LLVM API Documentation
00001 //===- Record.cpp - Record implementation ---------------------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // Implement the tablegen record classes. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "llvm/TableGen/Record.h" 00015 #include "llvm/ADT/DenseMap.h" 00016 #include "llvm/ADT/FoldingSet.h" 00017 #include "llvm/ADT/Hashing.h" 00018 #include "llvm/ADT/STLExtras.h" 00019 #include "llvm/ADT/SmallVector.h" 00020 #include "llvm/ADT/StringExtras.h" 00021 #include "llvm/ADT/StringMap.h" 00022 #include "llvm/Support/DataTypes.h" 00023 #include "llvm/Support/ErrorHandling.h" 00024 #include "llvm/Support/Format.h" 00025 #include "llvm/TableGen/Error.h" 00026 00027 using namespace llvm; 00028 00029 //===----------------------------------------------------------------------===// 00030 // std::string wrapper for DenseMap purposes 00031 //===----------------------------------------------------------------------===// 00032 00033 namespace llvm { 00034 00035 /// TableGenStringKey - This is a wrapper for std::string suitable for 00036 /// using as a key to a DenseMap. Because there isn't a particularly 00037 /// good way to indicate tombstone or empty keys for strings, we want 00038 /// to wrap std::string to indicate that this is a "special" string 00039 /// not expected to take on certain values (those of the tombstone and 00040 /// empty keys). This makes things a little safer as it clarifies 00041 /// that DenseMap is really not appropriate for general strings. 00042 00043 class TableGenStringKey { 00044 public: 00045 TableGenStringKey(const std::string &str) : data(str) {} 00046 TableGenStringKey(const char *str) : data(str) {} 00047 00048 const std::string &str() const { return data; } 00049 00050 friend hash_code hash_value(const TableGenStringKey &Value) { 00051 using llvm::hash_value; 00052 return hash_value(Value.str()); 00053 } 00054 private: 00055 std::string data; 00056 }; 00057 00058 /// Specialize DenseMapInfo for TableGenStringKey. 00059 template<> struct DenseMapInfo<TableGenStringKey> { 00060 static inline TableGenStringKey getEmptyKey() { 00061 TableGenStringKey Empty("<<<EMPTY KEY>>>"); 00062 return Empty; 00063 } 00064 static inline TableGenStringKey getTombstoneKey() { 00065 TableGenStringKey Tombstone("<<<TOMBSTONE KEY>>>"); 00066 return Tombstone; 00067 } 00068 static unsigned getHashValue(const TableGenStringKey& Val) { 00069 using llvm::hash_value; 00070 return hash_value(Val); 00071 } 00072 static bool isEqual(const TableGenStringKey& LHS, 00073 const TableGenStringKey& RHS) { 00074 return LHS.str() == RHS.str(); 00075 } 00076 }; 00077 00078 } // namespace llvm 00079 00080 //===----------------------------------------------------------------------===// 00081 // Type implementations 00082 //===----------------------------------------------------------------------===// 00083 00084 BitRecTy BitRecTy::Shared; 00085 IntRecTy IntRecTy::Shared; 00086 StringRecTy StringRecTy::Shared; 00087 DagRecTy DagRecTy::Shared; 00088 00089 void RecTy::anchor() { } 00090 void RecTy::dump() const { print(errs()); } 00091 00092 ListRecTy *RecTy::getListTy() { 00093 if (!ListTy) 00094 ListTy = new ListRecTy(this); 00095 return ListTy; 00096 } 00097 00098 bool RecTy::baseClassOf(const RecTy *RHS) const{ 00099 assert (RHS && "NULL pointer"); 00100 return Kind == RHS->getRecTyKind(); 00101 } 00102 00103 Init *BitRecTy::convertValue(BitsInit *BI) { 00104 if (BI->getNumBits() != 1) return nullptr; // Only accept if just one bit! 00105 return BI->getBit(0); 00106 } 00107 00108 Init *BitRecTy::convertValue(IntInit *II) { 00109 int64_t Val = II->getValue(); 00110 if (Val != 0 && Val != 1) return nullptr; // Only accept 0 or 1 for a bit! 00111 00112 return BitInit::get(Val != 0); 00113 } 00114 00115 Init *BitRecTy::convertValue(TypedInit *VI) { 00116 RecTy *Ty = VI->getType(); 00117 if (isa<BitRecTy>(Ty)) 00118 return VI; // Accept variable if it is already of bit type! 00119 if (auto *BitsTy = dyn_cast<BitsRecTy>(Ty)) 00120 // Accept only bits<1> expression. 00121 return BitsTy->getNumBits() == 1 ? VI : nullptr; 00122 // Ternary !if can be converted to bit, but only if both sides are 00123 // convertible to a bit. 00124 if (TernOpInit *TOI = dyn_cast<TernOpInit>(VI)) { 00125 if (TOI->getOpcode() != TernOpInit::TernaryOp::IF) 00126 return nullptr; 00127 if (!TOI->getMHS()->convertInitializerTo(BitRecTy::get()) || 00128 !TOI->getRHS()->convertInitializerTo(BitRecTy::get())) 00129 return nullptr; 00130 return TOI; 00131 } 00132 return nullptr; 00133 } 00134 00135 bool BitRecTy::baseClassOf(const RecTy *RHS) const{ 00136 if(RecTy::baseClassOf(RHS) || getRecTyKind() == IntRecTyKind) 00137 return true; 00138 if(const BitsRecTy *BitsTy = dyn_cast<BitsRecTy>(RHS)) 00139 return BitsTy->getNumBits() == 1; 00140 return false; 00141 } 00142 00143 BitsRecTy *BitsRecTy::get(unsigned Sz) { 00144 static std::vector<BitsRecTy*> Shared; 00145 if (Sz >= Shared.size()) 00146 Shared.resize(Sz + 1); 00147 BitsRecTy *&Ty = Shared[Sz]; 00148 if (!Ty) 00149 Ty = new BitsRecTy(Sz); 00150 return Ty; 00151 } 00152 00153 std::string BitsRecTy::getAsString() const { 00154 return "bits<" + utostr(Size) + ">"; 00155 } 00156 00157 Init *BitsRecTy::convertValue(UnsetInit *UI) { 00158 SmallVector<Init *, 16> NewBits(Size); 00159 00160 for (unsigned i = 0; i != Size; ++i) 00161 NewBits[i] = UnsetInit::get(); 00162 00163 return BitsInit::get(NewBits); 00164 } 00165 00166 Init *BitsRecTy::convertValue(BitInit *UI) { 00167 if (Size != 1) return nullptr; // Can only convert single bit. 00168 return BitsInit::get(UI); 00169 } 00170 00171 /// canFitInBitfield - Return true if the number of bits is large enough to hold 00172 /// the integer value. 00173 static bool canFitInBitfield(int64_t Value, unsigned NumBits) { 00174 // For example, with NumBits == 4, we permit Values from [-7 .. 15]. 00175 return (NumBits >= sizeof(Value) * 8) || 00176 (Value >> NumBits == 0) || (Value >> (NumBits-1) == -1); 00177 } 00178 00179 /// convertValue from Int initializer to bits type: Split the integer up into the 00180 /// appropriate bits. 00181 /// 00182 Init *BitsRecTy::convertValue(IntInit *II) { 00183 int64_t Value = II->getValue(); 00184 // Make sure this bitfield is large enough to hold the integer value. 00185 if (!canFitInBitfield(Value, Size)) 00186 return nullptr; 00187 00188 SmallVector<Init *, 16> NewBits(Size); 00189 00190 for (unsigned i = 0; i != Size; ++i) 00191 NewBits[i] = BitInit::get(Value & (1LL << i)); 00192 00193 return BitsInit::get(NewBits); 00194 } 00195 00196 Init *BitsRecTy::convertValue(BitsInit *BI) { 00197 // If the number of bits is right, return it. Otherwise we need to expand or 00198 // truncate. 00199 if (BI->getNumBits() == Size) return BI; 00200 return nullptr; 00201 } 00202 00203 Init *BitsRecTy::convertValue(TypedInit *VI) { 00204 if (Size == 1 && isa<BitRecTy>(VI->getType())) 00205 return BitsInit::get(VI); 00206 00207 if (VI->getType()->typeIsConvertibleTo(this)) { 00208 SmallVector<Init *, 16> NewBits(Size); 00209 00210 for (unsigned i = 0; i != Size; ++i) 00211 NewBits[i] = VarBitInit::get(VI, i); 00212 return BitsInit::get(NewBits); 00213 } 00214 00215 return nullptr; 00216 } 00217 00218 bool BitsRecTy::baseClassOf(const RecTy *RHS) const{ 00219 if (RecTy::baseClassOf(RHS)) //argument and the receiver are the same type 00220 return cast<BitsRecTy>(RHS)->Size == Size; 00221 RecTyKind kind = RHS->getRecTyKind(); 00222 return (kind == BitRecTyKind && Size == 1) || (kind == IntRecTyKind); 00223 } 00224 00225 Init *IntRecTy::convertValue(BitInit *BI) { 00226 return IntInit::get(BI->getValue()); 00227 } 00228 00229 Init *IntRecTy::convertValue(BitsInit *BI) { 00230 int64_t Result = 0; 00231 for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) 00232 if (BitInit *Bit = dyn_cast<BitInit>(BI->getBit(i))) { 00233 Result |= Bit->getValue() << i; 00234 } else { 00235 return nullptr; 00236 } 00237 return IntInit::get(Result); 00238 } 00239 00240 Init *IntRecTy::convertValue(TypedInit *TI) { 00241 if (TI->getType()->typeIsConvertibleTo(this)) 00242 return TI; // Accept variable if already of the right type! 00243 return nullptr; 00244 } 00245 00246 bool IntRecTy::baseClassOf(const RecTy *RHS) const{ 00247 RecTyKind kind = RHS->getRecTyKind(); 00248 return kind==BitRecTyKind || kind==BitsRecTyKind || kind==IntRecTyKind; 00249 } 00250 00251 Init *StringRecTy::convertValue(UnOpInit *BO) { 00252 if (BO->getOpcode() == UnOpInit::CAST) { 00253 Init *L = BO->getOperand()->convertInitializerTo(this); 00254 if (!L) return nullptr; 00255 if (L != BO->getOperand()) 00256 return UnOpInit::get(UnOpInit::CAST, L, new StringRecTy); 00257 return BO; 00258 } 00259 00260 return convertValue((TypedInit*)BO); 00261 } 00262 00263 Init *StringRecTy::convertValue(BinOpInit *BO) { 00264 if (BO->getOpcode() == BinOpInit::STRCONCAT) { 00265 Init *L = BO->getLHS()->convertInitializerTo(this); 00266 Init *R = BO->getRHS()->convertInitializerTo(this); 00267 if (!L || !R) return nullptr; 00268 if (L != BO->getLHS() || R != BO->getRHS()) 00269 return BinOpInit::get(BinOpInit::STRCONCAT, L, R, new StringRecTy); 00270 return BO; 00271 } 00272 00273 return convertValue((TypedInit*)BO); 00274 } 00275 00276 00277 Init *StringRecTy::convertValue(TypedInit *TI) { 00278 if (isa<StringRecTy>(TI->getType())) 00279 return TI; // Accept variable if already of the right type! 00280 return nullptr; 00281 } 00282 00283 std::string ListRecTy::getAsString() const { 00284 return "list<" + Ty->getAsString() + ">"; 00285 } 00286 00287 Init *ListRecTy::convertValue(ListInit *LI) { 00288 std::vector<Init*> Elements; 00289 00290 // Verify that all of the elements of the list are subclasses of the 00291 // appropriate class! 00292 for (unsigned i = 0, e = LI->getSize(); i != e; ++i) 00293 if (Init *CI = LI->getElement(i)->convertInitializerTo(Ty)) 00294 Elements.push_back(CI); 00295 else 00296 return nullptr; 00297 00298 if (!isa<ListRecTy>(LI->getType())) 00299 return nullptr; 00300 00301 return ListInit::get(Elements, this); 00302 } 00303 00304 Init *ListRecTy::convertValue(TypedInit *TI) { 00305 // Ensure that TI is compatible with our class. 00306 if (ListRecTy *LRT = dyn_cast<ListRecTy>(TI->getType())) 00307 if (LRT->getElementType()->typeIsConvertibleTo(getElementType())) 00308 return TI; 00309 return nullptr; 00310 } 00311 00312 bool ListRecTy::baseClassOf(const RecTy *RHS) const{ 00313 if(const ListRecTy* ListTy = dyn_cast<ListRecTy>(RHS)) 00314 return ListTy->getElementType()->typeIsConvertibleTo(Ty); 00315 return false; 00316 } 00317 00318 Init *DagRecTy::convertValue(TypedInit *TI) { 00319 if (TI->getType()->typeIsConvertibleTo(this)) 00320 return TI; 00321 return nullptr; 00322 } 00323 00324 Init *DagRecTy::convertValue(UnOpInit *BO) { 00325 if (BO->getOpcode() == UnOpInit::CAST) { 00326 Init *L = BO->getOperand()->convertInitializerTo(this); 00327 if (!L) return nullptr; 00328 if (L != BO->getOperand()) 00329 return UnOpInit::get(UnOpInit::CAST, L, new DagRecTy); 00330 return BO; 00331 } 00332 return nullptr; 00333 } 00334 00335 Init *DagRecTy::convertValue(BinOpInit *BO) { 00336 if (BO->getOpcode() == BinOpInit::CONCAT) { 00337 Init *L = BO->getLHS()->convertInitializerTo(this); 00338 Init *R = BO->getRHS()->convertInitializerTo(this); 00339 if (!L || !R) return nullptr; 00340 if (L != BO->getLHS() || R != BO->getRHS()) 00341 return BinOpInit::get(BinOpInit::CONCAT, L, R, new DagRecTy); 00342 return BO; 00343 } 00344 return nullptr; 00345 } 00346 00347 RecordRecTy *RecordRecTy::get(Record *R) { 00348 return dyn_cast<RecordRecTy>(R->getDefInit()->getType()); 00349 } 00350 00351 std::string RecordRecTy::getAsString() const { 00352 return Rec->getName(); 00353 } 00354 00355 Init *RecordRecTy::convertValue(DefInit *DI) { 00356 // Ensure that DI is a subclass of Rec. 00357 if (!DI->getDef()->isSubClassOf(Rec)) 00358 return nullptr; 00359 return DI; 00360 } 00361 00362 Init *RecordRecTy::convertValue(TypedInit *TI) { 00363 // Ensure that TI is compatible with Rec. 00364 if (RecordRecTy *RRT = dyn_cast<RecordRecTy>(TI->getType())) 00365 if (RRT->getRecord()->isSubClassOf(getRecord()) || 00366 RRT->getRecord() == getRecord()) 00367 return TI; 00368 return nullptr; 00369 } 00370 00371 bool RecordRecTy::baseClassOf(const RecTy *RHS) const{ 00372 const RecordRecTy *RTy = dyn_cast<RecordRecTy>(RHS); 00373 if (!RTy) 00374 return false; 00375 00376 if (Rec == RTy->getRecord() || RTy->getRecord()->isSubClassOf(Rec)) 00377 return true; 00378 00379 const std::vector<Record*> &SC = Rec->getSuperClasses(); 00380 for (unsigned i = 0, e = SC.size(); i != e; ++i) 00381 if (RTy->getRecord()->isSubClassOf(SC[i])) 00382 return true; 00383 00384 return false; 00385 } 00386 00387 /// resolveTypes - Find a common type that T1 and T2 convert to. 00388 /// Return 0 if no such type exists. 00389 /// 00390 RecTy *llvm::resolveTypes(RecTy *T1, RecTy *T2) { 00391 if (T1->typeIsConvertibleTo(T2)) 00392 return T2; 00393 if (T2->typeIsConvertibleTo(T1)) 00394 return T1; 00395 00396 // If one is a Record type, check superclasses 00397 if (RecordRecTy *RecTy1 = dyn_cast<RecordRecTy>(T1)) { 00398 // See if T2 inherits from a type T1 also inherits from 00399 const std::vector<Record *> &T1SuperClasses = 00400 RecTy1->getRecord()->getSuperClasses(); 00401 for(std::vector<Record *>::const_iterator i = T1SuperClasses.begin(), 00402 iend = T1SuperClasses.end(); 00403 i != iend; 00404 ++i) { 00405 RecordRecTy *SuperRecTy1 = RecordRecTy::get(*i); 00406 RecTy *NewType1 = resolveTypes(SuperRecTy1, T2); 00407 if (NewType1) { 00408 if (NewType1 != SuperRecTy1) { 00409 delete SuperRecTy1; 00410 } 00411 return NewType1; 00412 } 00413 } 00414 } 00415 if (RecordRecTy *RecTy2 = dyn_cast<RecordRecTy>(T2)) { 00416 // See if T1 inherits from a type T2 also inherits from 00417 const std::vector<Record *> &T2SuperClasses = 00418 RecTy2->getRecord()->getSuperClasses(); 00419 for (std::vector<Record *>::const_iterator i = T2SuperClasses.begin(), 00420 iend = T2SuperClasses.end(); 00421 i != iend; 00422 ++i) { 00423 RecordRecTy *SuperRecTy2 = RecordRecTy::get(*i); 00424 RecTy *NewType2 = resolveTypes(T1, SuperRecTy2); 00425 if (NewType2) { 00426 if (NewType2 != SuperRecTy2) { 00427 delete SuperRecTy2; 00428 } 00429 return NewType2; 00430 } 00431 } 00432 } 00433 return nullptr; 00434 } 00435 00436 00437 //===----------------------------------------------------------------------===// 00438 // Initializer implementations 00439 //===----------------------------------------------------------------------===// 00440 00441 void Init::anchor() { } 00442 void Init::dump() const { return print(errs()); } 00443 00444 void UnsetInit::anchor() { } 00445 00446 UnsetInit *UnsetInit::get() { 00447 static UnsetInit TheInit; 00448 return &TheInit; 00449 } 00450 00451 void BitInit::anchor() { } 00452 00453 BitInit *BitInit::get(bool V) { 00454 static BitInit True(true); 00455 static BitInit False(false); 00456 00457 return V ? &True : &False; 00458 } 00459 00460 static void 00461 ProfileBitsInit(FoldingSetNodeID &ID, ArrayRef<Init *> Range) { 00462 ID.AddInteger(Range.size()); 00463 00464 for (ArrayRef<Init *>::iterator i = Range.begin(), 00465 iend = Range.end(); 00466 i != iend; 00467 ++i) 00468 ID.AddPointer(*i); 00469 } 00470 00471 BitsInit *BitsInit::get(ArrayRef<Init *> Range) { 00472 typedef FoldingSet<BitsInit> Pool; 00473 static Pool ThePool; 00474 00475 FoldingSetNodeID ID; 00476 ProfileBitsInit(ID, Range); 00477 00478 void *IP = nullptr; 00479 if (BitsInit *I = ThePool.FindNodeOrInsertPos(ID, IP)) 00480 return I; 00481 00482 BitsInit *I = new BitsInit(Range); 00483 ThePool.InsertNode(I, IP); 00484 00485 return I; 00486 } 00487 00488 void BitsInit::Profile(FoldingSetNodeID &ID) const { 00489 ProfileBitsInit(ID, Bits); 00490 } 00491 00492 Init * 00493 BitsInit::convertInitializerBitRange(const std::vector<unsigned> &Bits) const { 00494 SmallVector<Init *, 16> NewBits(Bits.size()); 00495 00496 for (unsigned i = 0, e = Bits.size(); i != e; ++i) { 00497 if (Bits[i] >= getNumBits()) 00498 return nullptr; 00499 NewBits[i] = getBit(Bits[i]); 00500 } 00501 return BitsInit::get(NewBits); 00502 } 00503 00504 std::string BitsInit::getAsString() const { 00505 std::string Result = "{ "; 00506 for (unsigned i = 0, e = getNumBits(); i != e; ++i) { 00507 if (i) Result += ", "; 00508 if (Init *Bit = getBit(e-i-1)) 00509 Result += Bit->getAsString(); 00510 else 00511 Result += "*"; 00512 } 00513 return Result + " }"; 00514 } 00515 00516 // Fix bit initializer to preserve the behavior that bit reference from a unset 00517 // bits initializer will resolve into VarBitInit to keep the field name and bit 00518 // number used in targets with fixed insn length. 00519 static Init *fixBitInit(const RecordVal *RV, Init *Before, Init *After) { 00520 if (RV || After != UnsetInit::get()) 00521 return After; 00522 return Before; 00523 } 00524 00525 // resolveReferences - If there are any field references that refer to fields 00526 // that have been filled in, we can propagate the values now. 00527 // 00528 Init *BitsInit::resolveReferences(Record &R, const RecordVal *RV) const { 00529 bool Changed = false; 00530 SmallVector<Init *, 16> NewBits(getNumBits()); 00531 00532 Init *CachedInit = nullptr; 00533 Init *CachedBitVar = nullptr; 00534 bool CachedBitVarChanged = false; 00535 00536 for (unsigned i = 0, e = getNumBits(); i != e; ++i) { 00537 Init *CurBit = Bits[i]; 00538 Init *CurBitVar = CurBit->getBitVar(); 00539 00540 NewBits[i] = CurBit; 00541 00542 if (CurBitVar == CachedBitVar) { 00543 if (CachedBitVarChanged) { 00544 Init *Bit = CachedInit->getBit(CurBit->getBitNum()); 00545 NewBits[i] = fixBitInit(RV, CurBit, Bit); 00546 } 00547 continue; 00548 } 00549 CachedBitVar = CurBitVar; 00550 CachedBitVarChanged = false; 00551 00552 Init *B; 00553 do { 00554 B = CurBitVar; 00555 CurBitVar = CurBitVar->resolveReferences(R, RV); 00556 CachedBitVarChanged |= B != CurBitVar; 00557 Changed |= B != CurBitVar; 00558 } while (B != CurBitVar); 00559 CachedInit = CurBitVar; 00560 00561 if (CachedBitVarChanged) { 00562 Init *Bit = CurBitVar->getBit(CurBit->getBitNum()); 00563 NewBits[i] = fixBitInit(RV, CurBit, Bit); 00564 } 00565 } 00566 00567 if (Changed) 00568 return BitsInit::get(NewBits); 00569 00570 return const_cast<BitsInit *>(this); 00571 } 00572 00573 namespace { 00574 template<typename T> 00575 class Pool : public T { 00576 public: 00577 ~Pool(); 00578 }; 00579 template<typename T> 00580 Pool<T>::~Pool() { 00581 for (typename T::iterator I = this->begin(), E = this->end(); I != E; ++I) { 00582 typename T::value_type &Item = *I; 00583 delete Item.second; 00584 } 00585 } 00586 } 00587 00588 IntInit *IntInit::get(int64_t V) { 00589 static Pool<DenseMap<int64_t, IntInit *> > ThePool; 00590 00591 IntInit *&I = ThePool[V]; 00592 if (!I) I = new IntInit(V); 00593 return I; 00594 } 00595 00596 std::string IntInit::getAsString() const { 00597 return itostr(Value); 00598 } 00599 00600 Init * 00601 IntInit::convertInitializerBitRange(const std::vector<unsigned> &Bits) const { 00602 SmallVector<Init *, 16> NewBits(Bits.size()); 00603 00604 for (unsigned i = 0, e = Bits.size(); i != e; ++i) { 00605 if (Bits[i] >= 64) 00606 return nullptr; 00607 00608 NewBits[i] = BitInit::get(Value & (INT64_C(1) << Bits[i])); 00609 } 00610 return BitsInit::get(NewBits); 00611 } 00612 00613 void StringInit::anchor() { } 00614 00615 StringInit *StringInit::get(StringRef V) { 00616 static Pool<StringMap<StringInit *> > ThePool; 00617 00618 StringInit *&I = ThePool[V]; 00619 if (!I) I = new StringInit(V); 00620 return I; 00621 } 00622 00623 static void ProfileListInit(FoldingSetNodeID &ID, 00624 ArrayRef<Init *> Range, 00625 RecTy *EltTy) { 00626 ID.AddInteger(Range.size()); 00627 ID.AddPointer(EltTy); 00628 00629 for (ArrayRef<Init *>::iterator i = Range.begin(), 00630 iend = Range.end(); 00631 i != iend; 00632 ++i) 00633 ID.AddPointer(*i); 00634 } 00635 00636 ListInit *ListInit::get(ArrayRef<Init *> Range, RecTy *EltTy) { 00637 typedef FoldingSet<ListInit> Pool; 00638 static Pool ThePool; 00639 static std::vector<std::unique_ptr<ListInit>> TheActualPool; 00640 00641 FoldingSetNodeID ID; 00642 ProfileListInit(ID, Range, EltTy); 00643 00644 void *IP = nullptr; 00645 if (ListInit *I = ThePool.FindNodeOrInsertPos(ID, IP)) 00646 return I; 00647 00648 ListInit *I = new ListInit(Range, EltTy); 00649 ThePool.InsertNode(I, IP); 00650 TheActualPool.push_back(std::unique_ptr<ListInit>(I)); 00651 return I; 00652 } 00653 00654 void ListInit::Profile(FoldingSetNodeID &ID) const { 00655 ListRecTy *ListType = dyn_cast<ListRecTy>(getType()); 00656 assert(ListType && "Bad type for ListInit!"); 00657 RecTy *EltTy = ListType->getElementType(); 00658 00659 ProfileListInit(ID, Values, EltTy); 00660 } 00661 00662 Init * 00663 ListInit::convertInitListSlice(const std::vector<unsigned> &Elements) const { 00664 std::vector<Init*> Vals; 00665 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 00666 if (Elements[i] >= getSize()) 00667 return nullptr; 00668 Vals.push_back(getElement(Elements[i])); 00669 } 00670 return ListInit::get(Vals, getType()); 00671 } 00672 00673 Record *ListInit::getElementAsRecord(unsigned i) const { 00674 assert(i < Values.size() && "List element index out of range!"); 00675 DefInit *DI = dyn_cast<DefInit>(Values[i]); 00676 if (!DI) 00677 PrintFatalError("Expected record in list!"); 00678 return DI->getDef(); 00679 } 00680 00681 Init *ListInit::resolveReferences(Record &R, const RecordVal *RV) const { 00682 std::vector<Init*> Resolved; 00683 Resolved.reserve(getSize()); 00684 bool Changed = false; 00685 00686 for (unsigned i = 0, e = getSize(); i != e; ++i) { 00687 Init *E; 00688 Init *CurElt = getElement(i); 00689 00690 do { 00691 E = CurElt; 00692 CurElt = CurElt->resolveReferences(R, RV); 00693 Changed |= E != CurElt; 00694 } while (E != CurElt); 00695 Resolved.push_back(E); 00696 } 00697 00698 if (Changed) 00699 return ListInit::get(Resolved, getType()); 00700 return const_cast<ListInit *>(this); 00701 } 00702 00703 Init *ListInit::resolveListElementReference(Record &R, const RecordVal *IRV, 00704 unsigned Elt) const { 00705 if (Elt >= getSize()) 00706 return nullptr; // Out of range reference. 00707 Init *E = getElement(Elt); 00708 // If the element is set to some value, or if we are resolving a reference 00709 // to a specific variable and that variable is explicitly unset, then 00710 // replace the VarListElementInit with it. 00711 if (IRV || !isa<UnsetInit>(E)) 00712 return E; 00713 return nullptr; 00714 } 00715 00716 std::string ListInit::getAsString() const { 00717 std::string Result = "["; 00718 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 00719 if (i) Result += ", "; 00720 Result += Values[i]->getAsString(); 00721 } 00722 return Result + "]"; 00723 } 00724 00725 Init *OpInit::resolveListElementReference(Record &R, const RecordVal *IRV, 00726 unsigned Elt) const { 00727 Init *Resolved = resolveReferences(R, IRV); 00728 OpInit *OResolved = dyn_cast<OpInit>(Resolved); 00729 if (OResolved) { 00730 Resolved = OResolved->Fold(&R, nullptr); 00731 } 00732 00733 if (Resolved != this) { 00734 TypedInit *Typed = dyn_cast<TypedInit>(Resolved); 00735 assert(Typed && "Expected typed init for list reference"); 00736 if (Typed) { 00737 Init *New = Typed->resolveListElementReference(R, IRV, Elt); 00738 if (New) 00739 return New; 00740 return VarListElementInit::get(Typed, Elt); 00741 } 00742 } 00743 00744 return nullptr; 00745 } 00746 00747 Init *OpInit::getBit(unsigned Bit) const { 00748 if (getType() == BitRecTy::get()) 00749 return const_cast<OpInit*>(this); 00750 return VarBitInit::get(const_cast<OpInit*>(this), Bit); 00751 } 00752 00753 UnOpInit *UnOpInit::get(UnaryOp opc, Init *lhs, RecTy *Type) { 00754 typedef std::pair<std::pair<unsigned, Init *>, RecTy *> Key; 00755 static Pool<DenseMap<Key, UnOpInit *> > ThePool; 00756 00757 Key TheKey(std::make_pair(std::make_pair(opc, lhs), Type)); 00758 00759 UnOpInit *&I = ThePool[TheKey]; 00760 if (!I) I = new UnOpInit(opc, lhs, Type); 00761 return I; 00762 } 00763 00764 Init *UnOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const { 00765 switch (getOpcode()) { 00766 case CAST: { 00767 if (getType()->getAsString() == "string") { 00768 if (StringInit *LHSs = dyn_cast<StringInit>(LHS)) 00769 return LHSs; 00770 00771 if (DefInit *LHSd = dyn_cast<DefInit>(LHS)) 00772 return StringInit::get(LHSd->getDef()->getName()); 00773 00774 if (IntInit *LHSi = dyn_cast<IntInit>(LHS)) 00775 return StringInit::get(LHSi->getAsString()); 00776 } else { 00777 if (StringInit *LHSs = dyn_cast<StringInit>(LHS)) { 00778 std::string Name = LHSs->getValue(); 00779 00780 // From TGParser::ParseIDValue 00781 if (CurRec) { 00782 if (const RecordVal *RV = CurRec->getValue(Name)) { 00783 if (RV->getType() != getType()) 00784 PrintFatalError("type mismatch in cast"); 00785 return VarInit::get(Name, RV->getType()); 00786 } 00787 00788 Init *TemplateArgName = QualifyName(*CurRec, CurMultiClass, Name, 00789 ":"); 00790 00791 if (CurRec->isTemplateArg(TemplateArgName)) { 00792 const RecordVal *RV = CurRec->getValue(TemplateArgName); 00793 assert(RV && "Template arg doesn't exist??"); 00794 00795 if (RV->getType() != getType()) 00796 PrintFatalError("type mismatch in cast"); 00797 00798 return VarInit::get(TemplateArgName, RV->getType()); 00799 } 00800 } 00801 00802 if (CurMultiClass) { 00803 Init *MCName = QualifyName(CurMultiClass->Rec, CurMultiClass, Name, "::"); 00804 00805 if (CurMultiClass->Rec.isTemplateArg(MCName)) { 00806 const RecordVal *RV = CurMultiClass->Rec.getValue(MCName); 00807 assert(RV && "Template arg doesn't exist??"); 00808 00809 if (RV->getType() != getType()) 00810 PrintFatalError("type mismatch in cast"); 00811 00812 return VarInit::get(MCName, RV->getType()); 00813 } 00814 } 00815 00816 if (Record *D = (CurRec->getRecords()).getDef(Name)) 00817 return DefInit::get(D); 00818 00819 PrintFatalError(CurRec->getLoc(), 00820 "Undefined reference:'" + Name + "'\n"); 00821 } 00822 } 00823 break; 00824 } 00825 case HEAD: { 00826 if (ListInit *LHSl = dyn_cast<ListInit>(LHS)) { 00827 assert(LHSl->getSize() != 0 && "Empty list in car"); 00828 return LHSl->getElement(0); 00829 } 00830 break; 00831 } 00832 case TAIL: { 00833 if (ListInit *LHSl = dyn_cast<ListInit>(LHS)) { 00834 assert(LHSl->getSize() != 0 && "Empty list in cdr"); 00835 // Note the +1. We can't just pass the result of getValues() 00836 // directly. 00837 ArrayRef<Init *>::iterator begin = LHSl->getValues().begin()+1; 00838 ArrayRef<Init *>::iterator end = LHSl->getValues().end(); 00839 ListInit *Result = 00840 ListInit::get(ArrayRef<Init *>(begin, end - begin), 00841 LHSl->getType()); 00842 return Result; 00843 } 00844 break; 00845 } 00846 case EMPTY: { 00847 if (ListInit *LHSl = dyn_cast<ListInit>(LHS)) { 00848 if (LHSl->getSize() == 0) { 00849 return IntInit::get(1); 00850 } else { 00851 return IntInit::get(0); 00852 } 00853 } 00854 if (StringInit *LHSs = dyn_cast<StringInit>(LHS)) { 00855 if (LHSs->getValue().empty()) { 00856 return IntInit::get(1); 00857 } else { 00858 return IntInit::get(0); 00859 } 00860 } 00861 00862 break; 00863 } 00864 } 00865 return const_cast<UnOpInit *>(this); 00866 } 00867 00868 Init *UnOpInit::resolveReferences(Record &R, const RecordVal *RV) const { 00869 Init *lhs = LHS->resolveReferences(R, RV); 00870 00871 if (LHS != lhs) 00872 return (UnOpInit::get(getOpcode(), lhs, getType()))->Fold(&R, nullptr); 00873 return Fold(&R, nullptr); 00874 } 00875 00876 std::string UnOpInit::getAsString() const { 00877 std::string Result; 00878 switch (Opc) { 00879 case CAST: Result = "!cast<" + getType()->getAsString() + ">"; break; 00880 case HEAD: Result = "!head"; break; 00881 case TAIL: Result = "!tail"; break; 00882 case EMPTY: Result = "!empty"; break; 00883 } 00884 return Result + "(" + LHS->getAsString() + ")"; 00885 } 00886 00887 BinOpInit *BinOpInit::get(BinaryOp opc, Init *lhs, 00888 Init *rhs, RecTy *Type) { 00889 typedef std::pair< 00890 std::pair<std::pair<unsigned, Init *>, Init *>, 00891 RecTy * 00892 > Key; 00893 00894 static Pool<DenseMap<Key, BinOpInit *> > ThePool; 00895 00896 Key TheKey(std::make_pair(std::make_pair(std::make_pair(opc, lhs), rhs), 00897 Type)); 00898 00899 BinOpInit *&I = ThePool[TheKey]; 00900 if (!I) I = new BinOpInit(opc, lhs, rhs, Type); 00901 return I; 00902 } 00903 00904 Init *BinOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const { 00905 switch (getOpcode()) { 00906 case CONCAT: { 00907 DagInit *LHSs = dyn_cast<DagInit>(LHS); 00908 DagInit *RHSs = dyn_cast<DagInit>(RHS); 00909 if (LHSs && RHSs) { 00910 DefInit *LOp = dyn_cast<DefInit>(LHSs->getOperator()); 00911 DefInit *ROp = dyn_cast<DefInit>(RHSs->getOperator()); 00912 if (!LOp || !ROp || LOp->getDef() != ROp->getDef()) 00913 PrintFatalError("Concated Dag operators do not match!"); 00914 std::vector<Init*> Args; 00915 std::vector<std::string> ArgNames; 00916 for (unsigned i = 0, e = LHSs->getNumArgs(); i != e; ++i) { 00917 Args.push_back(LHSs->getArg(i)); 00918 ArgNames.push_back(LHSs->getArgName(i)); 00919 } 00920 for (unsigned i = 0, e = RHSs->getNumArgs(); i != e; ++i) { 00921 Args.push_back(RHSs->getArg(i)); 00922 ArgNames.push_back(RHSs->getArgName(i)); 00923 } 00924 return DagInit::get(LHSs->getOperator(), "", Args, ArgNames); 00925 } 00926 break; 00927 } 00928 case LISTCONCAT: { 00929 ListInit *LHSs = dyn_cast<ListInit>(LHS); 00930 ListInit *RHSs = dyn_cast<ListInit>(RHS); 00931 if (LHSs && RHSs) { 00932 std::vector<Init *> Args; 00933 Args.insert(Args.end(), LHSs->begin(), LHSs->end()); 00934 Args.insert(Args.end(), RHSs->begin(), RHSs->end()); 00935 return ListInit::get( 00936 Args, static_cast<ListRecTy *>(LHSs->getType())->getElementType()); 00937 } 00938 break; 00939 } 00940 case STRCONCAT: { 00941 StringInit *LHSs = dyn_cast<StringInit>(LHS); 00942 StringInit *RHSs = dyn_cast<StringInit>(RHS); 00943 if (LHSs && RHSs) 00944 return StringInit::get(LHSs->getValue() + RHSs->getValue()); 00945 break; 00946 } 00947 case EQ: { 00948 // try to fold eq comparison for 'bit' and 'int', otherwise fallback 00949 // to string objects. 00950 IntInit *L = 00951 dyn_cast_or_null<IntInit>(LHS->convertInitializerTo(IntRecTy::get())); 00952 IntInit *R = 00953 dyn_cast_or_null<IntInit>(RHS->convertInitializerTo(IntRecTy::get())); 00954 00955 if (L && R) 00956 return IntInit::get(L->getValue() == R->getValue()); 00957 00958 StringInit *LHSs = dyn_cast<StringInit>(LHS); 00959 StringInit *RHSs = dyn_cast<StringInit>(RHS); 00960 00961 // Make sure we've resolved 00962 if (LHSs && RHSs) 00963 return IntInit::get(LHSs->getValue() == RHSs->getValue()); 00964 00965 break; 00966 } 00967 case ADD: 00968 case AND: 00969 case SHL: 00970 case SRA: 00971 case SRL: { 00972 IntInit *LHSi = 00973 dyn_cast_or_null<IntInit>(LHS->convertInitializerTo(IntRecTy::get())); 00974 IntInit *RHSi = 00975 dyn_cast_or_null<IntInit>(RHS->convertInitializerTo(IntRecTy::get())); 00976 if (LHSi && RHSi) { 00977 int64_t LHSv = LHSi->getValue(), RHSv = RHSi->getValue(); 00978 int64_t Result; 00979 switch (getOpcode()) { 00980 default: llvm_unreachable("Bad opcode!"); 00981 case ADD: Result = LHSv + RHSv; break; 00982 case AND: Result = LHSv & RHSv; break; 00983 case SHL: Result = LHSv << RHSv; break; 00984 case SRA: Result = LHSv >> RHSv; break; 00985 case SRL: Result = (uint64_t)LHSv >> (uint64_t)RHSv; break; 00986 } 00987 return IntInit::get(Result); 00988 } 00989 break; 00990 } 00991 } 00992 return const_cast<BinOpInit *>(this); 00993 } 00994 00995 Init *BinOpInit::resolveReferences(Record &R, const RecordVal *RV) const { 00996 Init *lhs = LHS->resolveReferences(R, RV); 00997 Init *rhs = RHS->resolveReferences(R, RV); 00998 00999 if (LHS != lhs || RHS != rhs) 01000 return (BinOpInit::get(getOpcode(), lhs, rhs, getType()))->Fold(&R,nullptr); 01001 return Fold(&R, nullptr); 01002 } 01003 01004 std::string BinOpInit::getAsString() const { 01005 std::string Result; 01006 switch (Opc) { 01007 case CONCAT: Result = "!con"; break; 01008 case ADD: Result = "!add"; break; 01009 case AND: Result = "!and"; break; 01010 case SHL: Result = "!shl"; break; 01011 case SRA: Result = "!sra"; break; 01012 case SRL: Result = "!srl"; break; 01013 case EQ: Result = "!eq"; break; 01014 case LISTCONCAT: Result = "!listconcat"; break; 01015 case STRCONCAT: Result = "!strconcat"; break; 01016 } 01017 return Result + "(" + LHS->getAsString() + ", " + RHS->getAsString() + ")"; 01018 } 01019 01020 TernOpInit *TernOpInit::get(TernaryOp opc, Init *lhs, 01021 Init *mhs, Init *rhs, 01022 RecTy *Type) { 01023 typedef std::pair< 01024 std::pair< 01025 std::pair<std::pair<unsigned, RecTy *>, Init *>, 01026 Init * 01027 >, 01028 Init * 01029 > Key; 01030 01031 typedef DenseMap<Key, TernOpInit *> Pool; 01032 static Pool ThePool; 01033 01034 Key TheKey(std::make_pair(std::make_pair(std::make_pair(std::make_pair(opc, 01035 Type), 01036 lhs), 01037 mhs), 01038 rhs)); 01039 01040 TernOpInit *&I = ThePool[TheKey]; 01041 if (!I) I = new TernOpInit(opc, lhs, mhs, rhs, Type); 01042 return I; 01043 } 01044 01045 static Init *ForeachHelper(Init *LHS, Init *MHS, Init *RHS, RecTy *Type, 01046 Record *CurRec, MultiClass *CurMultiClass); 01047 01048 static Init *EvaluateOperation(OpInit *RHSo, Init *LHS, Init *Arg, 01049 RecTy *Type, Record *CurRec, 01050 MultiClass *CurMultiClass) { 01051 std::vector<Init *> NewOperands; 01052 01053 TypedInit *TArg = dyn_cast<TypedInit>(Arg); 01054 01055 // If this is a dag, recurse 01056 if (TArg && TArg->getType()->getAsString() == "dag") { 01057 Init *Result = ForeachHelper(LHS, Arg, RHSo, Type, 01058 CurRec, CurMultiClass); 01059 return Result; 01060 } 01061 01062 for (int i = 0; i < RHSo->getNumOperands(); ++i) { 01063 OpInit *RHSoo = dyn_cast<OpInit>(RHSo->getOperand(i)); 01064 01065 if (RHSoo) { 01066 Init *Result = EvaluateOperation(RHSoo, LHS, Arg, 01067 Type, CurRec, CurMultiClass); 01068 if (Result) { 01069 NewOperands.push_back(Result); 01070 } else { 01071 NewOperands.push_back(Arg); 01072 } 01073 } else if (LHS->getAsString() == RHSo->getOperand(i)->getAsString()) { 01074 NewOperands.push_back(Arg); 01075 } else { 01076 NewOperands.push_back(RHSo->getOperand(i)); 01077 } 01078 } 01079 01080 // Now run the operator and use its result as the new leaf 01081 const OpInit *NewOp = RHSo->clone(NewOperands); 01082 Init *NewVal = NewOp->Fold(CurRec, CurMultiClass); 01083 return (NewVal != NewOp) ? NewVal : nullptr; 01084 } 01085 01086 static Init *ForeachHelper(Init *LHS, Init *MHS, Init *RHS, RecTy *Type, 01087 Record *CurRec, MultiClass *CurMultiClass) { 01088 DagInit *MHSd = dyn_cast<DagInit>(MHS); 01089 ListInit *MHSl = dyn_cast<ListInit>(MHS); 01090 01091 OpInit *RHSo = dyn_cast<OpInit>(RHS); 01092 01093 if (!RHSo) { 01094 PrintFatalError(CurRec->getLoc(), "!foreach requires an operator\n"); 01095 } 01096 01097 TypedInit *LHSt = dyn_cast<TypedInit>(LHS); 01098 01099 if (!LHSt) 01100 PrintFatalError(CurRec->getLoc(), "!foreach requires typed variable\n"); 01101 01102 if ((MHSd && isa<DagRecTy>(Type)) || (MHSl && isa<ListRecTy>(Type))) { 01103 if (MHSd) { 01104 Init *Val = MHSd->getOperator(); 01105 Init *Result = EvaluateOperation(RHSo, LHS, Val, 01106 Type, CurRec, CurMultiClass); 01107 if (Result) { 01108 Val = Result; 01109 } 01110 01111 std::vector<std::pair<Init *, std::string> > args; 01112 for (unsigned int i = 0; i < MHSd->getNumArgs(); ++i) { 01113 Init *Arg; 01114 std::string ArgName; 01115 Arg = MHSd->getArg(i); 01116 ArgName = MHSd->getArgName(i); 01117 01118 // Process args 01119 Init *Result = EvaluateOperation(RHSo, LHS, Arg, Type, 01120 CurRec, CurMultiClass); 01121 if (Result) { 01122 Arg = Result; 01123 } 01124 01125 // TODO: Process arg names 01126 args.push_back(std::make_pair(Arg, ArgName)); 01127 } 01128 01129 return DagInit::get(Val, "", args); 01130 } 01131 if (MHSl) { 01132 std::vector<Init *> NewOperands; 01133 std::vector<Init *> NewList(MHSl->begin(), MHSl->end()); 01134 01135 for (std::vector<Init *>::iterator li = NewList.begin(), 01136 liend = NewList.end(); 01137 li != liend; 01138 ++li) { 01139 Init *Item = *li; 01140 NewOperands.clear(); 01141 for(int i = 0; i < RHSo->getNumOperands(); ++i) { 01142 // First, replace the foreach variable with the list item 01143 if (LHS->getAsString() == RHSo->getOperand(i)->getAsString()) { 01144 NewOperands.push_back(Item); 01145 } else { 01146 NewOperands.push_back(RHSo->getOperand(i)); 01147 } 01148 } 01149 01150 // Now run the operator and use its result as the new list item 01151 const OpInit *NewOp = RHSo->clone(NewOperands); 01152 Init *NewItem = NewOp->Fold(CurRec, CurMultiClass); 01153 if (NewItem != NewOp) 01154 *li = NewItem; 01155 } 01156 return ListInit::get(NewList, MHSl->getType()); 01157 } 01158 } 01159 return nullptr; 01160 } 01161 01162 Init *TernOpInit::Fold(Record *CurRec, MultiClass *CurMultiClass) const { 01163 switch (getOpcode()) { 01164 case SUBST: { 01165 DefInit *LHSd = dyn_cast<DefInit>(LHS); 01166 VarInit *LHSv = dyn_cast<VarInit>(LHS); 01167 StringInit *LHSs = dyn_cast<StringInit>(LHS); 01168 01169 DefInit *MHSd = dyn_cast<DefInit>(MHS); 01170 VarInit *MHSv = dyn_cast<VarInit>(MHS); 01171 StringInit *MHSs = dyn_cast<StringInit>(MHS); 01172 01173 DefInit *RHSd = dyn_cast<DefInit>(RHS); 01174 VarInit *RHSv = dyn_cast<VarInit>(RHS); 01175 StringInit *RHSs = dyn_cast<StringInit>(RHS); 01176 01177 if ((LHSd && MHSd && RHSd) 01178 || (LHSv && MHSv && RHSv) 01179 || (LHSs && MHSs && RHSs)) { 01180 if (RHSd) { 01181 Record *Val = RHSd->getDef(); 01182 if (LHSd->getAsString() == RHSd->getAsString()) { 01183 Val = MHSd->getDef(); 01184 } 01185 return DefInit::get(Val); 01186 } 01187 if (RHSv) { 01188 std::string Val = RHSv->getName(); 01189 if (LHSv->getAsString() == RHSv->getAsString()) { 01190 Val = MHSv->getName(); 01191 } 01192 return VarInit::get(Val, getType()); 01193 } 01194 if (RHSs) { 01195 std::string Val = RHSs->getValue(); 01196 01197 std::string::size_type found; 01198 std::string::size_type idx = 0; 01199 do { 01200 found = Val.find(LHSs->getValue(), idx); 01201 if (found != std::string::npos) { 01202 Val.replace(found, LHSs->getValue().size(), MHSs->getValue()); 01203 } 01204 idx = found + MHSs->getValue().size(); 01205 } while (found != std::string::npos); 01206 01207 return StringInit::get(Val); 01208 } 01209 } 01210 break; 01211 } 01212 01213 case FOREACH: { 01214 Init *Result = ForeachHelper(LHS, MHS, RHS, getType(), 01215 CurRec, CurMultiClass); 01216 if (Result) { 01217 return Result; 01218 } 01219 break; 01220 } 01221 01222 case IF: { 01223 IntInit *LHSi = dyn_cast<IntInit>(LHS); 01224 if (Init *I = LHS->convertInitializerTo(IntRecTy::get())) 01225 LHSi = dyn_cast<IntInit>(I); 01226 if (LHSi) { 01227 if (LHSi->getValue()) { 01228 return MHS; 01229 } else { 01230 return RHS; 01231 } 01232 } 01233 break; 01234 } 01235 } 01236 01237 return const_cast<TernOpInit *>(this); 01238 } 01239 01240 Init *TernOpInit::resolveReferences(Record &R, 01241 const RecordVal *RV) const { 01242 Init *lhs = LHS->resolveReferences(R, RV); 01243 01244 if (Opc == IF && lhs != LHS) { 01245 IntInit *Value = dyn_cast<IntInit>(lhs); 01246 if (Init *I = lhs->convertInitializerTo(IntRecTy::get())) 01247 Value = dyn_cast<IntInit>(I); 01248 if (Value) { 01249 // Short-circuit 01250 if (Value->getValue()) { 01251 Init *mhs = MHS->resolveReferences(R, RV); 01252 return (TernOpInit::get(getOpcode(), lhs, mhs, 01253 RHS, getType()))->Fold(&R, nullptr); 01254 } else { 01255 Init *rhs = RHS->resolveReferences(R, RV); 01256 return (TernOpInit::get(getOpcode(), lhs, MHS, 01257 rhs, getType()))->Fold(&R, nullptr); 01258 } 01259 } 01260 } 01261 01262 Init *mhs = MHS->resolveReferences(R, RV); 01263 Init *rhs = RHS->resolveReferences(R, RV); 01264 01265 if (LHS != lhs || MHS != mhs || RHS != rhs) 01266 return (TernOpInit::get(getOpcode(), lhs, mhs, rhs, 01267 getType()))->Fold(&R, nullptr); 01268 return Fold(&R, nullptr); 01269 } 01270 01271 std::string TernOpInit::getAsString() const { 01272 std::string Result; 01273 switch (Opc) { 01274 case SUBST: Result = "!subst"; break; 01275 case FOREACH: Result = "!foreach"; break; 01276 case IF: Result = "!if"; break; 01277 } 01278 return Result + "(" + LHS->getAsString() + ", " + MHS->getAsString() + ", " 01279 + RHS->getAsString() + ")"; 01280 } 01281 01282 RecTy *TypedInit::getFieldType(const std::string &FieldName) const { 01283 if (RecordRecTy *RecordType = dyn_cast<RecordRecTy>(getType())) 01284 if (RecordVal *Field = RecordType->getRecord()->getValue(FieldName)) 01285 return Field->getType(); 01286 return nullptr; 01287 } 01288 01289 Init * 01290 TypedInit::convertInitializerBitRange(const std::vector<unsigned> &Bits) const { 01291 BitsRecTy *T = dyn_cast<BitsRecTy>(getType()); 01292 if (!T) return nullptr; // Cannot subscript a non-bits variable. 01293 unsigned NumBits = T->getNumBits(); 01294 01295 SmallVector<Init *, 16> NewBits(Bits.size()); 01296 for (unsigned i = 0, e = Bits.size(); i != e; ++i) { 01297 if (Bits[i] >= NumBits) 01298 return nullptr; 01299 01300 NewBits[i] = VarBitInit::get(const_cast<TypedInit *>(this), Bits[i]); 01301 } 01302 return BitsInit::get(NewBits); 01303 } 01304 01305 Init * 01306 TypedInit::convertInitListSlice(const std::vector<unsigned> &Elements) const { 01307 ListRecTy *T = dyn_cast<ListRecTy>(getType()); 01308 if (!T) return nullptr; // Cannot subscript a non-list variable. 01309 01310 if (Elements.size() == 1) 01311 return VarListElementInit::get(const_cast<TypedInit *>(this), Elements[0]); 01312 01313 std::vector<Init*> ListInits; 01314 ListInits.reserve(Elements.size()); 01315 for (unsigned i = 0, e = Elements.size(); i != e; ++i) 01316 ListInits.push_back(VarListElementInit::get(const_cast<TypedInit *>(this), 01317 Elements[i])); 01318 return ListInit::get(ListInits, T); 01319 } 01320 01321 01322 VarInit *VarInit::get(const std::string &VN, RecTy *T) { 01323 Init *Value = StringInit::get(VN); 01324 return VarInit::get(Value, T); 01325 } 01326 01327 VarInit *VarInit::get(Init *VN, RecTy *T) { 01328 typedef std::pair<RecTy *, Init *> Key; 01329 static Pool<DenseMap<Key, VarInit *> > ThePool; 01330 01331 Key TheKey(std::make_pair(T, VN)); 01332 01333 VarInit *&I = ThePool[TheKey]; 01334 if (!I) I = new VarInit(VN, T); 01335 return I; 01336 } 01337 01338 const std::string &VarInit::getName() const { 01339 StringInit *NameString = dyn_cast<StringInit>(getNameInit()); 01340 assert(NameString && "VarInit name is not a string!"); 01341 return NameString->getValue(); 01342 } 01343 01344 Init *VarInit::getBit(unsigned Bit) const { 01345 if (getType() == BitRecTy::get()) 01346 return const_cast<VarInit*>(this); 01347 return VarBitInit::get(const_cast<VarInit*>(this), Bit); 01348 } 01349 01350 Init *VarInit::resolveListElementReference(Record &R, 01351 const RecordVal *IRV, 01352 unsigned Elt) const { 01353 if (R.isTemplateArg(getNameInit())) return nullptr; 01354 if (IRV && IRV->getNameInit() != getNameInit()) return nullptr; 01355 01356 RecordVal *RV = R.getValue(getNameInit()); 01357 assert(RV && "Reference to a non-existent variable?"); 01358 ListInit *LI = dyn_cast<ListInit>(RV->getValue()); 01359 if (!LI) { 01360 TypedInit *VI = dyn_cast<TypedInit>(RV->getValue()); 01361 assert(VI && "Invalid list element!"); 01362 return VarListElementInit::get(VI, Elt); 01363 } 01364 01365 if (Elt >= LI->getSize()) 01366 return nullptr; // Out of range reference. 01367 Init *E = LI->getElement(Elt); 01368 // If the element is set to some value, or if we are resolving a reference 01369 // to a specific variable and that variable is explicitly unset, then 01370 // replace the VarListElementInit with it. 01371 if (IRV || !isa<UnsetInit>(E)) 01372 return E; 01373 return nullptr; 01374 } 01375 01376 01377 RecTy *VarInit::getFieldType(const std::string &FieldName) const { 01378 if (RecordRecTy *RTy = dyn_cast<RecordRecTy>(getType())) 01379 if (const RecordVal *RV = RTy->getRecord()->getValue(FieldName)) 01380 return RV->getType(); 01381 return nullptr; 01382 } 01383 01384 Init *VarInit::getFieldInit(Record &R, const RecordVal *RV, 01385 const std::string &FieldName) const { 01386 if (isa<RecordRecTy>(getType())) 01387 if (const RecordVal *Val = R.getValue(VarName)) { 01388 if (RV != Val && (RV || isa<UnsetInit>(Val->getValue()))) 01389 return nullptr; 01390 Init *TheInit = Val->getValue(); 01391 assert(TheInit != this && "Infinite loop detected!"); 01392 if (Init *I = TheInit->getFieldInit(R, RV, FieldName)) 01393 return I; 01394 else 01395 return nullptr; 01396 } 01397 return nullptr; 01398 } 01399 01400 /// resolveReferences - This method is used by classes that refer to other 01401 /// variables which may not be defined at the time the expression is formed. 01402 /// If a value is set for the variable later, this method will be called on 01403 /// users of the value to allow the value to propagate out. 01404 /// 01405 Init *VarInit::resolveReferences(Record &R, const RecordVal *RV) const { 01406 if (RecordVal *Val = R.getValue(VarName)) 01407 if (RV == Val || (!RV && !isa<UnsetInit>(Val->getValue()))) 01408 return Val->getValue(); 01409 return const_cast<VarInit *>(this); 01410 } 01411 01412 VarBitInit *VarBitInit::get(TypedInit *T, unsigned B) { 01413 typedef std::pair<TypedInit *, unsigned> Key; 01414 typedef DenseMap<Key, VarBitInit *> Pool; 01415 01416 static Pool ThePool; 01417 01418 Key TheKey(std::make_pair(T, B)); 01419 01420 VarBitInit *&I = ThePool[TheKey]; 01421 if (!I) I = new VarBitInit(T, B); 01422 return I; 01423 } 01424 01425 std::string VarBitInit::getAsString() const { 01426 return TI->getAsString() + "{" + utostr(Bit) + "}"; 01427 } 01428 01429 Init *VarBitInit::resolveReferences(Record &R, const RecordVal *RV) const { 01430 Init *I = TI->resolveReferences(R, RV); 01431 if (TI != I) 01432 return I->getBit(getBitNum()); 01433 01434 return const_cast<VarBitInit*>(this); 01435 } 01436 01437 VarListElementInit *VarListElementInit::get(TypedInit *T, 01438 unsigned E) { 01439 typedef std::pair<TypedInit *, unsigned> Key; 01440 typedef DenseMap<Key, VarListElementInit *> Pool; 01441 01442 static Pool ThePool; 01443 01444 Key TheKey(std::make_pair(T, E)); 01445 01446 VarListElementInit *&I = ThePool[TheKey]; 01447 if (!I) I = new VarListElementInit(T, E); 01448 return I; 01449 } 01450 01451 std::string VarListElementInit::getAsString() const { 01452 return TI->getAsString() + "[" + utostr(Element) + "]"; 01453 } 01454 01455 Init * 01456 VarListElementInit::resolveReferences(Record &R, const RecordVal *RV) const { 01457 if (Init *I = getVariable()->resolveListElementReference(R, RV, 01458 getElementNum())) 01459 return I; 01460 return const_cast<VarListElementInit *>(this); 01461 } 01462 01463 Init *VarListElementInit::getBit(unsigned Bit) const { 01464 if (getType() == BitRecTy::get()) 01465 return const_cast<VarListElementInit*>(this); 01466 return VarBitInit::get(const_cast<VarListElementInit*>(this), Bit); 01467 } 01468 01469 Init *VarListElementInit:: resolveListElementReference(Record &R, 01470 const RecordVal *RV, 01471 unsigned Elt) const { 01472 Init *Result = TI->resolveListElementReference(R, RV, Element); 01473 01474 if (Result) { 01475 if (TypedInit *TInit = dyn_cast<TypedInit>(Result)) { 01476 Init *Result2 = TInit->resolveListElementReference(R, RV, Elt); 01477 if (Result2) return Result2; 01478 return new VarListElementInit(TInit, Elt); 01479 } 01480 return Result; 01481 } 01482 01483 return nullptr; 01484 } 01485 01486 DefInit *DefInit::get(Record *R) { 01487 return R->getDefInit(); 01488 } 01489 01490 RecTy *DefInit::getFieldType(const std::string &FieldName) const { 01491 if (const RecordVal *RV = Def->getValue(FieldName)) 01492 return RV->getType(); 01493 return nullptr; 01494 } 01495 01496 Init *DefInit::getFieldInit(Record &R, const RecordVal *RV, 01497 const std::string &FieldName) const { 01498 return Def->getValue(FieldName)->getValue(); 01499 } 01500 01501 01502 std::string DefInit::getAsString() const { 01503 return Def->getName(); 01504 } 01505 01506 FieldInit *FieldInit::get(Init *R, const std::string &FN) { 01507 typedef std::pair<Init *, TableGenStringKey> Key; 01508 typedef DenseMap<Key, FieldInit *> Pool; 01509 static Pool ThePool; 01510 01511 Key TheKey(std::make_pair(R, FN)); 01512 01513 FieldInit *&I = ThePool[TheKey]; 01514 if (!I) I = new FieldInit(R, FN); 01515 return I; 01516 } 01517 01518 Init *FieldInit::getBit(unsigned Bit) const { 01519 if (getType() == BitRecTy::get()) 01520 return const_cast<FieldInit*>(this); 01521 return VarBitInit::get(const_cast<FieldInit*>(this), Bit); 01522 } 01523 01524 Init *FieldInit::resolveListElementReference(Record &R, const RecordVal *RV, 01525 unsigned Elt) const { 01526 if (Init *ListVal = Rec->getFieldInit(R, RV, FieldName)) 01527 if (ListInit *LI = dyn_cast<ListInit>(ListVal)) { 01528 if (Elt >= LI->getSize()) return nullptr; 01529 Init *E = LI->getElement(Elt); 01530 01531 // If the element is set to some value, or if we are resolving a 01532 // reference to a specific variable and that variable is explicitly 01533 // unset, then replace the VarListElementInit with it. 01534 if (RV || !isa<UnsetInit>(E)) 01535 return E; 01536 } 01537 return nullptr; 01538 } 01539 01540 Init *FieldInit::resolveReferences(Record &R, const RecordVal *RV) const { 01541 Init *NewRec = RV ? Rec->resolveReferences(R, RV) : Rec; 01542 01543 Init *BitsVal = NewRec->getFieldInit(R, RV, FieldName); 01544 if (BitsVal) { 01545 Init *BVR = BitsVal->resolveReferences(R, RV); 01546 return BVR->isComplete() ? BVR : const_cast<FieldInit *>(this); 01547 } 01548 01549 if (NewRec != Rec) { 01550 return FieldInit::get(NewRec, FieldName); 01551 } 01552 return const_cast<FieldInit *>(this); 01553 } 01554 01555 static void ProfileDagInit(FoldingSetNodeID &ID, Init *V, const std::string &VN, 01556 ArrayRef<Init *> ArgRange, 01557 ArrayRef<std::string> NameRange) { 01558 ID.AddPointer(V); 01559 ID.AddString(VN); 01560 01561 ArrayRef<Init *>::iterator Arg = ArgRange.begin(); 01562 ArrayRef<std::string>::iterator Name = NameRange.begin(); 01563 while (Arg != ArgRange.end()) { 01564 assert(Name != NameRange.end() && "Arg name underflow!"); 01565 ID.AddPointer(*Arg++); 01566 ID.AddString(*Name++); 01567 } 01568 assert(Name == NameRange.end() && "Arg name overflow!"); 01569 } 01570 01571 DagInit * 01572 DagInit::get(Init *V, const std::string &VN, 01573 ArrayRef<Init *> ArgRange, 01574 ArrayRef<std::string> NameRange) { 01575 typedef FoldingSet<DagInit> Pool; 01576 static Pool ThePool; 01577 01578 FoldingSetNodeID ID; 01579 ProfileDagInit(ID, V, VN, ArgRange, NameRange); 01580 01581 void *IP = nullptr; 01582 if (DagInit *I = ThePool.FindNodeOrInsertPos(ID, IP)) 01583 return I; 01584 01585 DagInit *I = new DagInit(V, VN, ArgRange, NameRange); 01586 ThePool.InsertNode(I, IP); 01587 01588 return I; 01589 } 01590 01591 DagInit * 01592 DagInit::get(Init *V, const std::string &VN, 01593 const std::vector<std::pair<Init*, std::string> > &args) { 01594 typedef std::pair<Init*, std::string> PairType; 01595 01596 std::vector<Init *> Args; 01597 std::vector<std::string> Names; 01598 01599 for (std::vector<PairType>::const_iterator i = args.begin(), 01600 iend = args.end(); 01601 i != iend; 01602 ++i) { 01603 Args.push_back(i->first); 01604 Names.push_back(i->second); 01605 } 01606 01607 return DagInit::get(V, VN, Args, Names); 01608 } 01609 01610 void DagInit::Profile(FoldingSetNodeID &ID) const { 01611 ProfileDagInit(ID, Val, ValName, Args, ArgNames); 01612 } 01613 01614 Init *DagInit::resolveReferences(Record &R, const RecordVal *RV) const { 01615 std::vector<Init*> NewArgs; 01616 for (unsigned i = 0, e = Args.size(); i != e; ++i) 01617 NewArgs.push_back(Args[i]->resolveReferences(R, RV)); 01618 01619 Init *Op = Val->resolveReferences(R, RV); 01620 01621 if (Args != NewArgs || Op != Val) 01622 return DagInit::get(Op, ValName, NewArgs, ArgNames); 01623 01624 return const_cast<DagInit *>(this); 01625 } 01626 01627 01628 std::string DagInit::getAsString() const { 01629 std::string Result = "(" + Val->getAsString(); 01630 if (!ValName.empty()) 01631 Result += ":" + ValName; 01632 if (Args.size()) { 01633 Result += " " + Args[0]->getAsString(); 01634 if (!ArgNames[0].empty()) Result += ":$" + ArgNames[0]; 01635 for (unsigned i = 1, e = Args.size(); i != e; ++i) { 01636 Result += ", " + Args[i]->getAsString(); 01637 if (!ArgNames[i].empty()) Result += ":$" + ArgNames[i]; 01638 } 01639 } 01640 return Result + ")"; 01641 } 01642 01643 01644 //===----------------------------------------------------------------------===// 01645 // Other implementations 01646 //===----------------------------------------------------------------------===// 01647 01648 RecordVal::RecordVal(Init *N, RecTy *T, unsigned P) 01649 : Name(N), Ty(T), Prefix(P) { 01650 Value = Ty->convertValue(UnsetInit::get()); 01651 assert(Value && "Cannot create unset value for current type!"); 01652 } 01653 01654 RecordVal::RecordVal(const std::string &N, RecTy *T, unsigned P) 01655 : Name(StringInit::get(N)), Ty(T), Prefix(P) { 01656 Value = Ty->convertValue(UnsetInit::get()); 01657 assert(Value && "Cannot create unset value for current type!"); 01658 } 01659 01660 const std::string &RecordVal::getName() const { 01661 StringInit *NameString = dyn_cast<StringInit>(Name); 01662 assert(NameString && "RecordVal name is not a string!"); 01663 return NameString->getValue(); 01664 } 01665 01666 void RecordVal::dump() const { errs() << *this; } 01667 01668 void RecordVal::print(raw_ostream &OS, bool PrintSem) const { 01669 if (getPrefix()) OS << "field "; 01670 OS << *getType() << " " << getNameInitAsString(); 01671 01672 if (getValue()) 01673 OS << " = " << *getValue(); 01674 01675 if (PrintSem) OS << ";\n"; 01676 } 01677 01678 unsigned Record::LastID = 0; 01679 01680 void Record::init() { 01681 checkName(); 01682 01683 // Every record potentially has a def at the top. This value is 01684 // replaced with the top-level def name at instantiation time. 01685 RecordVal DN("NAME", StringRecTy::get(), 0); 01686 addValue(DN); 01687 } 01688 01689 void Record::checkName() { 01690 // Ensure the record name has string type. 01691 const TypedInit *TypedName = dyn_cast<const TypedInit>(Name); 01692 assert(TypedName && "Record name is not typed!"); 01693 RecTy *Type = TypedName->getType(); 01694 if (!isa<StringRecTy>(Type)) 01695 PrintFatalError(getLoc(), "Record name is not a string!"); 01696 } 01697 01698 DefInit *Record::getDefInit() { 01699 if (!TheInit) 01700 TheInit = new DefInit(this, new RecordRecTy(this)); 01701 return TheInit; 01702 } 01703 01704 const std::string &Record::getName() const { 01705 const StringInit *NameString = dyn_cast<StringInit>(Name); 01706 assert(NameString && "Record name is not a string!"); 01707 return NameString->getValue(); 01708 } 01709 01710 void Record::setName(Init *NewName) { 01711 Name = NewName; 01712 checkName(); 01713 // DO NOT resolve record values to the name at this point because 01714 // there might be default values for arguments of this def. Those 01715 // arguments might not have been resolved yet so we don't want to 01716 // prematurely assume values for those arguments were not passed to 01717 // this def. 01718 // 01719 // Nonetheless, it may be that some of this Record's values 01720 // reference the record name. Indeed, the reason for having the 01721 // record name be an Init is to provide this flexibility. The extra 01722 // resolve steps after completely instantiating defs takes care of 01723 // this. See TGParser::ParseDef and TGParser::ParseDefm. 01724 } 01725 01726 void Record::setName(const std::string &Name) { 01727 setName(StringInit::get(Name)); 01728 } 01729 01730 /// resolveReferencesTo - If anything in this record refers to RV, replace the 01731 /// reference to RV with the RHS of RV. If RV is null, we resolve all possible 01732 /// references. 01733 void Record::resolveReferencesTo(const RecordVal *RV) { 01734 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 01735 if (RV == &Values[i]) // Skip resolve the same field as the given one 01736 continue; 01737 if (Init *V = Values[i].getValue()) 01738 if (Values[i].setValue(V->resolveReferences(*this, RV))) 01739 PrintFatalError(getLoc(), "Invalid value is found when setting '" 01740 + Values[i].getNameInitAsString() 01741 + "' after resolving references" 01742 + (RV ? " against '" + RV->getNameInitAsString() 01743 + "' of (" 01744 + RV->getValue()->getAsUnquotedString() + ")" 01745 : "") 01746 + "\n"); 01747 } 01748 Init *OldName = getNameInit(); 01749 Init *NewName = Name->resolveReferences(*this, RV); 01750 if (NewName != OldName) { 01751 // Re-register with RecordKeeper. 01752 setName(NewName); 01753 } 01754 } 01755 01756 void Record::dump() const { errs() << *this; } 01757 01758 raw_ostream &llvm::operator<<(raw_ostream &OS, const Record &R) { 01759 OS << R.getNameInitAsString(); 01760 01761 const std::vector<Init *> &TArgs = R.getTemplateArgs(); 01762 if (!TArgs.empty()) { 01763 OS << "<"; 01764 for (unsigned i = 0, e = TArgs.size(); i != e; ++i) { 01765 if (i) OS << ", "; 01766 const RecordVal *RV = R.getValue(TArgs[i]); 01767 assert(RV && "Template argument record not found??"); 01768 RV->print(OS, false); 01769 } 01770 OS << ">"; 01771 } 01772 01773 OS << " {"; 01774 const std::vector<Record*> &SC = R.getSuperClasses(); 01775 if (!SC.empty()) { 01776 OS << "\t//"; 01777 for (unsigned i = 0, e = SC.size(); i != e; ++i) 01778 OS << " " << SC[i]->getNameInitAsString(); 01779 } 01780 OS << "\n"; 01781 01782 const std::vector<RecordVal> &Vals = R.getValues(); 01783 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 01784 if (Vals[i].getPrefix() && !R.isTemplateArg(Vals[i].getName())) 01785 OS << Vals[i]; 01786 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 01787 if (!Vals[i].getPrefix() && !R.isTemplateArg(Vals[i].getName())) 01788 OS << Vals[i]; 01789 01790 return OS << "}\n"; 01791 } 01792 01793 /// getValueInit - Return the initializer for a value with the specified name, 01794 /// or abort if the field does not exist. 01795 /// 01796 Init *Record::getValueInit(StringRef FieldName) const { 01797 const RecordVal *R = getValue(FieldName); 01798 if (!R || !R->getValue()) 01799 PrintFatalError(getLoc(), "Record `" + getName() + 01800 "' does not have a field named `" + FieldName + "'!\n"); 01801 return R->getValue(); 01802 } 01803 01804 01805 /// getValueAsString - This method looks up the specified field and returns its 01806 /// value as a string, aborts if the field does not exist or if 01807 /// the value is not a string. 01808 /// 01809 std::string Record::getValueAsString(StringRef FieldName) const { 01810 const RecordVal *R = getValue(FieldName); 01811 if (!R || !R->getValue()) 01812 PrintFatalError(getLoc(), "Record `" + getName() + 01813 "' does not have a field named `" + FieldName + "'!\n"); 01814 01815 if (StringInit *SI = dyn_cast<StringInit>(R->getValue())) 01816 return SI->getValue(); 01817 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 01818 FieldName + "' does not have a string initializer!"); 01819 } 01820 01821 /// getValueAsBitsInit - This method looks up the specified field and returns 01822 /// its value as a BitsInit, aborts if the field does not exist or if 01823 /// the value is not the right type. 01824 /// 01825 BitsInit *Record::getValueAsBitsInit(StringRef FieldName) const { 01826 const RecordVal *R = getValue(FieldName); 01827 if (!R || !R->getValue()) 01828 PrintFatalError(getLoc(), "Record `" + getName() + 01829 "' does not have a field named `" + FieldName + "'!\n"); 01830 01831 if (BitsInit *BI = dyn_cast<BitsInit>(R->getValue())) 01832 return BI; 01833 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 01834 FieldName + "' does not have a BitsInit initializer!"); 01835 } 01836 01837 /// getValueAsListInit - This method looks up the specified field and returns 01838 /// its value as a ListInit, aborting if the field does not exist or if 01839 /// the value is not the right type. 01840 /// 01841 ListInit *Record::getValueAsListInit(StringRef FieldName) const { 01842 const RecordVal *R = getValue(FieldName); 01843 if (!R || !R->getValue()) 01844 PrintFatalError(getLoc(), "Record `" + getName() + 01845 "' does not have a field named `" + FieldName + "'!\n"); 01846 01847 if (ListInit *LI = dyn_cast<ListInit>(R->getValue())) 01848 return LI; 01849 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 01850 FieldName + "' does not have a list initializer!"); 01851 } 01852 01853 /// getValueAsListOfDefs - This method looks up the specified field and returns 01854 /// its value as a vector of records, aborting if the field does not exist 01855 /// or if the value is not the right type. 01856 /// 01857 std::vector<Record*> 01858 Record::getValueAsListOfDefs(StringRef FieldName) const { 01859 ListInit *List = getValueAsListInit(FieldName); 01860 std::vector<Record*> Defs; 01861 for (unsigned i = 0; i < List->getSize(); i++) { 01862 if (DefInit *DI = dyn_cast<DefInit>(List->getElement(i))) { 01863 Defs.push_back(DI->getDef()); 01864 } else { 01865 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 01866 FieldName + "' list is not entirely DefInit!"); 01867 } 01868 } 01869 return Defs; 01870 } 01871 01872 /// getValueAsInt - This method looks up the specified field and returns its 01873 /// value as an int64_t, aborting if the field does not exist or if the value 01874 /// is not the right type. 01875 /// 01876 int64_t Record::getValueAsInt(StringRef FieldName) const { 01877 const RecordVal *R = getValue(FieldName); 01878 if (!R || !R->getValue()) 01879 PrintFatalError(getLoc(), "Record `" + getName() + 01880 "' does not have a field named `" + FieldName + "'!\n"); 01881 01882 if (IntInit *II = dyn_cast<IntInit>(R->getValue())) 01883 return II->getValue(); 01884 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 01885 FieldName + "' does not have an int initializer!"); 01886 } 01887 01888 /// getValueAsListOfInts - This method looks up the specified field and returns 01889 /// its value as a vector of integers, aborting if the field does not exist or 01890 /// if the value is not the right type. 01891 /// 01892 std::vector<int64_t> 01893 Record::getValueAsListOfInts(StringRef FieldName) const { 01894 ListInit *List = getValueAsListInit(FieldName); 01895 std::vector<int64_t> Ints; 01896 for (unsigned i = 0; i < List->getSize(); i++) { 01897 if (IntInit *II = dyn_cast<IntInit>(List->getElement(i))) { 01898 Ints.push_back(II->getValue()); 01899 } else { 01900 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 01901 FieldName + "' does not have a list of ints initializer!"); 01902 } 01903 } 01904 return Ints; 01905 } 01906 01907 /// getValueAsListOfStrings - This method looks up the specified field and 01908 /// returns its value as a vector of strings, aborting if the field does not 01909 /// exist or if the value is not the right type. 01910 /// 01911 std::vector<std::string> 01912 Record::getValueAsListOfStrings(StringRef FieldName) const { 01913 ListInit *List = getValueAsListInit(FieldName); 01914 std::vector<std::string> Strings; 01915 for (unsigned i = 0; i < List->getSize(); i++) { 01916 if (StringInit *II = dyn_cast<StringInit>(List->getElement(i))) { 01917 Strings.push_back(II->getValue()); 01918 } else { 01919 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 01920 FieldName + "' does not have a list of strings initializer!"); 01921 } 01922 } 01923 return Strings; 01924 } 01925 01926 /// getValueAsDef - This method looks up the specified field and returns its 01927 /// value as a Record, aborting if the field does not exist or if the value 01928 /// is not the right type. 01929 /// 01930 Record *Record::getValueAsDef(StringRef FieldName) const { 01931 const RecordVal *R = getValue(FieldName); 01932 if (!R || !R->getValue()) 01933 PrintFatalError(getLoc(), "Record `" + getName() + 01934 "' does not have a field named `" + FieldName + "'!\n"); 01935 01936 if (DefInit *DI = dyn_cast<DefInit>(R->getValue())) 01937 return DI->getDef(); 01938 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 01939 FieldName + "' does not have a def initializer!"); 01940 } 01941 01942 /// getValueAsBit - This method looks up the specified field and returns its 01943 /// value as a bit, aborting if the field does not exist or if the value is 01944 /// not the right type. 01945 /// 01946 bool Record::getValueAsBit(StringRef FieldName) const { 01947 const RecordVal *R = getValue(FieldName); 01948 if (!R || !R->getValue()) 01949 PrintFatalError(getLoc(), "Record `" + getName() + 01950 "' does not have a field named `" + FieldName + "'!\n"); 01951 01952 if (BitInit *BI = dyn_cast<BitInit>(R->getValue())) 01953 return BI->getValue(); 01954 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 01955 FieldName + "' does not have a bit initializer!"); 01956 } 01957 01958 bool Record::getValueAsBitOrUnset(StringRef FieldName, bool &Unset) const { 01959 const RecordVal *R = getValue(FieldName); 01960 if (!R || !R->getValue()) 01961 PrintFatalError(getLoc(), "Record `" + getName() + 01962 "' does not have a field named `" + FieldName.str() + "'!\n"); 01963 01964 if (R->getValue() == UnsetInit::get()) { 01965 Unset = true; 01966 return false; 01967 } 01968 Unset = false; 01969 if (BitInit *BI = dyn_cast<BitInit>(R->getValue())) 01970 return BI->getValue(); 01971 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 01972 FieldName + "' does not have a bit initializer!"); 01973 } 01974 01975 /// getValueAsDag - This method looks up the specified field and returns its 01976 /// value as an Dag, aborting if the field does not exist or if the value is 01977 /// not the right type. 01978 /// 01979 DagInit *Record::getValueAsDag(StringRef FieldName) const { 01980 const RecordVal *R = getValue(FieldName); 01981 if (!R || !R->getValue()) 01982 PrintFatalError(getLoc(), "Record `" + getName() + 01983 "' does not have a field named `" + FieldName + "'!\n"); 01984 01985 if (DagInit *DI = dyn_cast<DagInit>(R->getValue())) 01986 return DI; 01987 PrintFatalError(getLoc(), "Record `" + getName() + "', field `" + 01988 FieldName + "' does not have a dag initializer!"); 01989 } 01990 01991 01992 void MultiClass::dump() const { 01993 errs() << "Record:\n"; 01994 Rec.dump(); 01995 01996 errs() << "Defs:\n"; 01997 for (RecordVector::const_iterator r = DefPrototypes.begin(), 01998 rend = DefPrototypes.end(); 01999 r != rend; 02000 ++r) { 02001 (*r)->dump(); 02002 } 02003 } 02004 02005 02006 void RecordKeeper::dump() const { errs() << *this; } 02007 02008 raw_ostream &llvm::operator<<(raw_ostream &OS, const RecordKeeper &RK) { 02009 OS << "------------- Classes -----------------\n"; 02010 const auto &Classes = RK.getClasses(); 02011 for (const auto &C : Classes) 02012 OS << "class " << *C.second; 02013 02014 OS << "------------- Defs -----------------\n"; 02015 const auto &Defs = RK.getDefs(); 02016 for (const auto &D : Defs) 02017 OS << "def " << *D.second; 02018 return OS; 02019 } 02020 02021 02022 /// getAllDerivedDefinitions - This method returns all concrete definitions 02023 /// that derive from the specified class name. If a class with the specified 02024 /// name does not exist, an error is printed and true is returned. 02025 std::vector<Record*> 02026 RecordKeeper::getAllDerivedDefinitions(const std::string &ClassName) const { 02027 Record *Class = getClass(ClassName); 02028 if (!Class) 02029 PrintFatalError("ERROR: Couldn't find the `" + ClassName + "' class!\n"); 02030 02031 std::vector<Record*> Defs; 02032 for (const auto &D : getDefs()) 02033 if (D.second->isSubClassOf(Class)) 02034 Defs.push_back(D.second.get()); 02035 02036 return Defs; 02037 } 02038 02039 /// QualifyName - Return an Init with a qualifier prefix referring 02040 /// to CurRec's name. 02041 Init *llvm::QualifyName(Record &CurRec, MultiClass *CurMultiClass, 02042 Init *Name, const std::string &Scoper) { 02043 RecTy *Type = dyn_cast<TypedInit>(Name)->getType(); 02044 02045 BinOpInit *NewName = 02046 BinOpInit::get(BinOpInit::STRCONCAT, 02047 BinOpInit::get(BinOpInit::STRCONCAT, 02048 CurRec.getNameInit(), 02049 StringInit::get(Scoper), 02050 Type)->Fold(&CurRec, CurMultiClass), 02051 Name, 02052 Type); 02053 02054 if (CurMultiClass && Scoper != "::") { 02055 NewName = 02056 BinOpInit::get(BinOpInit::STRCONCAT, 02057 BinOpInit::get(BinOpInit::STRCONCAT, 02058 CurMultiClass->Rec.getNameInit(), 02059 StringInit::get("::"), 02060 Type)->Fold(&CurRec, CurMultiClass), 02061 NewName->Fold(&CurRec, CurMultiClass), 02062 Type); 02063 } 02064 02065 return NewName->Fold(&CurRec, CurMultiClass); 02066 } 02067 02068 /// QualifyName - Return an Init with a qualifier prefix referring 02069 /// to CurRec's name. 02070 Init *llvm::QualifyName(Record &CurRec, MultiClass *CurMultiClass, 02071 const std::string &Name, 02072 const std::string &Scoper) { 02073 return QualifyName(CurRec, CurMultiClass, StringInit::get(Name), Scoper); 02074 }