LLVM API Documentation
00001 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This pass reassociates commutative expressions in an order that is designed 00011 // to promote better constant propagation, GCSE, LICM, PRE, etc. 00012 // 00013 // For example: 4 + (x + 5) -> x + (4 + 5) 00014 // 00015 // In the implementation of this algorithm, constants are assigned rank = 0, 00016 // function arguments are rank = 1, and other values are assigned ranks 00017 // corresponding to the reverse post order traversal of current function 00018 // (starting at 2), which effectively gives values in deep loops higher rank 00019 // than values not in loops. 00020 // 00021 //===----------------------------------------------------------------------===// 00022 00023 #include "llvm/Transforms/Scalar.h" 00024 #include "llvm/ADT/DenseMap.h" 00025 #include "llvm/ADT/PostOrderIterator.h" 00026 #include "llvm/ADT/STLExtras.h" 00027 #include "llvm/ADT/SetVector.h" 00028 #include "llvm/ADT/Statistic.h" 00029 #include "llvm/IR/CFG.h" 00030 #include "llvm/IR/Constants.h" 00031 #include "llvm/IR/DerivedTypes.h" 00032 #include "llvm/IR/Function.h" 00033 #include "llvm/IR/IRBuilder.h" 00034 #include "llvm/IR/Instructions.h" 00035 #include "llvm/IR/IntrinsicInst.h" 00036 #include "llvm/IR/ValueHandle.h" 00037 #include "llvm/Pass.h" 00038 #include "llvm/Support/Debug.h" 00039 #include "llvm/Support/raw_ostream.h" 00040 #include "llvm/Transforms/Utils/Local.h" 00041 #include <algorithm> 00042 using namespace llvm; 00043 00044 #define DEBUG_TYPE "reassociate" 00045 00046 STATISTIC(NumChanged, "Number of insts reassociated"); 00047 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 00048 STATISTIC(NumFactor , "Number of multiplies factored"); 00049 00050 namespace { 00051 struct ValueEntry { 00052 unsigned Rank; 00053 Value *Op; 00054 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {} 00055 }; 00056 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) { 00057 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start. 00058 } 00059 } 00060 00061 #ifndef NDEBUG 00062 /// PrintOps - Print out the expression identified in the Ops list. 00063 /// 00064 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 00065 Module *M = I->getParent()->getParent()->getParent(); 00066 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 00067 << *Ops[0].Op->getType() << '\t'; 00068 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 00069 dbgs() << "[ "; 00070 Ops[i].Op->printAsOperand(dbgs(), false, M); 00071 dbgs() << ", #" << Ops[i].Rank << "] "; 00072 } 00073 } 00074 #endif 00075 00076 namespace { 00077 /// \brief Utility class representing a base and exponent pair which form one 00078 /// factor of some product. 00079 struct Factor { 00080 Value *Base; 00081 unsigned Power; 00082 00083 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {} 00084 00085 /// \brief Sort factors by their Base. 00086 struct BaseSorter { 00087 bool operator()(const Factor &LHS, const Factor &RHS) { 00088 return LHS.Base < RHS.Base; 00089 } 00090 }; 00091 00092 /// \brief Compare factors for equal bases. 00093 struct BaseEqual { 00094 bool operator()(const Factor &LHS, const Factor &RHS) { 00095 return LHS.Base == RHS.Base; 00096 } 00097 }; 00098 00099 /// \brief Sort factors in descending order by their power. 00100 struct PowerDescendingSorter { 00101 bool operator()(const Factor &LHS, const Factor &RHS) { 00102 return LHS.Power > RHS.Power; 00103 } 00104 }; 00105 00106 /// \brief Compare factors for equal powers. 00107 struct PowerEqual { 00108 bool operator()(const Factor &LHS, const Factor &RHS) { 00109 return LHS.Power == RHS.Power; 00110 } 00111 }; 00112 }; 00113 00114 /// Utility class representing a non-constant Xor-operand. We classify 00115 /// non-constant Xor-Operands into two categories: 00116 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 00117 /// C2) 00118 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 00119 /// constant. 00120 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 00121 /// operand as "E | 0" 00122 class XorOpnd { 00123 public: 00124 XorOpnd(Value *V); 00125 00126 bool isInvalid() const { return SymbolicPart == nullptr; } 00127 bool isOrExpr() const { return isOr; } 00128 Value *getValue() const { return OrigVal; } 00129 Value *getSymbolicPart() const { return SymbolicPart; } 00130 unsigned getSymbolicRank() const { return SymbolicRank; } 00131 const APInt &getConstPart() const { return ConstPart; } 00132 00133 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 00134 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 00135 00136 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank. 00137 // The purpose is twofold: 00138 // 1) Cluster together the operands sharing the same symbolic-value. 00139 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 00140 // could potentially shorten crital path, and expose more loop-invariants. 00141 // Note that values' rank are basically defined in RPO order (FIXME). 00142 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 00143 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 00144 // "z" in the order of X-Y-Z is better than any other orders. 00145 struct PtrSortFunctor { 00146 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) { 00147 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 00148 } 00149 }; 00150 private: 00151 Value *OrigVal; 00152 Value *SymbolicPart; 00153 APInt ConstPart; 00154 unsigned SymbolicRank; 00155 bool isOr; 00156 }; 00157 } 00158 00159 namespace { 00160 class Reassociate : public FunctionPass { 00161 DenseMap<BasicBlock*, unsigned> RankMap; 00162 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap; 00163 SetVector<AssertingVH<Instruction> > RedoInsts; 00164 bool MadeChange; 00165 public: 00166 static char ID; // Pass identification, replacement for typeid 00167 Reassociate() : FunctionPass(ID) { 00168 initializeReassociatePass(*PassRegistry::getPassRegistry()); 00169 } 00170 00171 bool runOnFunction(Function &F) override; 00172 00173 void getAnalysisUsage(AnalysisUsage &AU) const override { 00174 AU.setPreservesCFG(); 00175 } 00176 private: 00177 void BuildRankMap(Function &F); 00178 unsigned getRank(Value *V); 00179 void ReassociateExpression(BinaryOperator *I); 00180 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 00181 Value *OptimizeExpression(BinaryOperator *I, 00182 SmallVectorImpl<ValueEntry> &Ops); 00183 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 00184 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops); 00185 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd, 00186 Value *&Res); 00187 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 00188 APInt &ConstOpnd, Value *&Res); 00189 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 00190 SmallVectorImpl<Factor> &Factors); 00191 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder, 00192 SmallVectorImpl<Factor> &Factors); 00193 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops); 00194 Value *RemoveFactorFromExpression(Value *V, Value *Factor); 00195 void EraseInst(Instruction *I); 00196 void optimizeFAddNegExpr(ConstantFP *ConstOperand, Instruction *I, 00197 int OperandNr); 00198 void OptimizeInst(Instruction *I); 00199 }; 00200 } 00201 00202 XorOpnd::XorOpnd(Value *V) { 00203 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 00204 OrigVal = V; 00205 Instruction *I = dyn_cast<Instruction>(V); 00206 SymbolicRank = 0; 00207 00208 if (I && (I->getOpcode() == Instruction::Or || 00209 I->getOpcode() == Instruction::And)) { 00210 Value *V0 = I->getOperand(0); 00211 Value *V1 = I->getOperand(1); 00212 if (isa<ConstantInt>(V0)) 00213 std::swap(V0, V1); 00214 00215 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) { 00216 ConstPart = C->getValue(); 00217 SymbolicPart = V0; 00218 isOr = (I->getOpcode() == Instruction::Or); 00219 return; 00220 } 00221 } 00222 00223 // view the operand as "V | 0" 00224 SymbolicPart = V; 00225 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth()); 00226 isOr = true; 00227 } 00228 00229 char Reassociate::ID = 0; 00230 INITIALIZE_PASS(Reassociate, "reassociate", 00231 "Reassociate expressions", false, false) 00232 00233 // Public interface to the Reassociate pass 00234 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); } 00235 00236 /// isReassociableOp - Return true if V is an instruction of the specified 00237 /// opcode and if it only has one use. 00238 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 00239 if (V->hasOneUse() && isa<Instruction>(V) && 00240 cast<Instruction>(V)->getOpcode() == Opcode) 00241 return cast<BinaryOperator>(V); 00242 return nullptr; 00243 } 00244 00245 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 00246 unsigned Opcode2) { 00247 if (V->hasOneUse() && isa<Instruction>(V) && 00248 (cast<Instruction>(V)->getOpcode() == Opcode1 || 00249 cast<Instruction>(V)->getOpcode() == Opcode2)) 00250 return cast<BinaryOperator>(V); 00251 return nullptr; 00252 } 00253 00254 static bool isUnmovableInstruction(Instruction *I) { 00255 switch (I->getOpcode()) { 00256 case Instruction::PHI: 00257 case Instruction::LandingPad: 00258 case Instruction::Alloca: 00259 case Instruction::Load: 00260 case Instruction::Invoke: 00261 case Instruction::UDiv: 00262 case Instruction::SDiv: 00263 case Instruction::FDiv: 00264 case Instruction::URem: 00265 case Instruction::SRem: 00266 case Instruction::FRem: 00267 return true; 00268 case Instruction::Call: 00269 return !isa<DbgInfoIntrinsic>(I); 00270 default: 00271 return false; 00272 } 00273 } 00274 00275 void Reassociate::BuildRankMap(Function &F) { 00276 unsigned i = 2; 00277 00278 // Assign distinct ranks to function arguments 00279 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) 00280 ValueRankMap[&*I] = ++i; 00281 00282 ReversePostOrderTraversal<Function*> RPOT(&F); 00283 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(), 00284 E = RPOT.end(); I != E; ++I) { 00285 BasicBlock *BB = *I; 00286 unsigned BBRank = RankMap[BB] = ++i << 16; 00287 00288 // Walk the basic block, adding precomputed ranks for any instructions that 00289 // we cannot move. This ensures that the ranks for these instructions are 00290 // all different in the block. 00291 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 00292 if (isUnmovableInstruction(I)) 00293 ValueRankMap[&*I] = ++BBRank; 00294 } 00295 } 00296 00297 unsigned Reassociate::getRank(Value *V) { 00298 Instruction *I = dyn_cast<Instruction>(V); 00299 if (!I) { 00300 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 00301 return 0; // Otherwise it's a global or constant, rank 0. 00302 } 00303 00304 if (unsigned Rank = ValueRankMap[I]) 00305 return Rank; // Rank already known? 00306 00307 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 00308 // we can reassociate expressions for code motion! Since we do not recurse 00309 // for PHI nodes, we cannot have infinite recursion here, because there 00310 // cannot be loops in the value graph that do not go through PHI nodes. 00311 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 00312 for (unsigned i = 0, e = I->getNumOperands(); 00313 i != e && Rank != MaxRank; ++i) 00314 Rank = std::max(Rank, getRank(I->getOperand(i))); 00315 00316 // If this is a not or neg instruction, do not count it for rank. This 00317 // assures us that X and ~X will have the same rank. 00318 Type *Ty = V->getType(); 00319 if ((!Ty->isIntegerTy() && !Ty->isFloatingPointTy()) || 00320 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) && 00321 !BinaryOperator::isFNeg(I))) 00322 ++Rank; 00323 00324 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " 00325 // << Rank << "\n"); 00326 00327 return ValueRankMap[I] = Rank; 00328 } 00329 00330 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 00331 Instruction *InsertBefore, Value *FlagsOp) { 00332 if (S1->getType()->isIntegerTy()) 00333 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 00334 else { 00335 BinaryOperator *Res = 00336 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 00337 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 00338 return Res; 00339 } 00340 } 00341 00342 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 00343 Instruction *InsertBefore, Value *FlagsOp) { 00344 if (S1->getType()->isIntegerTy()) 00345 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 00346 else { 00347 BinaryOperator *Res = 00348 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 00349 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 00350 return Res; 00351 } 00352 } 00353 00354 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 00355 Instruction *InsertBefore, Value *FlagsOp) { 00356 if (S1->getType()->isIntegerTy()) 00357 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 00358 else { 00359 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 00360 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 00361 return Res; 00362 } 00363 } 00364 00365 /// LowerNegateToMultiply - Replace 0-X with X*-1. 00366 /// 00367 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 00368 Type *Ty = Neg->getType(); 00369 Constant *NegOne = Ty->isIntegerTy() ? ConstantInt::getAllOnesValue(Ty) 00370 : ConstantFP::get(Ty, -1.0); 00371 00372 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg); 00373 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op. 00374 Res->takeName(Neg); 00375 Neg->replaceAllUsesWith(Res); 00376 Res->setDebugLoc(Neg->getDebugLoc()); 00377 return Res; 00378 } 00379 00380 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda 00381 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for 00382 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 00383 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 00384 /// even x in Bitwidth-bit arithmetic. 00385 static unsigned CarmichaelShift(unsigned Bitwidth) { 00386 if (Bitwidth < 3) 00387 return Bitwidth - 1; 00388 return Bitwidth - 2; 00389 } 00390 00391 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS', 00392 /// reducing the combined weight using any special properties of the operation. 00393 /// The existing weight LHS represents the computation X op X op ... op X where 00394 /// X occurs LHS times. The combined weight represents X op X op ... op X with 00395 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 00396 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 00397 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 00398 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 00399 // If we were working with infinite precision arithmetic then the combined 00400 // weight would be LHS + RHS. But we are using finite precision arithmetic, 00401 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 00402 // for nilpotent operations and addition, but not for idempotent operations 00403 // and multiplication), so it is important to correctly reduce the combined 00404 // weight back into range if wrapping would be wrong. 00405 00406 // If RHS is zero then the weight didn't change. 00407 if (RHS.isMinValue()) 00408 return; 00409 // If LHS is zero then the combined weight is RHS. 00410 if (LHS.isMinValue()) { 00411 LHS = RHS; 00412 return; 00413 } 00414 // From this point on we know that neither LHS nor RHS is zero. 00415 00416 if (Instruction::isIdempotent(Opcode)) { 00417 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 00418 // weight of 1. Keeping weights at zero or one also means that wrapping is 00419 // not a problem. 00420 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 00421 return; // Return a weight of 1. 00422 } 00423 if (Instruction::isNilpotent(Opcode)) { 00424 // Nilpotent means X op X === 0, so reduce weights modulo 2. 00425 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 00426 LHS = 0; // 1 + 1 === 0 modulo 2. 00427 return; 00428 } 00429 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 00430 // TODO: Reduce the weight by exploiting nsw/nuw? 00431 LHS += RHS; 00432 return; 00433 } 00434 00435 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 00436 "Unknown associative operation!"); 00437 unsigned Bitwidth = LHS.getBitWidth(); 00438 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 00439 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 00440 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 00441 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 00442 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 00443 // which by a happy accident means that they can always be represented using 00444 // Bitwidth bits. 00445 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 00446 // the Carmichael number). 00447 if (Bitwidth > 3) { 00448 /// CM - The value of Carmichael's lambda function. 00449 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 00450 // Any weight W >= Threshold can be replaced with W - CM. 00451 APInt Threshold = CM + Bitwidth; 00452 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 00453 // For Bitwidth 4 or more the following sum does not overflow. 00454 LHS += RHS; 00455 while (LHS.uge(Threshold)) 00456 LHS -= CM; 00457 } else { 00458 // To avoid problems with overflow do everything the same as above but using 00459 // a larger type. 00460 unsigned CM = 1U << CarmichaelShift(Bitwidth); 00461 unsigned Threshold = CM + Bitwidth; 00462 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 00463 "Weights not reduced!"); 00464 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 00465 while (Total >= Threshold) 00466 Total -= CM; 00467 LHS = Total; 00468 } 00469 } 00470 00471 typedef std::pair<Value*, APInt> RepeatedValue; 00472 00473 /// LinearizeExprTree - Given an associative binary expression, return the leaf 00474 /// nodes in Ops along with their weights (how many times the leaf occurs). The 00475 /// original expression is the same as 00476 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 00477 /// op 00478 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 00479 /// op 00480 /// ... 00481 /// op 00482 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 00483 /// 00484 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 00485 /// 00486 /// This routine may modify the function, in which case it returns 'true'. The 00487 /// changes it makes may well be destructive, changing the value computed by 'I' 00488 /// to something completely different. Thus if the routine returns 'true' then 00489 /// you MUST either replace I with a new expression computed from the Ops array, 00490 /// or use RewriteExprTree to put the values back in. 00491 /// 00492 /// A leaf node is either not a binary operation of the same kind as the root 00493 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 00494 /// opcode), or is the same kind of binary operator but has a use which either 00495 /// does not belong to the expression, or does belong to the expression but is 00496 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 00497 /// of the expression, while for non-leaf nodes (except for the root 'I') every 00498 /// use is a non-leaf node of the expression. 00499 /// 00500 /// For example: 00501 /// expression graph node names 00502 /// 00503 /// + | I 00504 /// / \ | 00505 /// + + | A, B 00506 /// / \ / \ | 00507 /// * + * | C, D, E 00508 /// / \ / \ / \ | 00509 /// + * | F, G 00510 /// 00511 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 00512 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 00513 /// 00514 /// The expression is maximal: if some instruction is a binary operator of the 00515 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 00516 /// then the instruction also belongs to the expression, is not a leaf node of 00517 /// it, and its operands also belong to the expression (but may be leaf nodes). 00518 /// 00519 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 00520 /// order to ensure that every non-root node in the expression has *exactly one* 00521 /// use by a non-leaf node of the expression. This destruction means that the 00522 /// caller MUST either replace 'I' with a new expression or use something like 00523 /// RewriteExprTree to put the values back in if the routine indicates that it 00524 /// made a change by returning 'true'. 00525 /// 00526 /// In the above example either the right operand of A or the left operand of B 00527 /// will be replaced by undef. If it is B's operand then this gives: 00528 /// 00529 /// + | I 00530 /// / \ | 00531 /// + + | A, B - operand of B replaced with undef 00532 /// / \ \ | 00533 /// * + * | C, D, E 00534 /// / \ / \ / \ | 00535 /// + * | F, G 00536 /// 00537 /// Note that such undef operands can only be reached by passing through 'I'. 00538 /// For example, if you visit operands recursively starting from a leaf node 00539 /// then you will never see such an undef operand unless you get back to 'I', 00540 /// which requires passing through a phi node. 00541 /// 00542 /// Note that this routine may also mutate binary operators of the wrong type 00543 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 00544 /// of the expression) if it can turn them into binary operators of the right 00545 /// type and thus make the expression bigger. 00546 00547 static bool LinearizeExprTree(BinaryOperator *I, 00548 SmallVectorImpl<RepeatedValue> &Ops) { 00549 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 00550 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 00551 unsigned Opcode = I->getOpcode(); 00552 assert(I->isAssociative() && I->isCommutative() && 00553 "Expected an associative and commutative operation!"); 00554 00555 // Visit all operands of the expression, keeping track of their weight (the 00556 // number of paths from the expression root to the operand, or if you like 00557 // the number of times that operand occurs in the linearized expression). 00558 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 00559 // while A has weight two. 00560 00561 // Worklist of non-leaf nodes (their operands are in the expression too) along 00562 // with their weights, representing a certain number of paths to the operator. 00563 // If an operator occurs in the worklist multiple times then we found multiple 00564 // ways to get to it. 00565 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight) 00566 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 00567 bool MadeChange = false; 00568 00569 // Leaves of the expression are values that either aren't the right kind of 00570 // operation (eg: a constant, or a multiply in an add tree), or are, but have 00571 // some uses that are not inside the expression. For example, in I = X + X, 00572 // X = A + B, the value X has two uses (by I) that are in the expression. If 00573 // X has any other uses, for example in a return instruction, then we consider 00574 // X to be a leaf, and won't analyze it further. When we first visit a value, 00575 // if it has more than one use then at first we conservatively consider it to 00576 // be a leaf. Later, as the expression is explored, we may discover some more 00577 // uses of the value from inside the expression. If all uses turn out to be 00578 // from within the expression (and the value is a binary operator of the right 00579 // kind) then the value is no longer considered to be a leaf, and its operands 00580 // are explored. 00581 00582 // Leaves - Keeps track of the set of putative leaves as well as the number of 00583 // paths to each leaf seen so far. 00584 typedef DenseMap<Value*, APInt> LeafMap; 00585 LeafMap Leaves; // Leaf -> Total weight so far. 00586 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order. 00587 00588 #ifndef NDEBUG 00589 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme. 00590 #endif 00591 while (!Worklist.empty()) { 00592 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val(); 00593 I = P.first; // We examine the operands of this binary operator. 00594 00595 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands. 00596 Value *Op = I->getOperand(OpIdx); 00597 APInt Weight = P.second; // Number of paths to this operand. 00598 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 00599 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 00600 00601 // If this is a binary operation of the right kind with only one use then 00602 // add its operands to the expression. 00603 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 00604 assert(Visited.insert(Op) && "Not first visit!"); 00605 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 00606 Worklist.push_back(std::make_pair(BO, Weight)); 00607 continue; 00608 } 00609 00610 // Appears to be a leaf. Is the operand already in the set of leaves? 00611 LeafMap::iterator It = Leaves.find(Op); 00612 if (It == Leaves.end()) { 00613 // Not in the leaf map. Must be the first time we saw this operand. 00614 assert(Visited.insert(Op) && "Not first visit!"); 00615 if (!Op->hasOneUse()) { 00616 // This value has uses not accounted for by the expression, so it is 00617 // not safe to modify. Mark it as being a leaf. 00618 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 00619 LeafOrder.push_back(Op); 00620 Leaves[Op] = Weight; 00621 continue; 00622 } 00623 // No uses outside the expression, try morphing it. 00624 } else if (It != Leaves.end()) { 00625 // Already in the leaf map. 00626 assert(Visited.count(Op) && "In leaf map but not visited!"); 00627 00628 // Update the number of paths to the leaf. 00629 IncorporateWeight(It->second, Weight, Opcode); 00630 00631 #if 0 // TODO: Re-enable once PR13021 is fixed. 00632 // The leaf already has one use from inside the expression. As we want 00633 // exactly one such use, drop this new use of the leaf. 00634 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 00635 I->setOperand(OpIdx, UndefValue::get(I->getType())); 00636 MadeChange = true; 00637 00638 // If the leaf is a binary operation of the right kind and we now see 00639 // that its multiple original uses were in fact all by nodes belonging 00640 // to the expression, then no longer consider it to be a leaf and add 00641 // its operands to the expression. 00642 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 00643 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 00644 Worklist.push_back(std::make_pair(BO, It->second)); 00645 Leaves.erase(It); 00646 continue; 00647 } 00648 #endif 00649 00650 // If we still have uses that are not accounted for by the expression 00651 // then it is not safe to modify the value. 00652 if (!Op->hasOneUse()) 00653 continue; 00654 00655 // No uses outside the expression, try morphing it. 00656 Weight = It->second; 00657 Leaves.erase(It); // Since the value may be morphed below. 00658 } 00659 00660 // At this point we have a value which, first of all, is not a binary 00661 // expression of the right kind, and secondly, is only used inside the 00662 // expression. This means that it can safely be modified. See if we 00663 // can usefully morph it into an expression of the right kind. 00664 assert((!isa<Instruction>(Op) || 00665 cast<Instruction>(Op)->getOpcode() != Opcode) && 00666 "Should have been handled above!"); 00667 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 00668 00669 // If this is a multiply expression, turn any internal negations into 00670 // multiplies by -1 so they can be reassociated. 00671 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) 00672 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) || 00673 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) { 00674 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 00675 BO = LowerNegateToMultiply(BO); 00676 DEBUG(dbgs() << *BO << '\n'); 00677 Worklist.push_back(std::make_pair(BO, Weight)); 00678 MadeChange = true; 00679 continue; 00680 } 00681 00682 // Failed to morph into an expression of the right type. This really is 00683 // a leaf. 00684 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 00685 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 00686 LeafOrder.push_back(Op); 00687 Leaves[Op] = Weight; 00688 } 00689 } 00690 00691 // The leaves, repeated according to their weights, represent the linearized 00692 // form of the expression. 00693 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 00694 Value *V = LeafOrder[i]; 00695 LeafMap::iterator It = Leaves.find(V); 00696 if (It == Leaves.end()) 00697 // Node initially thought to be a leaf wasn't. 00698 continue; 00699 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 00700 APInt Weight = It->second; 00701 if (Weight.isMinValue()) 00702 // Leaf already output or weight reduction eliminated it. 00703 continue; 00704 // Ensure the leaf is only output once. 00705 It->second = 0; 00706 Ops.push_back(std::make_pair(V, Weight)); 00707 } 00708 00709 // For nilpotent operations or addition there may be no operands, for example 00710 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 00711 // in both cases the weight reduces to 0 causing the value to be skipped. 00712 if (Ops.empty()) { 00713 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 00714 assert(Identity && "Associative operation without identity!"); 00715 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1))); 00716 } 00717 00718 return MadeChange; 00719 } 00720 00721 // RewriteExprTree - Now that the operands for this expression tree are 00722 // linearized and optimized, emit them in-order. 00723 void Reassociate::RewriteExprTree(BinaryOperator *I, 00724 SmallVectorImpl<ValueEntry> &Ops) { 00725 assert(Ops.size() > 1 && "Single values should be used directly!"); 00726 00727 // Since our optimizations should never increase the number of operations, the 00728 // new expression can usually be written reusing the existing binary operators 00729 // from the original expression tree, without creating any new instructions, 00730 // though the rewritten expression may have a completely different topology. 00731 // We take care to not change anything if the new expression will be the same 00732 // as the original. If more than trivial changes (like commuting operands) 00733 // were made then we are obliged to clear out any optional subclass data like 00734 // nsw flags. 00735 00736 /// NodesToRewrite - Nodes from the original expression available for writing 00737 /// the new expression into. 00738 SmallVector<BinaryOperator*, 8> NodesToRewrite; 00739 unsigned Opcode = I->getOpcode(); 00740 BinaryOperator *Op = I; 00741 00742 /// NotRewritable - The operands being written will be the leaves of the new 00743 /// expression and must not be used as inner nodes (via NodesToRewrite) by 00744 /// mistake. Inner nodes are always reassociable, and usually leaves are not 00745 /// (if they were they would have been incorporated into the expression and so 00746 /// would not be leaves), so most of the time there is no danger of this. But 00747 /// in rare cases a leaf may become reassociable if an optimization kills uses 00748 /// of it, or it may momentarily become reassociable during rewriting (below) 00749 /// due it being removed as an operand of one of its uses. Ensure that misuse 00750 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 00751 /// leaves and refusing to reuse any of them as inner nodes. 00752 SmallPtrSet<Value*, 8> NotRewritable; 00753 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 00754 NotRewritable.insert(Ops[i].Op); 00755 00756 // ExpressionChanged - Non-null if the rewritten expression differs from the 00757 // original in some non-trivial way, requiring the clearing of optional flags. 00758 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 00759 BinaryOperator *ExpressionChanged = nullptr; 00760 for (unsigned i = 0; ; ++i) { 00761 // The last operation (which comes earliest in the IR) is special as both 00762 // operands will come from Ops, rather than just one with the other being 00763 // a subexpression. 00764 if (i+2 == Ops.size()) { 00765 Value *NewLHS = Ops[i].Op; 00766 Value *NewRHS = Ops[i+1].Op; 00767 Value *OldLHS = Op->getOperand(0); 00768 Value *OldRHS = Op->getOperand(1); 00769 00770 if (NewLHS == OldLHS && NewRHS == OldRHS) 00771 // Nothing changed, leave it alone. 00772 break; 00773 00774 if (NewLHS == OldRHS && NewRHS == OldLHS) { 00775 // The order of the operands was reversed. Swap them. 00776 DEBUG(dbgs() << "RA: " << *Op << '\n'); 00777 Op->swapOperands(); 00778 DEBUG(dbgs() << "TO: " << *Op << '\n'); 00779 MadeChange = true; 00780 ++NumChanged; 00781 break; 00782 } 00783 00784 // The new operation differs non-trivially from the original. Overwrite 00785 // the old operands with the new ones. 00786 DEBUG(dbgs() << "RA: " << *Op << '\n'); 00787 if (NewLHS != OldLHS) { 00788 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 00789 if (BO && !NotRewritable.count(BO)) 00790 NodesToRewrite.push_back(BO); 00791 Op->setOperand(0, NewLHS); 00792 } 00793 if (NewRHS != OldRHS) { 00794 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 00795 if (BO && !NotRewritable.count(BO)) 00796 NodesToRewrite.push_back(BO); 00797 Op->setOperand(1, NewRHS); 00798 } 00799 DEBUG(dbgs() << "TO: " << *Op << '\n'); 00800 00801 ExpressionChanged = Op; 00802 MadeChange = true; 00803 ++NumChanged; 00804 00805 break; 00806 } 00807 00808 // Not the last operation. The left-hand side will be a sub-expression 00809 // while the right-hand side will be the current element of Ops. 00810 Value *NewRHS = Ops[i].Op; 00811 if (NewRHS != Op->getOperand(1)) { 00812 DEBUG(dbgs() << "RA: " << *Op << '\n'); 00813 if (NewRHS == Op->getOperand(0)) { 00814 // The new right-hand side was already present as the left operand. If 00815 // we are lucky then swapping the operands will sort out both of them. 00816 Op->swapOperands(); 00817 } else { 00818 // Overwrite with the new right-hand side. 00819 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 00820 if (BO && !NotRewritable.count(BO)) 00821 NodesToRewrite.push_back(BO); 00822 Op->setOperand(1, NewRHS); 00823 ExpressionChanged = Op; 00824 } 00825 DEBUG(dbgs() << "TO: " << *Op << '\n'); 00826 MadeChange = true; 00827 ++NumChanged; 00828 } 00829 00830 // Now deal with the left-hand side. If this is already an operation node 00831 // from the original expression then just rewrite the rest of the expression 00832 // into it. 00833 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 00834 if (BO && !NotRewritable.count(BO)) { 00835 Op = BO; 00836 continue; 00837 } 00838 00839 // Otherwise, grab a spare node from the original expression and use that as 00840 // the left-hand side. If there are no nodes left then the optimizers made 00841 // an expression with more nodes than the original! This usually means that 00842 // they did something stupid but it might mean that the problem was just too 00843 // hard (finding the mimimal number of multiplications needed to realize a 00844 // multiplication expression is NP-complete). Whatever the reason, smart or 00845 // stupid, create a new node if there are none left. 00846 BinaryOperator *NewOp; 00847 if (NodesToRewrite.empty()) { 00848 Constant *Undef = UndefValue::get(I->getType()); 00849 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 00850 Undef, Undef, "", I); 00851 if (NewOp->getType()->isFloatingPointTy()) 00852 NewOp->setFastMathFlags(I->getFastMathFlags()); 00853 } else { 00854 NewOp = NodesToRewrite.pop_back_val(); 00855 } 00856 00857 DEBUG(dbgs() << "RA: " << *Op << '\n'); 00858 Op->setOperand(0, NewOp); 00859 DEBUG(dbgs() << "TO: " << *Op << '\n'); 00860 ExpressionChanged = Op; 00861 MadeChange = true; 00862 ++NumChanged; 00863 Op = NewOp; 00864 } 00865 00866 // If the expression changed non-trivially then clear out all subclass data 00867 // starting from the operator specified in ExpressionChanged, and compactify 00868 // the operators to just before the expression root to guarantee that the 00869 // expression tree is dominated by all of Ops. 00870 if (ExpressionChanged) 00871 do { 00872 // Preserve FastMathFlags. 00873 if (isa<FPMathOperator>(I)) { 00874 FastMathFlags Flags = I->getFastMathFlags(); 00875 ExpressionChanged->clearSubclassOptionalData(); 00876 ExpressionChanged->setFastMathFlags(Flags); 00877 } else 00878 ExpressionChanged->clearSubclassOptionalData(); 00879 00880 if (ExpressionChanged == I) 00881 break; 00882 ExpressionChanged->moveBefore(I); 00883 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 00884 } while (1); 00885 00886 // Throw away any left over nodes from the original expression. 00887 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 00888 RedoInsts.insert(NodesToRewrite[i]); 00889 } 00890 00891 /// NegateValue - Insert instructions before the instruction pointed to by BI, 00892 /// that computes the negative version of the value specified. The negative 00893 /// version of the value is returned, and BI is left pointing at the instruction 00894 /// that should be processed next by the reassociation pass. 00895 static Value *NegateValue(Value *V, Instruction *BI) { 00896 if (ConstantFP *C = dyn_cast<ConstantFP>(V)) 00897 return ConstantExpr::getFNeg(C); 00898 if (Constant *C = dyn_cast<Constant>(V)) 00899 return ConstantExpr::getNeg(C); 00900 00901 // We are trying to expose opportunity for reassociation. One of the things 00902 // that we want to do to achieve this is to push a negation as deep into an 00903 // expression chain as possible, to expose the add instructions. In practice, 00904 // this means that we turn this: 00905 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 00906 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 00907 // the constants. We assume that instcombine will clean up the mess later if 00908 // we introduce tons of unnecessary negation instructions. 00909 // 00910 if (BinaryOperator *I = 00911 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 00912 // Push the negates through the add. 00913 I->setOperand(0, NegateValue(I->getOperand(0), BI)); 00914 I->setOperand(1, NegateValue(I->getOperand(1), BI)); 00915 00916 // We must move the add instruction here, because the neg instructions do 00917 // not dominate the old add instruction in general. By moving it, we are 00918 // assured that the neg instructions we just inserted dominate the 00919 // instruction we are about to insert after them. 00920 // 00921 I->moveBefore(BI); 00922 I->setName(I->getName()+".neg"); 00923 return I; 00924 } 00925 00926 // Okay, we need to materialize a negated version of V with an instruction. 00927 // Scan the use lists of V to see if we have one already. 00928 for (User *U : V->users()) { 00929 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U)) 00930 continue; 00931 00932 // We found one! Now we have to make sure that the definition dominates 00933 // this use. We do this by moving it to the entry block (if it is a 00934 // non-instruction value) or right after the definition. These negates will 00935 // be zapped by reassociate later, so we don't need much finesse here. 00936 BinaryOperator *TheNeg = cast<BinaryOperator>(U); 00937 00938 // Verify that the negate is in this function, V might be a constant expr. 00939 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 00940 continue; 00941 00942 BasicBlock::iterator InsertPt; 00943 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 00944 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 00945 InsertPt = II->getNormalDest()->begin(); 00946 } else { 00947 InsertPt = InstInput; 00948 ++InsertPt; 00949 } 00950 while (isa<PHINode>(InsertPt)) ++InsertPt; 00951 } else { 00952 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 00953 } 00954 TheNeg->moveBefore(InsertPt); 00955 return TheNeg; 00956 } 00957 00958 // Insert a 'neg' instruction that subtracts the value from zero to get the 00959 // negation. 00960 return CreateNeg(V, V->getName() + ".neg", BI, BI); 00961 } 00962 00963 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of 00964 /// X-Y into (X + -Y). 00965 static bool ShouldBreakUpSubtract(Instruction *Sub) { 00966 // If this is a negation, we can't split it up! 00967 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub)) 00968 return false; 00969 00970 // Don't bother to break this up unless either the LHS is an associable add or 00971 // subtract or if this is only used by one. 00972 Value *V0 = Sub->getOperand(0); 00973 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 00974 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 00975 return true; 00976 Value *V1 = Sub->getOperand(1); 00977 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 00978 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 00979 return true; 00980 Value *VB = Sub->user_back(); 00981 if (Sub->hasOneUse() && 00982 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 00983 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 00984 return true; 00985 00986 return false; 00987 } 00988 00989 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is 00990 /// only used by an add, transform this into (X+(0-Y)) to promote better 00991 /// reassociation. 00992 static BinaryOperator *BreakUpSubtract(Instruction *Sub) { 00993 // Convert a subtract into an add and a neg instruction. This allows sub 00994 // instructions to be commuted with other add instructions. 00995 // 00996 // Calculate the negative value of Operand 1 of the sub instruction, 00997 // and set it as the RHS of the add instruction we just made. 00998 // 00999 Value *NegVal = NegateValue(Sub->getOperand(1), Sub); 01000 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 01001 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 01002 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 01003 New->takeName(Sub); 01004 01005 // Everyone now refers to the add instruction. 01006 Sub->replaceAllUsesWith(New); 01007 New->setDebugLoc(Sub->getDebugLoc()); 01008 01009 DEBUG(dbgs() << "Negated: " << *New << '\n'); 01010 return New; 01011 } 01012 01013 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used 01014 /// by one, change this into a multiply by a constant to assist with further 01015 /// reassociation. 01016 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 01017 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 01018 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 01019 01020 BinaryOperator *Mul = 01021 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 01022 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 01023 Mul->takeName(Shl); 01024 Shl->replaceAllUsesWith(Mul); 01025 Mul->setDebugLoc(Shl->getDebugLoc()); 01026 return Mul; 01027 } 01028 01029 /// FindInOperandList - Scan backwards and forwards among values with the same 01030 /// rank as element i to see if X exists. If X does not exist, return i. This 01031 /// is useful when scanning for 'x' when we see '-x' because they both get the 01032 /// same rank. 01033 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i, 01034 Value *X) { 01035 unsigned XRank = Ops[i].Rank; 01036 unsigned e = Ops.size(); 01037 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) 01038 if (Ops[j].Op == X) 01039 return j; 01040 // Scan backwards. 01041 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) 01042 if (Ops[j].Op == X) 01043 return j; 01044 return i; 01045 } 01046 01047 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together 01048 /// and returning the result. Insert the tree before I. 01049 static Value *EmitAddTreeOfValues(Instruction *I, 01050 SmallVectorImpl<WeakVH> &Ops){ 01051 if (Ops.size() == 1) return Ops.back(); 01052 01053 Value *V1 = Ops.back(); 01054 Ops.pop_back(); 01055 Value *V2 = EmitAddTreeOfValues(I, Ops); 01056 return CreateAdd(V2, V1, "tmp", I, I); 01057 } 01058 01059 /// RemoveFactorFromExpression - If V is an expression tree that is a 01060 /// multiplication sequence, and if this sequence contains a multiply by Factor, 01061 /// remove Factor from the tree and return the new tree. 01062 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) { 01063 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 01064 if (!BO) 01065 return nullptr; 01066 01067 SmallVector<RepeatedValue, 8> Tree; 01068 MadeChange |= LinearizeExprTree(BO, Tree); 01069 SmallVector<ValueEntry, 8> Factors; 01070 Factors.reserve(Tree.size()); 01071 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 01072 RepeatedValue E = Tree[i]; 01073 Factors.append(E.second.getZExtValue(), 01074 ValueEntry(getRank(E.first), E.first)); 01075 } 01076 01077 bool FoundFactor = false; 01078 bool NeedsNegate = false; 01079 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 01080 if (Factors[i].Op == Factor) { 01081 FoundFactor = true; 01082 Factors.erase(Factors.begin()+i); 01083 break; 01084 } 01085 01086 // If this is a negative version of this factor, remove it. 01087 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 01088 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 01089 if (FC1->getValue() == -FC2->getValue()) { 01090 FoundFactor = NeedsNegate = true; 01091 Factors.erase(Factors.begin()+i); 01092 break; 01093 } 01094 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 01095 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 01096 APFloat F1(FC1->getValueAPF()); 01097 APFloat F2(FC2->getValueAPF()); 01098 F2.changeSign(); 01099 if (F1.compare(F2) == APFloat::cmpEqual) { 01100 FoundFactor = NeedsNegate = true; 01101 Factors.erase(Factors.begin() + i); 01102 break; 01103 } 01104 } 01105 } 01106 } 01107 01108 if (!FoundFactor) { 01109 // Make sure to restore the operands to the expression tree. 01110 RewriteExprTree(BO, Factors); 01111 return nullptr; 01112 } 01113 01114 BasicBlock::iterator InsertPt = BO; ++InsertPt; 01115 01116 // If this was just a single multiply, remove the multiply and return the only 01117 // remaining operand. 01118 if (Factors.size() == 1) { 01119 RedoInsts.insert(BO); 01120 V = Factors[0].Op; 01121 } else { 01122 RewriteExprTree(BO, Factors); 01123 V = BO; 01124 } 01125 01126 if (NeedsNegate) 01127 V = CreateNeg(V, "neg", InsertPt, BO); 01128 01129 return V; 01130 } 01131 01132 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively 01133 /// add its operands as factors, otherwise add V to the list of factors. 01134 /// 01135 /// Ops is the top-level list of add operands we're trying to factor. 01136 static void FindSingleUseMultiplyFactors(Value *V, 01137 SmallVectorImpl<Value*> &Factors, 01138 const SmallVectorImpl<ValueEntry> &Ops) { 01139 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 01140 if (!BO) { 01141 Factors.push_back(V); 01142 return; 01143 } 01144 01145 // Otherwise, add the LHS and RHS to the list of factors. 01146 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops); 01147 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops); 01148 } 01149 01150 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor' 01151 /// instruction. This optimizes based on identities. If it can be reduced to 01152 /// a single Value, it is returned, otherwise the Ops list is mutated as 01153 /// necessary. 01154 static Value *OptimizeAndOrXor(unsigned Opcode, 01155 SmallVectorImpl<ValueEntry> &Ops) { 01156 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 01157 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 01158 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 01159 // First, check for X and ~X in the operand list. 01160 assert(i < Ops.size()); 01161 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^. 01162 Value *X = BinaryOperator::getNotArgument(Ops[i].Op); 01163 unsigned FoundX = FindInOperandList(Ops, i, X); 01164 if (FoundX != i) { 01165 if (Opcode == Instruction::And) // ...&X&~X = 0 01166 return Constant::getNullValue(X->getType()); 01167 01168 if (Opcode == Instruction::Or) // ...|X|~X = -1 01169 return Constant::getAllOnesValue(X->getType()); 01170 } 01171 } 01172 01173 // Next, check for duplicate pairs of values, which we assume are next to 01174 // each other, due to our sorting criteria. 01175 assert(i < Ops.size()); 01176 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 01177 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 01178 // Drop duplicate values for And and Or. 01179 Ops.erase(Ops.begin()+i); 01180 --i; --e; 01181 ++NumAnnihil; 01182 continue; 01183 } 01184 01185 // Drop pairs of values for Xor. 01186 assert(Opcode == Instruction::Xor); 01187 if (e == 2) 01188 return Constant::getNullValue(Ops[0].Op->getType()); 01189 01190 // Y ^ X^X -> Y 01191 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 01192 i -= 1; e -= 2; 01193 ++NumAnnihil; 01194 } 01195 } 01196 return nullptr; 01197 } 01198 01199 /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and 01200 /// instruction with the given two operands, and return the resulting 01201 /// instruction. There are two special cases: 1) if the constant operand is 0, 01202 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 01203 /// be returned. 01204 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 01205 const APInt &ConstOpnd) { 01206 if (ConstOpnd != 0) { 01207 if (!ConstOpnd.isAllOnesValue()) { 01208 LLVMContext &Ctx = Opnd->getType()->getContext(); 01209 Instruction *I; 01210 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd), 01211 "and.ra", InsertBefore); 01212 I->setDebugLoc(InsertBefore->getDebugLoc()); 01213 return I; 01214 } 01215 return Opnd; 01216 } 01217 return nullptr; 01218 } 01219 01220 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 01221 // into "R ^ C", where C would be 0, and R is a symbolic value. 01222 // 01223 // If it was successful, true is returned, and the "R" and "C" is returned 01224 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 01225 // and both "Res" and "ConstOpnd" remain unchanged. 01226 // 01227 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 01228 APInt &ConstOpnd, Value *&Res) { 01229 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 01230 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 01231 // = (x & ~c1) ^ (c1 ^ c2) 01232 // It is useful only when c1 == c2. 01233 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) { 01234 if (!Opnd1->getValue()->hasOneUse()) 01235 return false; 01236 01237 const APInt &C1 = Opnd1->getConstPart(); 01238 if (C1 != ConstOpnd) 01239 return false; 01240 01241 Value *X = Opnd1->getSymbolicPart(); 01242 Res = createAndInstr(I, X, ~C1); 01243 // ConstOpnd was C2, now C1 ^ C2. 01244 ConstOpnd ^= C1; 01245 01246 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 01247 RedoInsts.insert(T); 01248 return true; 01249 } 01250 return false; 01251 } 01252 01253 01254 // Helper function of OptimizeXor(). It tries to simplify 01255 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 01256 // symbolic value. 01257 // 01258 // If it was successful, true is returned, and the "R" and "C" is returned 01259 // via "Res" and "ConstOpnd", respectively (If the entire expression is 01260 // evaluated to a constant, the Res is set to NULL); otherwise, false is 01261 // returned, and both "Res" and "ConstOpnd" remain unchanged. 01262 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2, 01263 APInt &ConstOpnd, Value *&Res) { 01264 Value *X = Opnd1->getSymbolicPart(); 01265 if (X != Opnd2->getSymbolicPart()) 01266 return false; 01267 01268 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 01269 int DeadInstNum = 1; 01270 if (Opnd1->getValue()->hasOneUse()) 01271 DeadInstNum++; 01272 if (Opnd2->getValue()->hasOneUse()) 01273 DeadInstNum++; 01274 01275 // Xor-Rule 2: 01276 // (x | c1) ^ (x & c2) 01277 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 01278 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 01279 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 01280 // 01281 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 01282 if (Opnd2->isOrExpr()) 01283 std::swap(Opnd1, Opnd2); 01284 01285 const APInt &C1 = Opnd1->getConstPart(); 01286 const APInt &C2 = Opnd2->getConstPart(); 01287 APInt C3((~C1) ^ C2); 01288 01289 // Do not increase code size! 01290 if (C3 != 0 && !C3.isAllOnesValue()) { 01291 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 01292 if (NewInstNum > DeadInstNum) 01293 return false; 01294 } 01295 01296 Res = createAndInstr(I, X, C3); 01297 ConstOpnd ^= C1; 01298 01299 } else if (Opnd1->isOrExpr()) { 01300 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 01301 // 01302 const APInt &C1 = Opnd1->getConstPart(); 01303 const APInt &C2 = Opnd2->getConstPart(); 01304 APInt C3 = C1 ^ C2; 01305 01306 // Do not increase code size 01307 if (C3 != 0 && !C3.isAllOnesValue()) { 01308 int NewInstNum = ConstOpnd != 0 ? 1 : 2; 01309 if (NewInstNum > DeadInstNum) 01310 return false; 01311 } 01312 01313 Res = createAndInstr(I, X, C3); 01314 ConstOpnd ^= C3; 01315 } else { 01316 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 01317 // 01318 const APInt &C1 = Opnd1->getConstPart(); 01319 const APInt &C2 = Opnd2->getConstPart(); 01320 APInt C3 = C1 ^ C2; 01321 Res = createAndInstr(I, X, C3); 01322 } 01323 01324 // Put the original operands in the Redo list; hope they will be deleted 01325 // as dead code. 01326 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 01327 RedoInsts.insert(T); 01328 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 01329 RedoInsts.insert(T); 01330 01331 return true; 01332 } 01333 01334 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 01335 /// to a single Value, it is returned, otherwise the Ops list is mutated as 01336 /// necessary. 01337 Value *Reassociate::OptimizeXor(Instruction *I, 01338 SmallVectorImpl<ValueEntry> &Ops) { 01339 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 01340 return V; 01341 01342 if (Ops.size() == 1) 01343 return nullptr; 01344 01345 SmallVector<XorOpnd, 8> Opnds; 01346 SmallVector<XorOpnd*, 8> OpndPtrs; 01347 Type *Ty = Ops[0].Op->getType(); 01348 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0); 01349 01350 // Step 1: Convert ValueEntry to XorOpnd 01351 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 01352 Value *V = Ops[i].Op; 01353 if (!isa<ConstantInt>(V)) { 01354 XorOpnd O(V); 01355 O.setSymbolicRank(getRank(O.getSymbolicPart())); 01356 Opnds.push_back(O); 01357 } else 01358 ConstOpnd ^= cast<ConstantInt>(V)->getValue(); 01359 } 01360 01361 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 01362 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 01363 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 01364 // with the previous loop --- the iterator of the "Opnds" may be invalidated 01365 // when new elements are added to the vector. 01366 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 01367 OpndPtrs.push_back(&Opnds[i]); 01368 01369 // Step 2: Sort the Xor-Operands in a way such that the operands containing 01370 // the same symbolic value cluster together. For instance, the input operand 01371 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 01372 // ("x | 123", "x & 789", "y & 456"). 01373 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor()); 01374 01375 // Step 3: Combine adjacent operands 01376 XorOpnd *PrevOpnd = nullptr; 01377 bool Changed = false; 01378 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 01379 XorOpnd *CurrOpnd = OpndPtrs[i]; 01380 // The combined value 01381 Value *CV; 01382 01383 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 01384 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 01385 Changed = true; 01386 if (CV) 01387 *CurrOpnd = XorOpnd(CV); 01388 else { 01389 CurrOpnd->Invalidate(); 01390 continue; 01391 } 01392 } 01393 01394 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 01395 PrevOpnd = CurrOpnd; 01396 continue; 01397 } 01398 01399 // step 3.2: When previous and current operands share the same symbolic 01400 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 01401 // 01402 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 01403 // Remove previous operand 01404 PrevOpnd->Invalidate(); 01405 if (CV) { 01406 *CurrOpnd = XorOpnd(CV); 01407 PrevOpnd = CurrOpnd; 01408 } else { 01409 CurrOpnd->Invalidate(); 01410 PrevOpnd = nullptr; 01411 } 01412 Changed = true; 01413 } 01414 } 01415 01416 // Step 4: Reassemble the Ops 01417 if (Changed) { 01418 Ops.clear(); 01419 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 01420 XorOpnd &O = Opnds[i]; 01421 if (O.isInvalid()) 01422 continue; 01423 ValueEntry VE(getRank(O.getValue()), O.getValue()); 01424 Ops.push_back(VE); 01425 } 01426 if (ConstOpnd != 0) { 01427 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd); 01428 ValueEntry VE(getRank(C), C); 01429 Ops.push_back(VE); 01430 } 01431 int Sz = Ops.size(); 01432 if (Sz == 1) 01433 return Ops.back().Op; 01434 else if (Sz == 0) { 01435 assert(ConstOpnd == 0); 01436 return ConstantInt::get(Ty->getContext(), ConstOpnd); 01437 } 01438 } 01439 01440 return nullptr; 01441 } 01442 01443 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This 01444 /// optimizes based on identities. If it can be reduced to a single Value, it 01445 /// is returned, otherwise the Ops list is mutated as necessary. 01446 Value *Reassociate::OptimizeAdd(Instruction *I, 01447 SmallVectorImpl<ValueEntry> &Ops) { 01448 // Scan the operand lists looking for X and -X pairs. If we find any, we 01449 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 01450 // scan for any 01451 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 01452 01453 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 01454 Value *TheOp = Ops[i].Op; 01455 // Check to see if we've seen this operand before. If so, we factor all 01456 // instances of the operand together. Due to our sorting criteria, we know 01457 // that these need to be next to each other in the vector. 01458 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 01459 // Rescan the list, remove all instances of this operand from the expr. 01460 unsigned NumFound = 0; 01461 do { 01462 Ops.erase(Ops.begin()+i); 01463 ++NumFound; 01464 } while (i != Ops.size() && Ops[i].Op == TheOp); 01465 01466 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n'); 01467 ++NumFactor; 01468 01469 // Insert a new multiply. 01470 Type *Ty = TheOp->getType(); 01471 Constant *C = Ty->isIntegerTy() ? ConstantInt::get(Ty, NumFound) 01472 : ConstantFP::get(Ty, NumFound); 01473 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 01474 01475 // Now that we have inserted a multiply, optimize it. This allows us to 01476 // handle cases that require multiple factoring steps, such as this: 01477 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 01478 RedoInsts.insert(Mul); 01479 01480 // If every add operand was a duplicate, return the multiply. 01481 if (Ops.empty()) 01482 return Mul; 01483 01484 // Otherwise, we had some input that didn't have the dupe, such as 01485 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 01486 // things being added by this operation. 01487 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 01488 01489 --i; 01490 e = Ops.size(); 01491 continue; 01492 } 01493 01494 // Check for X and -X or X and ~X in the operand list. 01495 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) && 01496 !BinaryOperator::isNot(TheOp)) 01497 continue; 01498 01499 Value *X = nullptr; 01500 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)) 01501 X = BinaryOperator::getNegArgument(TheOp); 01502 else if (BinaryOperator::isNot(TheOp)) 01503 X = BinaryOperator::getNotArgument(TheOp); 01504 01505 unsigned FoundX = FindInOperandList(Ops, i, X); 01506 if (FoundX == i) 01507 continue; 01508 01509 // Remove X and -X from the operand list. 01510 if (Ops.size() == 2 && 01511 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))) 01512 return Constant::getNullValue(X->getType()); 01513 01514 // Remove X and ~X from the operand list. 01515 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp)) 01516 return Constant::getAllOnesValue(X->getType()); 01517 01518 Ops.erase(Ops.begin()+i); 01519 if (i < FoundX) 01520 --FoundX; 01521 else 01522 --i; // Need to back up an extra one. 01523 Ops.erase(Ops.begin()+FoundX); 01524 ++NumAnnihil; 01525 --i; // Revisit element. 01526 e -= 2; // Removed two elements. 01527 01528 // if X and ~X we append -1 to the operand list. 01529 if (BinaryOperator::isNot(TheOp)) { 01530 Value *V = Constant::getAllOnesValue(X->getType()); 01531 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 01532 e += 1; 01533 } 01534 } 01535 01536 // Scan the operand list, checking to see if there are any common factors 01537 // between operands. Consider something like A*A+A*B*C+D. We would like to 01538 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 01539 // To efficiently find this, we count the number of times a factor occurs 01540 // for any ADD operands that are MULs. 01541 DenseMap<Value*, unsigned> FactorOccurrences; 01542 01543 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 01544 // where they are actually the same multiply. 01545 unsigned MaxOcc = 0; 01546 Value *MaxOccVal = nullptr; 01547 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 01548 BinaryOperator *BOp = 01549 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 01550 if (!BOp) 01551 continue; 01552 01553 // Compute all of the factors of this added value. 01554 SmallVector<Value*, 8> Factors; 01555 FindSingleUseMultiplyFactors(BOp, Factors, Ops); 01556 assert(Factors.size() > 1 && "Bad linearize!"); 01557 01558 // Add one to FactorOccurrences for each unique factor in this op. 01559 SmallPtrSet<Value*, 8> Duplicates; 01560 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 01561 Value *Factor = Factors[i]; 01562 if (!Duplicates.insert(Factor)) 01563 continue; 01564 01565 unsigned Occ = ++FactorOccurrences[Factor]; 01566 if (Occ > MaxOcc) { 01567 MaxOcc = Occ; 01568 MaxOccVal = Factor; 01569 } 01570 01571 // If Factor is a negative constant, add the negated value as a factor 01572 // because we can percolate the negate out. Watch for minint, which 01573 // cannot be positivified. 01574 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 01575 if (CI->isNegative() && !CI->isMinValue(true)) { 01576 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 01577 assert(!Duplicates.count(Factor) && 01578 "Shouldn't have two constant factors, missed a canonicalize"); 01579 unsigned Occ = ++FactorOccurrences[Factor]; 01580 if (Occ > MaxOcc) { 01581 MaxOcc = Occ; 01582 MaxOccVal = Factor; 01583 } 01584 } 01585 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 01586 if (CF->isNegative()) { 01587 APFloat F(CF->getValueAPF()); 01588 F.changeSign(); 01589 Factor = ConstantFP::get(CF->getContext(), F); 01590 assert(!Duplicates.count(Factor) && 01591 "Shouldn't have two constant factors, missed a canonicalize"); 01592 unsigned Occ = ++FactorOccurrences[Factor]; 01593 if (Occ > MaxOcc) { 01594 MaxOcc = Occ; 01595 MaxOccVal = Factor; 01596 } 01597 } 01598 } 01599 } 01600 } 01601 01602 // If any factor occurred more than one time, we can pull it out. 01603 if (MaxOcc > 1) { 01604 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n'); 01605 ++NumFactor; 01606 01607 // Create a new instruction that uses the MaxOccVal twice. If we don't do 01608 // this, we could otherwise run into situations where removing a factor 01609 // from an expression will drop a use of maxocc, and this can cause 01610 // RemoveFactorFromExpression on successive values to behave differently. 01611 Instruction *DummyInst = 01612 I->getType()->isIntegerTy() 01613 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 01614 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 01615 01616 SmallVector<WeakVH, 4> NewMulOps; 01617 for (unsigned i = 0; i != Ops.size(); ++i) { 01618 // Only try to remove factors from expressions we're allowed to. 01619 BinaryOperator *BOp = 01620 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 01621 if (!BOp) 01622 continue; 01623 01624 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 01625 // The factorized operand may occur several times. Convert them all in 01626 // one fell swoop. 01627 for (unsigned j = Ops.size(); j != i;) { 01628 --j; 01629 if (Ops[j].Op == Ops[i].Op) { 01630 NewMulOps.push_back(V); 01631 Ops.erase(Ops.begin()+j); 01632 } 01633 } 01634 --i; 01635 } 01636 } 01637 01638 // No need for extra uses anymore. 01639 delete DummyInst; 01640 01641 unsigned NumAddedValues = NewMulOps.size(); 01642 Value *V = EmitAddTreeOfValues(I, NewMulOps); 01643 01644 // Now that we have inserted the add tree, optimize it. This allows us to 01645 // handle cases that require multiple factoring steps, such as this: 01646 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 01647 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 01648 (void)NumAddedValues; 01649 if (Instruction *VI = dyn_cast<Instruction>(V)) 01650 RedoInsts.insert(VI); 01651 01652 // Create the multiply. 01653 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I); 01654 01655 // Rerun associate on the multiply in case the inner expression turned into 01656 // a multiply. We want to make sure that we keep things in canonical form. 01657 RedoInsts.insert(V2); 01658 01659 // If every add operand included the factor (e.g. "A*B + A*C"), then the 01660 // entire result expression is just the multiply "A*(B+C)". 01661 if (Ops.empty()) 01662 return V2; 01663 01664 // Otherwise, we had some input that didn't have the factor, such as 01665 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 01666 // things being added by this operation. 01667 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 01668 } 01669 01670 return nullptr; 01671 } 01672 01673 /// \brief Build up a vector of value/power pairs factoring a product. 01674 /// 01675 /// Given a series of multiplication operands, build a vector of factors and 01676 /// the powers each is raised to when forming the final product. Sort them in 01677 /// the order of descending power. 01678 /// 01679 /// (x*x) -> [(x, 2)] 01680 /// ((x*x)*x) -> [(x, 3)] 01681 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 01682 /// 01683 /// \returns Whether any factors have a power greater than one. 01684 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 01685 SmallVectorImpl<Factor> &Factors) { 01686 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 01687 // Compute the sum of powers of simplifiable factors. 01688 unsigned FactorPowerSum = 0; 01689 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 01690 Value *Op = Ops[Idx-1].Op; 01691 01692 // Count the number of occurrences of this value. 01693 unsigned Count = 1; 01694 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 01695 ++Count; 01696 // Track for simplification all factors which occur 2 or more times. 01697 if (Count > 1) 01698 FactorPowerSum += Count; 01699 } 01700 01701 // We can only simplify factors if the sum of the powers of our simplifiable 01702 // factors is 4 or higher. When that is the case, we will *always* have 01703 // a simplification. This is an important invariant to prevent cyclicly 01704 // trying to simplify already minimal formations. 01705 if (FactorPowerSum < 4) 01706 return false; 01707 01708 // Now gather the simplifiable factors, removing them from Ops. 01709 FactorPowerSum = 0; 01710 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 01711 Value *Op = Ops[Idx-1].Op; 01712 01713 // Count the number of occurrences of this value. 01714 unsigned Count = 1; 01715 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 01716 ++Count; 01717 if (Count == 1) 01718 continue; 01719 // Move an even number of occurrences to Factors. 01720 Count &= ~1U; 01721 Idx -= Count; 01722 FactorPowerSum += Count; 01723 Factors.push_back(Factor(Op, Count)); 01724 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 01725 } 01726 01727 // None of the adjustments above should have reduced the sum of factor powers 01728 // below our mininum of '4'. 01729 assert(FactorPowerSum >= 4); 01730 01731 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter()); 01732 return true; 01733 } 01734 01735 /// \brief Build a tree of multiplies, computing the product of Ops. 01736 static Value *buildMultiplyTree(IRBuilder<> &Builder, 01737 SmallVectorImpl<Value*> &Ops) { 01738 if (Ops.size() == 1) 01739 return Ops.back(); 01740 01741 Value *LHS = Ops.pop_back_val(); 01742 do { 01743 if (LHS->getType()->isIntegerTy()) 01744 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 01745 else 01746 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 01747 } while (!Ops.empty()); 01748 01749 return LHS; 01750 } 01751 01752 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 01753 /// 01754 /// Given a vector of values raised to various powers, where no two values are 01755 /// equal and the powers are sorted in decreasing order, compute the minimal 01756 /// DAG of multiplies to compute the final product, and return that product 01757 /// value. 01758 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 01759 SmallVectorImpl<Factor> &Factors) { 01760 assert(Factors[0].Power); 01761 SmallVector<Value *, 4> OuterProduct; 01762 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 01763 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 01764 if (Factors[Idx].Power != Factors[LastIdx].Power) { 01765 LastIdx = Idx; 01766 continue; 01767 } 01768 01769 // We want to multiply across all the factors with the same power so that 01770 // we can raise them to that power as a single entity. Build a mini tree 01771 // for that. 01772 SmallVector<Value *, 4> InnerProduct; 01773 InnerProduct.push_back(Factors[LastIdx].Base); 01774 do { 01775 InnerProduct.push_back(Factors[Idx].Base); 01776 ++Idx; 01777 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 01778 01779 // Reset the base value of the first factor to the new expression tree. 01780 // We'll remove all the factors with the same power in a second pass. 01781 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 01782 if (Instruction *MI = dyn_cast<Instruction>(M)) 01783 RedoInsts.insert(MI); 01784 01785 LastIdx = Idx; 01786 } 01787 // Unique factors with equal powers -- we've folded them into the first one's 01788 // base. 01789 Factors.erase(std::unique(Factors.begin(), Factors.end(), 01790 Factor::PowerEqual()), 01791 Factors.end()); 01792 01793 // Iteratively collect the base of each factor with an add power into the 01794 // outer product, and halve each power in preparation for squaring the 01795 // expression. 01796 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 01797 if (Factors[Idx].Power & 1) 01798 OuterProduct.push_back(Factors[Idx].Base); 01799 Factors[Idx].Power >>= 1; 01800 } 01801 if (Factors[0].Power) { 01802 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 01803 OuterProduct.push_back(SquareRoot); 01804 OuterProduct.push_back(SquareRoot); 01805 } 01806 if (OuterProduct.size() == 1) 01807 return OuterProduct.front(); 01808 01809 Value *V = buildMultiplyTree(Builder, OuterProduct); 01810 return V; 01811 } 01812 01813 Value *Reassociate::OptimizeMul(BinaryOperator *I, 01814 SmallVectorImpl<ValueEntry> &Ops) { 01815 // We can only optimize the multiplies when there is a chain of more than 01816 // three, such that a balanced tree might require fewer total multiplies. 01817 if (Ops.size() < 4) 01818 return nullptr; 01819 01820 // Try to turn linear trees of multiplies without other uses of the 01821 // intermediate stages into minimal multiply DAGs with perfect sub-expression 01822 // re-use. 01823 SmallVector<Factor, 4> Factors; 01824 if (!collectMultiplyFactors(Ops, Factors)) 01825 return nullptr; // All distinct factors, so nothing left for us to do. 01826 01827 IRBuilder<> Builder(I); 01828 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 01829 if (Ops.empty()) 01830 return V; 01831 01832 ValueEntry NewEntry = ValueEntry(getRank(V), V); 01833 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry); 01834 return nullptr; 01835 } 01836 01837 Value *Reassociate::OptimizeExpression(BinaryOperator *I, 01838 SmallVectorImpl<ValueEntry> &Ops) { 01839 // Now that we have the linearized expression tree, try to optimize it. 01840 // Start by folding any constants that we found. 01841 Constant *Cst = nullptr; 01842 unsigned Opcode = I->getOpcode(); 01843 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 01844 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 01845 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 01846 } 01847 // If there was nothing but constants then we are done. 01848 if (Ops.empty()) 01849 return Cst; 01850 01851 // Put the combined constant back at the end of the operand list, except if 01852 // there is no point. For example, an add of 0 gets dropped here, while a 01853 // multiplication by zero turns the whole expression into zero. 01854 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 01855 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 01856 return Cst; 01857 Ops.push_back(ValueEntry(0, Cst)); 01858 } 01859 01860 if (Ops.size() == 1) return Ops[0].Op; 01861 01862 // Handle destructive annihilation due to identities between elements in the 01863 // argument list here. 01864 unsigned NumOps = Ops.size(); 01865 switch (Opcode) { 01866 default: break; 01867 case Instruction::And: 01868 case Instruction::Or: 01869 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 01870 return Result; 01871 break; 01872 01873 case Instruction::Xor: 01874 if (Value *Result = OptimizeXor(I, Ops)) 01875 return Result; 01876 break; 01877 01878 case Instruction::Add: 01879 case Instruction::FAdd: 01880 if (Value *Result = OptimizeAdd(I, Ops)) 01881 return Result; 01882 break; 01883 01884 case Instruction::Mul: 01885 case Instruction::FMul: 01886 if (Value *Result = OptimizeMul(I, Ops)) 01887 return Result; 01888 break; 01889 } 01890 01891 if (Ops.size() != NumOps) 01892 return OptimizeExpression(I, Ops); 01893 return nullptr; 01894 } 01895 01896 /// EraseInst - Zap the given instruction, adding interesting operands to the 01897 /// work list. 01898 void Reassociate::EraseInst(Instruction *I) { 01899 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 01900 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 01901 // Erase the dead instruction. 01902 ValueRankMap.erase(I); 01903 RedoInsts.remove(I); 01904 I->eraseFromParent(); 01905 // Optimize its operands. 01906 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 01907 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 01908 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 01909 // If this is a node in an expression tree, climb to the expression root 01910 // and add that since that's where optimization actually happens. 01911 unsigned Opcode = Op->getOpcode(); 01912 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 01913 Visited.insert(Op)) 01914 Op = Op->user_back(); 01915 RedoInsts.insert(Op); 01916 } 01917 } 01918 01919 void Reassociate::optimizeFAddNegExpr(ConstantFP *ConstOperand, Instruction *I, 01920 int OperandNr) { 01921 // Change the sign of the constant. 01922 APFloat Val = ConstOperand->getValueAPF(); 01923 Val.changeSign(); 01924 I->setOperand(0, ConstantFP::get(ConstOperand->getContext(), Val)); 01925 01926 assert(I->hasOneUse() && "Only a single use can be replaced."); 01927 Instruction *Parent = I->user_back(); 01928 01929 Value *OtherOperand = Parent->getOperand(1 - OperandNr); 01930 01931 unsigned Opcode = Parent->getOpcode(); 01932 assert(Opcode == Instruction::FAdd || 01933 (Opcode == Instruction::FSub && Parent->getOperand(1) == I)); 01934 01935 BinaryOperator *NI = Opcode == Instruction::FAdd 01936 ? BinaryOperator::CreateFSub(OtherOperand, I) 01937 : BinaryOperator::CreateFAdd(OtherOperand, I); 01938 NI->setFastMathFlags(cast<FPMathOperator>(Parent)->getFastMathFlags()); 01939 NI->insertBefore(Parent); 01940 NI->setName(Parent->getName() + ".repl"); 01941 Parent->replaceAllUsesWith(NI); 01942 NI->setDebugLoc(I->getDebugLoc()); 01943 MadeChange = true; 01944 } 01945 01946 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing 01947 /// instructions is not allowed. 01948 void Reassociate::OptimizeInst(Instruction *I) { 01949 // Only consider operations that we understand. 01950 if (!isa<BinaryOperator>(I)) 01951 return; 01952 01953 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 01954 // If an operand of this shift is a reassociable multiply, or if the shift 01955 // is used by a reassociable multiply or add, turn into a multiply. 01956 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 01957 (I->hasOneUse() && 01958 (isReassociableOp(I->user_back(), Instruction::Mul) || 01959 isReassociableOp(I->user_back(), Instruction::Add)))) { 01960 Instruction *NI = ConvertShiftToMul(I); 01961 RedoInsts.insert(I); 01962 MadeChange = true; 01963 I = NI; 01964 } 01965 01966 // Commute floating point binary operators, to canonicalize the order of their 01967 // operands. This can potentially expose more CSE opportunities, and makes 01968 // writing other transformations simpler. 01969 if (I->getType()->isFloatingPointTy() || I->getType()->isVectorTy()) { 01970 01971 // FAdd and FMul can be commuted. 01972 unsigned Opcode = I->getOpcode(); 01973 if (Opcode == Instruction::FMul || Opcode == Instruction::FAdd) { 01974 Value *LHS = I->getOperand(0); 01975 Value *RHS = I->getOperand(1); 01976 unsigned LHSRank = getRank(LHS); 01977 unsigned RHSRank = getRank(RHS); 01978 01979 // Sort the operands by rank. 01980 if (RHSRank < LHSRank) { 01981 I->setOperand(0, RHS); 01982 I->setOperand(1, LHS); 01983 } 01984 } 01985 01986 // Reassociate: x + -ConstantFP * y -> x - ConstantFP * y 01987 // The FMul can also be an FDiv, and FAdd can be a FSub. 01988 if (Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { 01989 if (ConstantFP *LHSConst = dyn_cast<ConstantFP>(I->getOperand(0))) { 01990 if (LHSConst->isNegative() && I->hasOneUse()) { 01991 Instruction *Parent = I->user_back(); 01992 if (Parent->getOpcode() == Instruction::FAdd) { 01993 if (Parent->getOperand(0) == I) 01994 optimizeFAddNegExpr(LHSConst, I, 0); 01995 else if (Parent->getOperand(1) == I) 01996 optimizeFAddNegExpr(LHSConst, I, 1); 01997 } else if (Parent->getOpcode() == Instruction::FSub) 01998 if (Parent->getOperand(1) == I) 01999 optimizeFAddNegExpr(LHSConst, I, 1); 02000 } 02001 } 02002 } 02003 02004 // FIXME: We should commute vector instructions as well. However, this 02005 // requires further analysis to determine the effect on later passes. 02006 02007 // Don't try to optimize vector instructions or anything that doesn't have 02008 // unsafe algebra. 02009 if (I->getType()->isVectorTy() || !I->hasUnsafeAlgebra()) 02010 return; 02011 } 02012 02013 // Do not reassociate boolean (i1) expressions. We want to preserve the 02014 // original order of evaluation for short-circuited comparisons that 02015 // SimplifyCFG has folded to AND/OR expressions. If the expression 02016 // is not further optimized, it is likely to be transformed back to a 02017 // short-circuited form for code gen, and the source order may have been 02018 // optimized for the most likely conditions. 02019 if (I->getType()->isIntegerTy(1)) 02020 return; 02021 02022 // If this is a subtract instruction which is not already in negate form, 02023 // see if we can convert it to X+-Y. 02024 if (I->getOpcode() == Instruction::Sub) { 02025 if (ShouldBreakUpSubtract(I)) { 02026 Instruction *NI = BreakUpSubtract(I); 02027 RedoInsts.insert(I); 02028 MadeChange = true; 02029 I = NI; 02030 } else if (BinaryOperator::isNeg(I)) { 02031 // Otherwise, this is a negation. See if the operand is a multiply tree 02032 // and if this is not an inner node of a multiply tree. 02033 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 02034 (!I->hasOneUse() || 02035 !isReassociableOp(I->user_back(), Instruction::Mul))) { 02036 Instruction *NI = LowerNegateToMultiply(I); 02037 RedoInsts.insert(I); 02038 MadeChange = true; 02039 I = NI; 02040 } 02041 } 02042 } else if (I->getOpcode() == Instruction::FSub) { 02043 if (ShouldBreakUpSubtract(I)) { 02044 Instruction *NI = BreakUpSubtract(I); 02045 RedoInsts.insert(I); 02046 MadeChange = true; 02047 I = NI; 02048 } else if (BinaryOperator::isFNeg(I)) { 02049 // Otherwise, this is a negation. See if the operand is a multiply tree 02050 // and if this is not an inner node of a multiply tree. 02051 if (isReassociableOp(I->getOperand(1), Instruction::FMul) && 02052 (!I->hasOneUse() || 02053 !isReassociableOp(I->user_back(), Instruction::FMul))) { 02054 Instruction *NI = LowerNegateToMultiply(I); 02055 RedoInsts.insert(I); 02056 MadeChange = true; 02057 I = NI; 02058 } 02059 } 02060 } 02061 02062 // If this instruction is an associative binary operator, process it. 02063 if (!I->isAssociative()) return; 02064 BinaryOperator *BO = cast<BinaryOperator>(I); 02065 02066 // If this is an interior node of a reassociable tree, ignore it until we 02067 // get to the root of the tree, to avoid N^2 analysis. 02068 unsigned Opcode = BO->getOpcode(); 02069 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) 02070 return; 02071 02072 // If this is an add tree that is used by a sub instruction, ignore it 02073 // until we process the subtract. 02074 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 02075 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 02076 return; 02077 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 02078 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 02079 return; 02080 02081 ReassociateExpression(BO); 02082 } 02083 02084 void Reassociate::ReassociateExpression(BinaryOperator *I) { 02085 assert(!I->getType()->isVectorTy() && 02086 "Reassociation of vector instructions is not supported."); 02087 02088 // First, walk the expression tree, linearizing the tree, collecting the 02089 // operand information. 02090 SmallVector<RepeatedValue, 8> Tree; 02091 MadeChange |= LinearizeExprTree(I, Tree); 02092 SmallVector<ValueEntry, 8> Ops; 02093 Ops.reserve(Tree.size()); 02094 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 02095 RepeatedValue E = Tree[i]; 02096 Ops.append(E.second.getZExtValue(), 02097 ValueEntry(getRank(E.first), E.first)); 02098 } 02099 02100 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 02101 02102 // Now that we have linearized the tree to a list and have gathered all of 02103 // the operands and their ranks, sort the operands by their rank. Use a 02104 // stable_sort so that values with equal ranks will have their relative 02105 // positions maintained (and so the compiler is deterministic). Note that 02106 // this sorts so that the highest ranking values end up at the beginning of 02107 // the vector. 02108 std::stable_sort(Ops.begin(), Ops.end()); 02109 02110 // OptimizeExpression - Now that we have the expression tree in a convenient 02111 // sorted form, optimize it globally if possible. 02112 if (Value *V = OptimizeExpression(I, Ops)) { 02113 if (V == I) 02114 // Self-referential expression in unreachable code. 02115 return; 02116 // This expression tree simplified to something that isn't a tree, 02117 // eliminate it. 02118 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 02119 I->replaceAllUsesWith(V); 02120 if (Instruction *VI = dyn_cast<Instruction>(V)) 02121 VI->setDebugLoc(I->getDebugLoc()); 02122 RedoInsts.insert(I); 02123 ++NumAnnihil; 02124 return; 02125 } 02126 02127 // We want to sink immediates as deeply as possible except in the case where 02128 // this is a multiply tree used only by an add, and the immediate is a -1. 02129 // In this case we reassociate to put the negation on the outside so that we 02130 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 02131 if (I->hasOneUse()) { 02132 if (I->getOpcode() == Instruction::Mul && 02133 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 02134 isa<ConstantInt>(Ops.back().Op) && 02135 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) { 02136 ValueEntry Tmp = Ops.pop_back_val(); 02137 Ops.insert(Ops.begin(), Tmp); 02138 } else if (I->getOpcode() == Instruction::FMul && 02139 cast<Instruction>(I->user_back())->getOpcode() == 02140 Instruction::FAdd && 02141 isa<ConstantFP>(Ops.back().Op) && 02142 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 02143 ValueEntry Tmp = Ops.pop_back_val(); 02144 Ops.insert(Ops.begin(), Tmp); 02145 } 02146 } 02147 02148 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 02149 02150 if (Ops.size() == 1) { 02151 if (Ops[0].Op == I) 02152 // Self-referential expression in unreachable code. 02153 return; 02154 02155 // This expression tree simplified to something that isn't a tree, 02156 // eliminate it. 02157 I->replaceAllUsesWith(Ops[0].Op); 02158 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 02159 OI->setDebugLoc(I->getDebugLoc()); 02160 RedoInsts.insert(I); 02161 return; 02162 } 02163 02164 // Now that we ordered and optimized the expressions, splat them back into 02165 // the expression tree, removing any unneeded nodes. 02166 RewriteExprTree(I, Ops); 02167 } 02168 02169 bool Reassociate::runOnFunction(Function &F) { 02170 if (skipOptnoneFunction(F)) 02171 return false; 02172 02173 // Calculate the rank map for F 02174 BuildRankMap(F); 02175 02176 MadeChange = false; 02177 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { 02178 // Optimize every instruction in the basic block. 02179 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ) 02180 if (isInstructionTriviallyDead(II)) { 02181 EraseInst(II++); 02182 } else { 02183 OptimizeInst(II); 02184 assert(II->getParent() == BI && "Moved to a different block!"); 02185 ++II; 02186 } 02187 02188 // If this produced extra instructions to optimize, handle them now. 02189 while (!RedoInsts.empty()) { 02190 Instruction *I = RedoInsts.pop_back_val(); 02191 if (isInstructionTriviallyDead(I)) 02192 EraseInst(I); 02193 else 02194 OptimizeInst(I); 02195 } 02196 } 02197 02198 // We are done with the rank map. 02199 RankMap.clear(); 02200 ValueRankMap.clear(); 02201 02202 return MadeChange; 02203 }