552 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 00553 if (!GV.hasDefinitiveInitializer()) 00554 return unknown(); 00555 00556 APInt Size(IntTyBits, DL->getTypeAllocSize(GV.getType()->getElementType())); 00557 return std::make_pair(align(Size, GV.getAlignment()), Zero); 00558 } 00559 00560 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 00561 // clueless 00562 return unknown(); 00563 } 00564 00565 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 00566 ++ObjectVisitorLoad; 00567 return unknown(); 00568 } 00569 00570 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { 00571 // too complex to analyze statically. 00572 return unknown(); 00573 } 00574 00575 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 00576 SizeOffsetType TrueSide = compute(I.getTrueValue()); 00577 SizeOffsetType FalseSide = compute(I.getFalseValue()); 00578 if (bothKnown(TrueSide) && bothKnown(FalseSide) && TrueSide == FalseSide) 00579 return TrueSide; 00580 return unknown(); 00581 } 00582 00583 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 00584 return std::make_pair(Zero, Zero); 00585 } 00586 00587 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 00588 DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n'); 00589 return unknown(); 00590 } 00591 00592 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(const DataLayout *DL, 00593 const TargetLibraryInfo *TLI, 00594 LLVMContext &Context, 00595 bool RoundToAlign) 00596 : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)), 00597 RoundToAlign(RoundToAlign) { 00598 // IntTy and Zero must be set for each compute() since the address space may 00599 // be different for later objects. 00600 } 00601 00602 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 00603 // XXX - Are vectors of pointers possible here? 00604 IntTy = cast<IntegerType>(DL->getIntPtrType(V->getType())); 00605 Zero = ConstantInt::get(IntTy, 0); 00606 00607 SizeOffsetEvalType Result = compute_(V); 00608 00609 if (!bothKnown(Result)) { 00610 // erase everything that was computed in this iteration from the cache, so 00611 // that no dangling references are left behind. We could be a bit smarter if 00612 // we kept a dependency graph. It's probably not worth the complexity. 00613 for (PtrSetTy::iterator I=SeenVals.begin(), E=SeenVals.end(); I != E; ++I) { 00614 CacheMapTy::iterator CacheIt = CacheMap.find(*I); 00615 // non-computable results can be safely cached 00616 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 00617 CacheMap.erase(CacheIt); 00618 } 00619 } 00620 00621 SeenVals.clear(); 00622 return Result; 00623 } 00624 00625 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 00626 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, RoundToAlign); 00627 SizeOffsetType Const = Visitor.compute(V); 00628 if (Visitor.bothKnown(Const)) 00629 return std::make_pair(ConstantInt::get(Context, Const.first), 00630 ConstantInt::get(Context, Const.second)); 00631 00632 V = V->stripPointerCasts(); 00633 00634 // check cache 00635 CacheMapTy::iterator CacheIt = CacheMap.find(V); 00636 if (CacheIt != CacheMap.end()) 00637 return CacheIt->second; 00638 00639 // always generate code immediately before the instruction being 00640 // processed, so that the generated code dominates the same BBs 00641 Instruction *PrevInsertPoint = Builder.GetInsertPoint(); 00642 if (Instruction *I = dyn_cast<Instruction>(V)) 00643 Builder.SetInsertPoint(I); 00644 00645 // now compute the size and offset 00646 SizeOffsetEvalType Result; 00647 00648 // Record the pointers that were handled in this run, so that they can be 00649 // cleaned later if something fails. We also use this set to break cycles that 00650 // can occur in dead code. 00651 if (!SeenVals.insert(V)) { 00652 Result = unknown(); 00653 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 00654 Result = visitGEPOperator(*GEP); 00655 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 00656 Result = visit(*I); 00657 } else if (isa<Argument>(V) || 00658 (isa<ConstantExpr>(V) && 00659 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 00660 isa<GlobalAlias>(V) || 00661 isa<GlobalVariable>(V)) { 00662 // ignore values where we cannot do more than what ObjectSizeVisitor can 00663 Result = unknown(); 00664 } else { 00665 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " 00666 << *V << '\n'); 00667 Result = unknown(); 00668 } 00669 00670 if (PrevInsertPoint) 00671 Builder.SetInsertPoint(PrevInsertPoint); 00672 00673 // Don't reuse CacheIt since it may be invalid at this point. 00674 CacheMap[V] = Result; 00675 return Result; 00676 } 00677 00678 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 00679 if (!I.getAllocatedType()->isSized()) 00680 return unknown(); 00681 00682 // must be a VLA 00683 assert(I.isArrayAllocation()); 00684 Value *ArraySize = I.getArraySize(); 00685 Value *Size = ConstantInt::get(ArraySize->getType(), 00686 DL->getTypeAllocSize(I.getAllocatedType())); 00687 Size = Builder.CreateMul(Size, ArraySize); 00688 return std::make_pair(Size, Zero); 00689 } 00690 00691 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) { 00692 const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc, 00693 TLI); 00694 if (!FnData) 00695 return unknown(); 00696 00697 // handle strdup-like functions separately 00698 if (FnData->AllocTy == StrDupLike) { 00699 // TODO 00700 return unknown(); 00701 } 00702 00703 Value *FirstArg = CS.getArgument(FnData->FstParam); 00704 FirstArg = Builder.CreateZExt(FirstArg, IntTy); 00705 if (FnData->SndParam < 0) 00706 return std::make_pair(FirstArg, Zero); 00707 00708 Value *SecondArg = CS.getArgument(FnData->SndParam); 00709 SecondArg = Builder.CreateZExt(SecondArg, IntTy); 00710 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 00711 return std::make_pair(Size, Zero); 00712 00713 // TODO: handle more standard functions (+ wchar cousins): 00714 // - strdup / strndup 00715 // - strcpy / strncpy 00716 // - strcat / strncat 00717 // - memcpy / memmove 00718 // - strcat / strncat 00719 // - memset 00720 } 00721 00722 SizeOffsetEvalType 00723 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 00724 return unknown(); 00725 } 00726 00727 SizeOffsetEvalType 00728 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 00729 return unknown(); 00730 } 00731 00732 SizeOffsetEvalType 00733 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 00734 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 00735 if (!bothKnown(PtrData)) 00736 return unknown(); 00737 00738 Value *Offset = EmitGEPOffset(&Builder, *DL, &GEP, /*NoAssumptions=*/true); 00739 Offset = Builder.CreateAdd(PtrData.second, Offset); 00740 return std::make_pair(PtrData.first, Offset); 00741 } 00742 00743 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 00744 // clueless 00745 return unknown(); 00746 } 00747 00748 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 00749 return unknown(); 00750 } 00751 00752 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 00753 // create 2 PHIs: one for size and another for offset 00754 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 00755 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 00756 00757 // insert right away in the cache to handle recursive PHIs 00758 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 00759 00760 // compute offset/size for each PHI incoming pointer 00761 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 00762 Builder.SetInsertPoint(PHI.getIncomingBlock(i)->getFirstInsertionPt()); 00763 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 00764 00765 if (!bothKnown(EdgeData)) { 00766 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 00767 OffsetPHI->eraseFromParent(); 00768 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 00769 SizePHI->eraseFromParent(); 00770 return unknown(); 00771 } 00772 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 00773 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 00774 } 00775 00776 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp; 00777 if ((Tmp = SizePHI->hasConstantValue())) { 00778 Size = Tmp; 00779 SizePHI->replaceAllUsesWith(Size); 00780 SizePHI->eraseFromParent(); 00781 } 00782 if ((Tmp = OffsetPHI->hasConstantValue())) { 00783 Offset = Tmp; 00784 OffsetPHI->replaceAllUsesWith(Offset); 00785 OffsetPHI->eraseFromParent(); 00786 } 00787 return std::make_pair(Size, Offset); 00788 } 00789 00790 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 00791 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 00792 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 00793 00794 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 00795 return unknown(); 00796 if (TrueSide == FalseSide) 00797 return TrueSide; 00798 00799 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 00800 FalseSide.first); 00801 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 00802 FalseSide.second); 00803 return std::make_pair(Size, Offset); 00804 } 00805 00806 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 00807 DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n'); 00808 return unknown(); 00809 }