LLVM API Documentation

RuntimeDyldELF.cpp
Go to the documentation of this file.
00001 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "RuntimeDyldELF.h"
00015 #include "JITRegistrar.h"
00016 #include "ObjectImageCommon.h"
00017 #include "llvm/ADT/IntervalMap.h"
00018 #include "llvm/ADT/STLExtras.h"
00019 #include "llvm/ADT/StringRef.h"
00020 #include "llvm/ADT/Triple.h"
00021 #include "llvm/ExecutionEngine/ObjectBuffer.h"
00022 #include "llvm/ExecutionEngine/ObjectImage.h"
00023 #include "llvm/Object/ELFObjectFile.h"
00024 #include "llvm/Object/ObjectFile.h"
00025 #include "llvm/Support/ELF.h"
00026 #include "llvm/Support/Endian.h"
00027 #include "llvm/Support/MemoryBuffer.h"
00028 
00029 using namespace llvm;
00030 using namespace llvm::object;
00031 
00032 #define DEBUG_TYPE "dyld"
00033 
00034 namespace {
00035 
00036 static inline std::error_code check(std::error_code Err) {
00037   if (Err) {
00038     report_fatal_error(Err.message());
00039   }
00040   return Err;
00041 }
00042 
00043 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
00044   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
00045 
00046   typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
00047   typedef Elf_Sym_Impl<ELFT> Elf_Sym;
00048   typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
00049   typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
00050 
00051   typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
00052 
00053   typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
00054 
00055   std::unique_ptr<ObjectFile> UnderlyingFile;
00056 
00057 public:
00058   DyldELFObject(std::unique_ptr<ObjectFile> UnderlyingFile,
00059                 MemoryBufferRef Wrapper, std::error_code &ec);
00060 
00061   DyldELFObject(MemoryBufferRef Wrapper, std::error_code &ec);
00062 
00063   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
00064   void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
00065 
00066   // Methods for type inquiry through isa, cast and dyn_cast
00067   static inline bool classof(const Binary *v) {
00068     return (isa<ELFObjectFile<ELFT>>(v) &&
00069             classof(cast<ELFObjectFile<ELFT>>(v)));
00070   }
00071   static inline bool classof(const ELFObjectFile<ELFT> *v) {
00072     return v->isDyldType();
00073   }
00074 };
00075 
00076 template <class ELFT> class ELFObjectImage : public ObjectImageCommon {
00077   bool Registered;
00078 
00079 public:
00080   ELFObjectImage(std::unique_ptr<ObjectBuffer> Input,
00081                  std::unique_ptr<DyldELFObject<ELFT>> Obj)
00082       : ObjectImageCommon(std::move(Input), std::move(Obj)), Registered(false) {
00083   }
00084 
00085   virtual ~ELFObjectImage() {
00086     if (Registered)
00087       deregisterWithDebugger();
00088   }
00089 
00090   // Subclasses can override these methods to update the image with loaded
00091   // addresses for sections and common symbols
00092   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr) override {
00093     static_cast<DyldELFObject<ELFT>*>(getObjectFile())
00094         ->updateSectionAddress(Sec, Addr);
00095   }
00096 
00097   void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr) override {
00098     static_cast<DyldELFObject<ELFT>*>(getObjectFile())
00099         ->updateSymbolAddress(Sym, Addr);
00100   }
00101 
00102   void registerWithDebugger() override {
00103     JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
00104     Registered = true;
00105   }
00106   void deregisterWithDebugger() override {
00107     JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
00108   }
00109 };
00110 
00111 // The MemoryBuffer passed into this constructor is just a wrapper around the
00112 // actual memory.  Ultimately, the Binary parent class will take ownership of
00113 // this MemoryBuffer object but not the underlying memory.
00114 template <class ELFT>
00115 DyldELFObject<ELFT>::DyldELFObject(MemoryBufferRef Wrapper, std::error_code &EC)
00116     : ELFObjectFile<ELFT>(Wrapper, EC) {
00117   this->isDyldELFObject = true;
00118 }
00119 
00120 template <class ELFT>
00121 DyldELFObject<ELFT>::DyldELFObject(std::unique_ptr<ObjectFile> UnderlyingFile,
00122                                    MemoryBufferRef Wrapper, std::error_code &EC)
00123     : ELFObjectFile<ELFT>(Wrapper, EC),
00124       UnderlyingFile(std::move(UnderlyingFile)) {
00125   this->isDyldELFObject = true;
00126 }
00127 
00128 template <class ELFT>
00129 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
00130                                                uint64_t Addr) {
00131   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
00132   Elf_Shdr *shdr =
00133       const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
00134 
00135   // This assumes the address passed in matches the target address bitness
00136   // The template-based type cast handles everything else.
00137   shdr->sh_addr = static_cast<addr_type>(Addr);
00138 }
00139 
00140 template <class ELFT>
00141 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
00142                                               uint64_t Addr) {
00143 
00144   Elf_Sym *sym = const_cast<Elf_Sym *>(
00145       ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
00146 
00147   // This assumes the address passed in matches the target address bitness
00148   // The template-based type cast handles everything else.
00149   sym->st_value = static_cast<addr_type>(Addr);
00150 }
00151 
00152 } // namespace
00153 
00154 namespace llvm {
00155 
00156 void RuntimeDyldELF::registerEHFrames() {
00157   if (!MemMgr)
00158     return;
00159   for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
00160     SID EHFrameSID = UnregisteredEHFrameSections[i];
00161     uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
00162     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
00163     size_t EHFrameSize = Sections[EHFrameSID].Size;
00164     MemMgr->registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
00165     RegisteredEHFrameSections.push_back(EHFrameSID);
00166   }
00167   UnregisteredEHFrameSections.clear();
00168 }
00169 
00170 void RuntimeDyldELF::deregisterEHFrames() {
00171   if (!MemMgr)
00172     return;
00173   for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
00174     SID EHFrameSID = RegisteredEHFrameSections[i];
00175     uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
00176     uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
00177     size_t EHFrameSize = Sections[EHFrameSID].Size;
00178     MemMgr->deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
00179   }
00180   RegisteredEHFrameSections.clear();
00181 }
00182 
00183 ObjectImage *
00184 RuntimeDyldELF::createObjectImageFromFile(std::unique_ptr<object::ObjectFile> ObjFile) {
00185   if (!ObjFile)
00186     return nullptr;
00187 
00188   std::error_code ec;
00189   MemoryBufferRef Buffer = ObjFile->getMemoryBufferRef();
00190 
00191   if (ObjFile->getBytesInAddress() == 4 && ObjFile->isLittleEndian()) {
00192     auto Obj =
00193         llvm::make_unique<DyldELFObject<ELFType<support::little, 2, false>>>(
00194             std::move(ObjFile), Buffer, ec);
00195     return new ELFObjectImage<ELFType<support::little, 2, false>>(
00196         nullptr, std::move(Obj));
00197   } else if (ObjFile->getBytesInAddress() == 4 && !ObjFile->isLittleEndian()) {
00198     auto Obj =
00199         llvm::make_unique<DyldELFObject<ELFType<support::big, 2, false>>>(
00200             std::move(ObjFile), Buffer, ec);
00201     return new ELFObjectImage<ELFType<support::big, 2, false>>(nullptr, std::move(Obj));
00202   } else if (ObjFile->getBytesInAddress() == 8 && !ObjFile->isLittleEndian()) {
00203     auto Obj = llvm::make_unique<DyldELFObject<ELFType<support::big, 2, true>>>(
00204         std::move(ObjFile), Buffer, ec);
00205     return new ELFObjectImage<ELFType<support::big, 2, true>>(nullptr,
00206                                                               std::move(Obj));
00207   } else if (ObjFile->getBytesInAddress() == 8 && ObjFile->isLittleEndian()) {
00208     auto Obj =
00209         llvm::make_unique<DyldELFObject<ELFType<support::little, 2, true>>>(
00210             std::move(ObjFile), Buffer, ec);
00211     return new ELFObjectImage<ELFType<support::little, 2, true>>(
00212         nullptr, std::move(Obj));
00213   } else
00214     llvm_unreachable("Unexpected ELF format");
00215 }
00216 
00217 std::unique_ptr<ObjectImage>
00218 RuntimeDyldELF::createObjectImage(std::unique_ptr<ObjectBuffer> Buffer) {
00219   if (Buffer->getBufferSize() < ELF::EI_NIDENT)
00220     llvm_unreachable("Unexpected ELF object size");
00221   std::pair<unsigned char, unsigned char> Ident =
00222       std::make_pair((uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
00223                      (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
00224   std::error_code ec;
00225 
00226   MemoryBufferRef Buf = Buffer->getMemBuffer();
00227 
00228   if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
00229     auto Obj =
00230         llvm::make_unique<DyldELFObject<ELFType<support::little, 4, false>>>(
00231             Buf, ec);
00232     return llvm::make_unique<
00233         ELFObjectImage<ELFType<support::little, 4, false>>>(std::move(Buffer),
00234                                                             std::move(Obj));
00235   }
00236   if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
00237     auto Obj =
00238         llvm::make_unique<DyldELFObject<ELFType<support::big, 4, false>>>(Buf,
00239                                                                           ec);
00240     return llvm::make_unique<ELFObjectImage<ELFType<support::big, 4, false>>>(
00241         std::move(Buffer), std::move(Obj));
00242   }
00243   if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
00244     auto Obj = llvm::make_unique<DyldELFObject<ELFType<support::big, 8, true>>>(
00245         Buf, ec);
00246     return llvm::make_unique<ELFObjectImage<ELFType<support::big, 8, true>>>(
00247         std::move(Buffer), std::move(Obj));
00248   }
00249   assert(Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB &&
00250          "Unexpected ELF format");
00251   auto Obj =
00252       llvm::make_unique<DyldELFObject<ELFType<support::little, 8, true>>>(Buf,
00253                                                                           ec);
00254   return llvm::make_unique<ELFObjectImage<ELFType<support::little, 8, true>>>(
00255       std::move(Buffer), std::move(Obj));
00256 }
00257 
00258 RuntimeDyldELF::~RuntimeDyldELF() {}
00259 
00260 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
00261                                              uint64_t Offset, uint64_t Value,
00262                                              uint32_t Type, int64_t Addend,
00263                                              uint64_t SymOffset) {
00264   switch (Type) {
00265   default:
00266     llvm_unreachable("Relocation type not implemented yet!");
00267     break;
00268   case ELF::R_X86_64_64: {
00269     support::ulittle64_t::ref(Section.Address + Offset) = Value + Addend;
00270     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
00271                  << format("%p\n", Section.Address + Offset));
00272     break;
00273   }
00274   case ELF::R_X86_64_32:
00275   case ELF::R_X86_64_32S: {
00276     Value += Addend;
00277     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
00278            (Type == ELF::R_X86_64_32S &&
00279             ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
00280     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
00281     support::ulittle32_t::ref(Section.Address + Offset) = TruncatedAddr;
00282     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
00283                  << format("%p\n", Section.Address + Offset));
00284     break;
00285   }
00286   case ELF::R_X86_64_GOTPCREL: {
00287     // findGOTEntry returns the 'G + GOT' part of the relocation calculation
00288     // based on the load/target address of the GOT (not the current/local addr).
00289     uint64_t GOTAddr = findGOTEntry(Value, SymOffset);
00290     uint64_t FinalAddress = Section.LoadAddress + Offset;
00291     // The processRelocationRef method combines the symbol offset and the addend
00292     // and in most cases that's what we want.  For this relocation type, we need
00293     // the raw addend, so we subtract the symbol offset to get it.
00294     int64_t RealOffset = GOTAddr + Addend - SymOffset - FinalAddress;
00295     assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
00296     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
00297     support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
00298     break;
00299   }
00300   case ELF::R_X86_64_PC32: {
00301     // Get the placeholder value from the generated object since
00302     // a previous relocation attempt may have overwritten the loaded version
00303     support::ulittle32_t::ref Placeholder(
00304         (void *)(Section.ObjAddress + Offset));
00305     uint64_t FinalAddress = Section.LoadAddress + Offset;
00306     int64_t RealOffset = Placeholder + Value + Addend - FinalAddress;
00307     assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
00308     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
00309     support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
00310     break;
00311   }
00312   case ELF::R_X86_64_PC64: {
00313     // Get the placeholder value from the generated object since
00314     // a previous relocation attempt may have overwritten the loaded version
00315     support::ulittle64_t::ref Placeholder(
00316         (void *)(Section.ObjAddress + Offset));
00317     uint64_t FinalAddress = Section.LoadAddress + Offset;
00318     support::ulittle64_t::ref(Section.Address + Offset) =
00319         Placeholder + Value + Addend - FinalAddress;
00320     break;
00321   }
00322   }
00323 }
00324 
00325 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
00326                                           uint64_t Offset, uint32_t Value,
00327                                           uint32_t Type, int32_t Addend) {
00328   switch (Type) {
00329   case ELF::R_386_32: {
00330     // Get the placeholder value from the generated object since
00331     // a previous relocation attempt may have overwritten the loaded version
00332     support::ulittle32_t::ref Placeholder(
00333         (void *)(Section.ObjAddress + Offset));
00334     support::ulittle32_t::ref(Section.Address + Offset) =
00335         Placeholder + Value + Addend;
00336     break;
00337   }
00338   case ELF::R_386_PC32: {
00339     // Get the placeholder value from the generated object since
00340     // a previous relocation attempt may have overwritten the loaded version
00341     support::ulittle32_t::ref Placeholder(
00342         (void *)(Section.ObjAddress + Offset));
00343     uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
00344     uint32_t RealOffset = Placeholder + Value + Addend - FinalAddress;
00345     support::ulittle32_t::ref(Section.Address + Offset) = RealOffset;
00346     break;
00347   }
00348   default:
00349     // There are other relocation types, but it appears these are the
00350     // only ones currently used by the LLVM ELF object writer
00351     llvm_unreachable("Relocation type not implemented yet!");
00352     break;
00353   }
00354 }
00355 
00356 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
00357                                               uint64_t Offset, uint64_t Value,
00358                                               uint32_t Type, int64_t Addend) {
00359   uint32_t *TargetPtr = reinterpret_cast<uint32_t *>(Section.Address + Offset);
00360   uint64_t FinalAddress = Section.LoadAddress + Offset;
00361 
00362   DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
00363                << format("%llx", Section.Address + Offset)
00364                << " FinalAddress: 0x" << format("%llx", FinalAddress)
00365                << " Value: 0x" << format("%llx", Value) << " Type: 0x"
00366                << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
00367                << "\n");
00368 
00369   switch (Type) {
00370   default:
00371     llvm_unreachable("Relocation type not implemented yet!");
00372     break;
00373   case ELF::R_AARCH64_ABS64: {
00374     uint64_t *TargetPtr =
00375         reinterpret_cast<uint64_t *>(Section.Address + Offset);
00376     *TargetPtr = Value + Addend;
00377     break;
00378   }
00379   case ELF::R_AARCH64_PREL32: {
00380     uint64_t Result = Value + Addend - FinalAddress;
00381     assert(static_cast<int64_t>(Result) >= INT32_MIN &&
00382            static_cast<int64_t>(Result) <= UINT32_MAX);
00383     *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
00384     break;
00385   }
00386   case ELF::R_AARCH64_CALL26: // fallthrough
00387   case ELF::R_AARCH64_JUMP26: {
00388     // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
00389     // calculation.
00390     uint64_t BranchImm = Value + Addend - FinalAddress;
00391 
00392     // "Check that -2^27 <= result < 2^27".
00393     assert(-(1LL << 27) <= static_cast<int64_t>(BranchImm) &&
00394            static_cast<int64_t>(BranchImm) < (1LL << 27));
00395 
00396     // AArch64 code is emitted with .rela relocations. The data already in any
00397     // bits affected by the relocation on entry is garbage.
00398     *TargetPtr &= 0xfc000000U;
00399     // Immediate goes in bits 25:0 of B and BL.
00400     *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
00401     break;
00402   }
00403   case ELF::R_AARCH64_MOVW_UABS_G3: {
00404     uint64_t Result = Value + Addend;
00405 
00406     // AArch64 code is emitted with .rela relocations. The data already in any
00407     // bits affected by the relocation on entry is garbage.
00408     *TargetPtr &= 0xffe0001fU;
00409     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
00410     *TargetPtr |= Result >> (48 - 5);
00411     // Shift must be "lsl #48", in bits 22:21
00412     assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
00413     break;
00414   }
00415   case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
00416     uint64_t Result = Value + Addend;
00417 
00418     // AArch64 code is emitted with .rela relocations. The data already in any
00419     // bits affected by the relocation on entry is garbage.
00420     *TargetPtr &= 0xffe0001fU;
00421     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
00422     *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
00423     // Shift must be "lsl #32", in bits 22:21
00424     assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
00425     break;
00426   }
00427   case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
00428     uint64_t Result = Value + Addend;
00429 
00430     // AArch64 code is emitted with .rela relocations. The data already in any
00431     // bits affected by the relocation on entry is garbage.
00432     *TargetPtr &= 0xffe0001fU;
00433     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
00434     *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
00435     // Shift must be "lsl #16", in bits 22:2
00436     assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
00437     break;
00438   }
00439   case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
00440     uint64_t Result = Value + Addend;
00441 
00442     // AArch64 code is emitted with .rela relocations. The data already in any
00443     // bits affected by the relocation on entry is garbage.
00444     *TargetPtr &= 0xffe0001fU;
00445     // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
00446     *TargetPtr |= ((Result & 0xffffU) << 5);
00447     // Shift must be "lsl #0", in bits 22:21.
00448     assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
00449     break;
00450   }
00451   case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
00452     // Operation: Page(S+A) - Page(P)
00453     uint64_t Result =
00454         ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
00455 
00456     // Check that -2^32 <= X < 2^32
00457     assert(static_cast<int64_t>(Result) >= (-1LL << 32) &&
00458            static_cast<int64_t>(Result) < (1LL << 32) &&
00459            "overflow check failed for relocation");
00460 
00461     // AArch64 code is emitted with .rela relocations. The data already in any
00462     // bits affected by the relocation on entry is garbage.
00463     *TargetPtr &= 0x9f00001fU;
00464     // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
00465     // from bits 32:12 of X.
00466     *TargetPtr |= ((Result & 0x3000U) << (29 - 12));
00467     *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5));
00468     break;
00469   }
00470   case ELF::R_AARCH64_LDST32_ABS_LO12_NC: {
00471     // Operation: S + A
00472     uint64_t Result = Value + Addend;
00473 
00474     // AArch64 code is emitted with .rela relocations. The data already in any
00475     // bits affected by the relocation on entry is garbage.
00476     *TargetPtr &= 0xffc003ffU;
00477     // Immediate goes in bits 21:10 of LD/ST instruction, taken
00478     // from bits 11:2 of X
00479     *TargetPtr |= ((Result & 0xffc) << (10 - 2));
00480     break;
00481   }
00482   case ELF::R_AARCH64_LDST64_ABS_LO12_NC: {
00483     // Operation: S + A
00484     uint64_t Result = Value + Addend;
00485 
00486     // AArch64 code is emitted with .rela relocations. The data already in any
00487     // bits affected by the relocation on entry is garbage.
00488     *TargetPtr &= 0xffc003ffU;
00489     // Immediate goes in bits 21:10 of LD/ST instruction, taken
00490     // from bits 11:3 of X
00491     *TargetPtr |= ((Result & 0xff8) << (10 - 3));
00492     break;
00493   }
00494   }
00495 }
00496 
00497 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
00498                                           uint64_t Offset, uint32_t Value,
00499                                           uint32_t Type, int32_t Addend) {
00500   // TODO: Add Thumb relocations.
00501   uint32_t *Placeholder =
00502       reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
00503   uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
00504   uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
00505   Value += Addend;
00506 
00507   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
00508                << Section.Address + Offset
00509                << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
00510                << format("%x", Value) << " Type: " << format("%x", Type)
00511                << " Addend: " << format("%x", Addend) << "\n");
00512 
00513   switch (Type) {
00514   default:
00515     llvm_unreachable("Not implemented relocation type!");
00516 
00517   case ELF::R_ARM_NONE:
00518     break;
00519   // Write a 32bit value to relocation address, taking into account the
00520   // implicit addend encoded in the target.
00521   case ELF::R_ARM_PREL31:
00522   case ELF::R_ARM_TARGET1:
00523   case ELF::R_ARM_ABS32:
00524     *TargetPtr = *Placeholder + Value;
00525     break;
00526   // Write first 16 bit of 32 bit value to the mov instruction.
00527   // Last 4 bit should be shifted.
00528   case ELF::R_ARM_MOVW_ABS_NC:
00529     // We are not expecting any other addend in the relocation address.
00530     // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2
00531     // non-contiguous fields.
00532     assert((*Placeholder & 0x000F0FFF) == 0);
00533     Value = Value & 0xFFFF;
00534     *TargetPtr = *Placeholder | (Value & 0xFFF);
00535     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
00536     break;
00537   // Write last 16 bit of 32 bit value to the mov instruction.
00538   // Last 4 bit should be shifted.
00539   case ELF::R_ARM_MOVT_ABS:
00540     // We are not expecting any other addend in the relocation address.
00541     // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
00542     assert((*Placeholder & 0x000F0FFF) == 0);
00543 
00544     Value = (Value >> 16) & 0xFFFF;
00545     *TargetPtr = *Placeholder | (Value & 0xFFF);
00546     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
00547     break;
00548   // Write 24 bit relative value to the branch instruction.
00549   case ELF::R_ARM_PC24: // Fall through.
00550   case ELF::R_ARM_CALL: // Fall through.
00551   case ELF::R_ARM_JUMP24: {
00552     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
00553     RelValue = (RelValue & 0x03FFFFFC) >> 2;
00554     assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
00555     *TargetPtr &= 0xFF000000;
00556     *TargetPtr |= RelValue;
00557     break;
00558   }
00559   case ELF::R_ARM_PRIVATE_0:
00560     // This relocation is reserved by the ARM ELF ABI for internal use. We
00561     // appropriate it here to act as an R_ARM_ABS32 without any addend for use
00562     // in the stubs created during JIT (which can't put an addend into the
00563     // original object file).
00564     *TargetPtr = Value;
00565     break;
00566   }
00567 }
00568 
00569 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
00570                                            uint64_t Offset, uint32_t Value,
00571                                            uint32_t Type, int32_t Addend) {
00572   uint32_t *Placeholder =
00573       reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
00574   uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
00575   Value += Addend;
00576 
00577   DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
00578                << Section.Address + Offset << " FinalAddress: "
00579                << format("%p", Section.LoadAddress + Offset) << " Value: "
00580                << format("%x", Value) << " Type: " << format("%x", Type)
00581                << " Addend: " << format("%x", Addend) << "\n");
00582 
00583   switch (Type) {
00584   default:
00585     llvm_unreachable("Not implemented relocation type!");
00586     break;
00587   case ELF::R_MIPS_32:
00588     *TargetPtr = Value + (*Placeholder);
00589     break;
00590   case ELF::R_MIPS_26:
00591     *TargetPtr = ((*Placeholder) & 0xfc000000) | ((Value & 0x0fffffff) >> 2);
00592     break;
00593   case ELF::R_MIPS_HI16:
00594     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
00595     Value += ((*Placeholder) & 0x0000ffff) << 16;
00596     *TargetPtr =
00597         ((*Placeholder) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
00598     break;
00599   case ELF::R_MIPS_LO16:
00600     Value += ((*Placeholder) & 0x0000ffff);
00601     *TargetPtr = ((*Placeholder) & 0xffff0000) | (Value & 0xffff);
00602     break;
00603   case ELF::R_MIPS_UNUSED1:
00604     // Similar to ELF::R_ARM_PRIVATE_0, R_MIPS_UNUSED1 and R_MIPS_UNUSED2
00605     // are used for internal JIT purpose. These relocations are similar to
00606     // R_MIPS_HI16 and R_MIPS_LO16, but they do not take any addend into
00607     // account.
00608     *TargetPtr =
00609         ((*TargetPtr) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
00610     break;
00611   case ELF::R_MIPS_UNUSED2:
00612     *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
00613     break;
00614   }
00615 }
00616 
00617 // Return the .TOC. section and offset.
00618 void RuntimeDyldELF::findPPC64TOCSection(ObjectImage &Obj,
00619                                          ObjSectionToIDMap &LocalSections,
00620                                          RelocationValueRef &Rel) {
00621   // Set a default SectionID in case we do not find a TOC section below.
00622   // This may happen for references to TOC base base (sym@toc, .odp
00623   // relocation) without a .toc directive.  In this case just use the
00624   // first section (which is usually the .odp) since the code won't
00625   // reference the .toc base directly.
00626   Rel.SymbolName = NULL;
00627   Rel.SectionID = 0;
00628 
00629   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
00630   // order. The TOC starts where the first of these sections starts.
00631   for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections();
00632        si != se; ++si) {
00633 
00634     StringRef SectionName;
00635     check(si->getName(SectionName));
00636 
00637     if (SectionName == ".got"
00638         || SectionName == ".toc"
00639         || SectionName == ".tocbss"
00640         || SectionName == ".plt") {
00641       Rel.SectionID = findOrEmitSection(Obj, *si, false, LocalSections);
00642       break;
00643     }
00644   }
00645 
00646   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
00647   // thus permitting a full 64 Kbytes segment.
00648   Rel.Addend = 0x8000;
00649 }
00650 
00651 // Returns the sections and offset associated with the ODP entry referenced
00652 // by Symbol.
00653 void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
00654                                          ObjSectionToIDMap &LocalSections,
00655                                          RelocationValueRef &Rel) {
00656   // Get the ELF symbol value (st_value) to compare with Relocation offset in
00657   // .opd entries
00658   for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections();
00659        si != se; ++si) {
00660     section_iterator RelSecI = si->getRelocatedSection();
00661     if (RelSecI == Obj.end_sections())
00662       continue;
00663 
00664     StringRef RelSectionName;
00665     check(RelSecI->getName(RelSectionName));
00666     if (RelSectionName != ".opd")
00667       continue;
00668 
00669     for (relocation_iterator i = si->relocation_begin(),
00670                              e = si->relocation_end();
00671          i != e;) {
00672       // The R_PPC64_ADDR64 relocation indicates the first field
00673       // of a .opd entry
00674       uint64_t TypeFunc;
00675       check(i->getType(TypeFunc));
00676       if (TypeFunc != ELF::R_PPC64_ADDR64) {
00677         ++i;
00678         continue;
00679       }
00680 
00681       uint64_t TargetSymbolOffset;
00682       symbol_iterator TargetSymbol = i->getSymbol();
00683       check(i->getOffset(TargetSymbolOffset));
00684       int64_t Addend;
00685       check(getELFRelocationAddend(*i, Addend));
00686 
00687       ++i;
00688       if (i == e)
00689         break;
00690 
00691       // Just check if following relocation is a R_PPC64_TOC
00692       uint64_t TypeTOC;
00693       check(i->getType(TypeTOC));
00694       if (TypeTOC != ELF::R_PPC64_TOC)
00695         continue;
00696 
00697       // Finally compares the Symbol value and the target symbol offset
00698       // to check if this .opd entry refers to the symbol the relocation
00699       // points to.
00700       if (Rel.Addend != (int64_t)TargetSymbolOffset)
00701         continue;
00702 
00703       section_iterator tsi(Obj.end_sections());
00704       check(TargetSymbol->getSection(tsi));
00705       bool IsCode = false;
00706       tsi->isText(IsCode);
00707       Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections);
00708       Rel.Addend = (intptr_t)Addend;
00709       return;
00710     }
00711   }
00712   llvm_unreachable("Attempting to get address of ODP entry!");
00713 }
00714 
00715 // Relocation masks following the #lo(value), #hi(value), #ha(value),
00716 // #higher(value), #highera(value), #highest(value), and #highesta(value)
00717 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
00718 // document.
00719 
00720 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
00721 
00722 static inline uint16_t applyPPChi(uint64_t value) {
00723   return (value >> 16) & 0xffff;
00724 }
00725 
00726 static inline uint16_t applyPPCha (uint64_t value) {
00727   return ((value + 0x8000) >> 16) & 0xffff;
00728 }
00729 
00730 static inline uint16_t applyPPChigher(uint64_t value) {
00731   return (value >> 32) & 0xffff;
00732 }
00733 
00734 static inline uint16_t applyPPChighera (uint64_t value) {
00735   return ((value + 0x8000) >> 32) & 0xffff;
00736 }
00737 
00738 static inline uint16_t applyPPChighest(uint64_t value) {
00739   return (value >> 48) & 0xffff;
00740 }
00741 
00742 static inline uint16_t applyPPChighesta (uint64_t value) {
00743   return ((value + 0x8000) >> 48) & 0xffff;
00744 }
00745 
00746 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
00747                                             uint64_t Offset, uint64_t Value,
00748                                             uint32_t Type, int64_t Addend) {
00749   uint8_t *LocalAddress = Section.Address + Offset;
00750   switch (Type) {
00751   default:
00752     llvm_unreachable("Relocation type not implemented yet!");
00753     break;
00754   case ELF::R_PPC64_ADDR16:
00755     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
00756     break;
00757   case ELF::R_PPC64_ADDR16_DS:
00758     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
00759     break;
00760   case ELF::R_PPC64_ADDR16_LO:
00761     writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
00762     break;
00763   case ELF::R_PPC64_ADDR16_LO_DS:
00764     writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
00765     break;
00766   case ELF::R_PPC64_ADDR16_HI:
00767     writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
00768     break;
00769   case ELF::R_PPC64_ADDR16_HA:
00770     writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
00771     break;
00772   case ELF::R_PPC64_ADDR16_HIGHER:
00773     writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
00774     break;
00775   case ELF::R_PPC64_ADDR16_HIGHERA:
00776     writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
00777     break;
00778   case ELF::R_PPC64_ADDR16_HIGHEST:
00779     writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
00780     break;
00781   case ELF::R_PPC64_ADDR16_HIGHESTA:
00782     writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
00783     break;
00784   case ELF::R_PPC64_ADDR14: {
00785     assert(((Value + Addend) & 3) == 0);
00786     // Preserve the AA/LK bits in the branch instruction
00787     uint8_t aalk = *(LocalAddress + 3);
00788     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
00789   } break;
00790   case ELF::R_PPC64_REL16_LO: {
00791     uint64_t FinalAddress = (Section.LoadAddress + Offset);
00792     uint64_t Delta = Value - FinalAddress + Addend;
00793     writeInt16BE(LocalAddress, applyPPClo(Delta));
00794   } break;
00795   case ELF::R_PPC64_REL16_HI: {
00796     uint64_t FinalAddress = (Section.LoadAddress + Offset);
00797     uint64_t Delta = Value - FinalAddress + Addend;
00798     writeInt16BE(LocalAddress, applyPPChi(Delta));
00799   } break;
00800   case ELF::R_PPC64_REL16_HA: {
00801     uint64_t FinalAddress = (Section.LoadAddress + Offset);
00802     uint64_t Delta = Value - FinalAddress + Addend;
00803     writeInt16BE(LocalAddress, applyPPCha(Delta));
00804   } break;
00805   case ELF::R_PPC64_ADDR32: {
00806     int32_t Result = static_cast<int32_t>(Value + Addend);
00807     if (SignExtend32<32>(Result) != Result)
00808       llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
00809     writeInt32BE(LocalAddress, Result);
00810   } break;
00811   case ELF::R_PPC64_REL24: {
00812     uint64_t FinalAddress = (Section.LoadAddress + Offset);
00813     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
00814     if (SignExtend32<24>(delta) != delta)
00815       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
00816     // Generates a 'bl <address>' instruction
00817     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
00818   } break;
00819   case ELF::R_PPC64_REL32: {
00820     uint64_t FinalAddress = (Section.LoadAddress + Offset);
00821     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
00822     if (SignExtend32<32>(delta) != delta)
00823       llvm_unreachable("Relocation R_PPC64_REL32 overflow");
00824     writeInt32BE(LocalAddress, delta);
00825   } break;
00826   case ELF::R_PPC64_REL64: {
00827     uint64_t FinalAddress = (Section.LoadAddress + Offset);
00828     uint64_t Delta = Value - FinalAddress + Addend;
00829     writeInt64BE(LocalAddress, Delta);
00830   } break;
00831   case ELF::R_PPC64_ADDR64:
00832     writeInt64BE(LocalAddress, Value + Addend);
00833     break;
00834   }
00835 }
00836 
00837 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
00838                                               uint64_t Offset, uint64_t Value,
00839                                               uint32_t Type, int64_t Addend) {
00840   uint8_t *LocalAddress = Section.Address + Offset;
00841   switch (Type) {
00842   default:
00843     llvm_unreachable("Relocation type not implemented yet!");
00844     break;
00845   case ELF::R_390_PC16DBL:
00846   case ELF::R_390_PLT16DBL: {
00847     int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
00848     assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
00849     writeInt16BE(LocalAddress, Delta / 2);
00850     break;
00851   }
00852   case ELF::R_390_PC32DBL:
00853   case ELF::R_390_PLT32DBL: {
00854     int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
00855     assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
00856     writeInt32BE(LocalAddress, Delta / 2);
00857     break;
00858   }
00859   case ELF::R_390_PC32: {
00860     int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
00861     assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
00862     writeInt32BE(LocalAddress, Delta);
00863     break;
00864   }
00865   case ELF::R_390_64:
00866     writeInt64BE(LocalAddress, Value + Addend);
00867     break;
00868   }
00869 }
00870 
00871 // The target location for the relocation is described by RE.SectionID and
00872 // RE.Offset.  RE.SectionID can be used to find the SectionEntry.  Each
00873 // SectionEntry has three members describing its location.
00874 // SectionEntry::Address is the address at which the section has been loaded
00875 // into memory in the current (host) process.  SectionEntry::LoadAddress is the
00876 // address that the section will have in the target process.
00877 // SectionEntry::ObjAddress is the address of the bits for this section in the
00878 // original emitted object image (also in the current address space).
00879 //
00880 // Relocations will be applied as if the section were loaded at
00881 // SectionEntry::LoadAddress, but they will be applied at an address based
00882 // on SectionEntry::Address.  SectionEntry::ObjAddress will be used to refer to
00883 // Target memory contents if they are required for value calculations.
00884 //
00885 // The Value parameter here is the load address of the symbol for the
00886 // relocation to be applied.  For relocations which refer to symbols in the
00887 // current object Value will be the LoadAddress of the section in which
00888 // the symbol resides (RE.Addend provides additional information about the
00889 // symbol location).  For external symbols, Value will be the address of the
00890 // symbol in the target address space.
00891 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
00892                                        uint64_t Value) {
00893   const SectionEntry &Section = Sections[RE.SectionID];
00894   return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
00895                            RE.SymOffset);
00896 }
00897 
00898 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
00899                                        uint64_t Offset, uint64_t Value,
00900                                        uint32_t Type, int64_t Addend,
00901                                        uint64_t SymOffset) {
00902   switch (Arch) {
00903   case Triple::x86_64:
00904     resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
00905     break;
00906   case Triple::x86:
00907     resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
00908                          (uint32_t)(Addend & 0xffffffffL));
00909     break;
00910   case Triple::aarch64:
00911   case Triple::aarch64_be:
00912     resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
00913     break;
00914   case Triple::arm: // Fall through.
00915   case Triple::armeb:
00916   case Triple::thumb:
00917   case Triple::thumbeb:
00918     resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
00919                          (uint32_t)(Addend & 0xffffffffL));
00920     break;
00921   case Triple::mips: // Fall through.
00922   case Triple::mipsel:
00923     resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
00924                           Type, (uint32_t)(Addend & 0xffffffffL));
00925     break;
00926   case Triple::ppc64: // Fall through.
00927   case Triple::ppc64le:
00928     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
00929     break;
00930   case Triple::systemz:
00931     resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
00932     break;
00933   default:
00934     llvm_unreachable("Unsupported CPU type!");
00935   }
00936 }
00937 
00938 relocation_iterator RuntimeDyldELF::processRelocationRef(
00939     unsigned SectionID, relocation_iterator RelI, ObjectImage &Obj,
00940     ObjSectionToIDMap &ObjSectionToID, const SymbolTableMap &Symbols,
00941     StubMap &Stubs) {
00942   uint64_t RelType;
00943   Check(RelI->getType(RelType));
00944   int64_t Addend;
00945   Check(getELFRelocationAddend(*RelI, Addend));
00946   symbol_iterator Symbol = RelI->getSymbol();
00947 
00948   // Obtain the symbol name which is referenced in the relocation
00949   StringRef TargetName;
00950   if (Symbol != Obj.end_symbols())
00951     Symbol->getName(TargetName);
00952   DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
00953                << " TargetName: " << TargetName << "\n");
00954   RelocationValueRef Value;
00955   // First search for the symbol in the local symbol table
00956   SymbolTableMap::const_iterator lsi = Symbols.end();
00957   SymbolRef::Type SymType = SymbolRef::ST_Unknown;
00958   if (Symbol != Obj.end_symbols()) {
00959     lsi = Symbols.find(TargetName.data());
00960     Symbol->getType(SymType);
00961   }
00962   if (lsi != Symbols.end()) {
00963     Value.SectionID = lsi->second.first;
00964     Value.Offset = lsi->second.second;
00965     Value.Addend = lsi->second.second + Addend;
00966   } else {
00967     // Search for the symbol in the global symbol table
00968     SymbolTableMap::const_iterator gsi = GlobalSymbolTable.end();
00969     if (Symbol != Obj.end_symbols())
00970       gsi = GlobalSymbolTable.find(TargetName.data());
00971     if (gsi != GlobalSymbolTable.end()) {
00972       Value.SectionID = gsi->second.first;
00973       Value.Offset = gsi->second.second;
00974       Value.Addend = gsi->second.second + Addend;
00975     } else {
00976       switch (SymType) {
00977       case SymbolRef::ST_Debug: {
00978         // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
00979         // and can be changed by another developers. Maybe best way is add
00980         // a new symbol type ST_Section to SymbolRef and use it.
00981         section_iterator si(Obj.end_sections());
00982         Symbol->getSection(si);
00983         if (si == Obj.end_sections())
00984           llvm_unreachable("Symbol section not found, bad object file format!");
00985         DEBUG(dbgs() << "\t\tThis is section symbol\n");
00986         // Default to 'true' in case isText fails (though it never does).
00987         bool isCode = true;
00988         si->isText(isCode);
00989         Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
00990         Value.Addend = Addend;
00991         break;
00992       }
00993       case SymbolRef::ST_Data:
00994       case SymbolRef::ST_Unknown: {
00995         Value.SymbolName = TargetName.data();
00996         Value.Addend = Addend;
00997 
00998         // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
00999         // will manifest here as a NULL symbol name.
01000         // We can set this as a valid (but empty) symbol name, and rely
01001         // on addRelocationForSymbol to handle this.
01002         if (!Value.SymbolName)
01003           Value.SymbolName = "";
01004         break;
01005       }
01006       default:
01007         llvm_unreachable("Unresolved symbol type!");
01008         break;
01009       }
01010     }
01011   }
01012   uint64_t Offset;
01013   Check(RelI->getOffset(Offset));
01014 
01015   DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
01016                << "\n");
01017   if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be) &&
01018       (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
01019     // This is an AArch64 branch relocation, need to use a stub function.
01020     DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
01021     SectionEntry &Section = Sections[SectionID];
01022 
01023     // Look for an existing stub.
01024     StubMap::const_iterator i = Stubs.find(Value);
01025     if (i != Stubs.end()) {
01026       resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
01027                         RelType, 0);
01028       DEBUG(dbgs() << " Stub function found\n");
01029     } else {
01030       // Create a new stub function.
01031       DEBUG(dbgs() << " Create a new stub function\n");
01032       Stubs[Value] = Section.StubOffset;
01033       uint8_t *StubTargetAddr =
01034           createStubFunction(Section.Address + Section.StubOffset);
01035 
01036       RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.Address,
01037                                 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
01038       RelocationEntry REmovk_g2(SectionID, StubTargetAddr - Section.Address + 4,
01039                                 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
01040       RelocationEntry REmovk_g1(SectionID, StubTargetAddr - Section.Address + 8,
01041                                 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
01042       RelocationEntry REmovk_g0(SectionID,
01043                                 StubTargetAddr - Section.Address + 12,
01044                                 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
01045 
01046       if (Value.SymbolName) {
01047         addRelocationForSymbol(REmovz_g3, Value.SymbolName);
01048         addRelocationForSymbol(REmovk_g2, Value.SymbolName);
01049         addRelocationForSymbol(REmovk_g1, Value.SymbolName);
01050         addRelocationForSymbol(REmovk_g0, Value.SymbolName);
01051       } else {
01052         addRelocationForSection(REmovz_g3, Value.SectionID);
01053         addRelocationForSection(REmovk_g2, Value.SectionID);
01054         addRelocationForSection(REmovk_g1, Value.SectionID);
01055         addRelocationForSection(REmovk_g0, Value.SectionID);
01056       }
01057       resolveRelocation(Section, Offset,
01058                         (uint64_t)Section.Address + Section.StubOffset, RelType,
01059                         0);
01060       Section.StubOffset += getMaxStubSize();
01061     }
01062   } else if (Arch == Triple::arm &&
01063              (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
01064               RelType == ELF::R_ARM_JUMP24)) {
01065     // This is an ARM branch relocation, need to use a stub function.
01066     DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
01067     SectionEntry &Section = Sections[SectionID];
01068 
01069     // Look for an existing stub.
01070     StubMap::const_iterator i = Stubs.find(Value);
01071     if (i != Stubs.end()) {
01072       resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
01073                         RelType, 0);
01074       DEBUG(dbgs() << " Stub function found\n");
01075     } else {
01076       // Create a new stub function.
01077       DEBUG(dbgs() << " Create a new stub function\n");
01078       Stubs[Value] = Section.StubOffset;
01079       uint8_t *StubTargetAddr =
01080           createStubFunction(Section.Address + Section.StubOffset);
01081       RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
01082                          ELF::R_ARM_PRIVATE_0, Value.Addend);
01083       if (Value.SymbolName)
01084         addRelocationForSymbol(RE, Value.SymbolName);
01085       else
01086         addRelocationForSection(RE, Value.SectionID);
01087 
01088       resolveRelocation(Section, Offset,
01089                         (uint64_t)Section.Address + Section.StubOffset, RelType,
01090                         0);
01091       Section.StubOffset += getMaxStubSize();
01092     }
01093   } else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
01094              RelType == ELF::R_MIPS_26) {
01095     // This is an Mips branch relocation, need to use a stub function.
01096     DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
01097     SectionEntry &Section = Sections[SectionID];
01098     uint8_t *Target = Section.Address + Offset;
01099     uint32_t *TargetAddress = (uint32_t *)Target;
01100 
01101     // Extract the addend from the instruction.
01102     uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;
01103 
01104     Value.Addend += Addend;
01105 
01106     //  Look up for existing stub.
01107     StubMap::const_iterator i = Stubs.find(Value);
01108     if (i != Stubs.end()) {
01109       RelocationEntry RE(SectionID, Offset, RelType, i->second);
01110       addRelocationForSection(RE, SectionID);
01111       DEBUG(dbgs() << " Stub function found\n");
01112     } else {
01113       // Create a new stub function.
01114       DEBUG(dbgs() << " Create a new stub function\n");
01115       Stubs[Value] = Section.StubOffset;
01116       uint8_t *StubTargetAddr =
01117           createStubFunction(Section.Address + Section.StubOffset);
01118 
01119       // Creating Hi and Lo relocations for the filled stub instructions.
01120       RelocationEntry REHi(SectionID, StubTargetAddr - Section.Address,
01121                            ELF::R_MIPS_UNUSED1, Value.Addend);
01122       RelocationEntry RELo(SectionID, StubTargetAddr - Section.Address + 4,
01123                            ELF::R_MIPS_UNUSED2, Value.Addend);
01124 
01125       if (Value.SymbolName) {
01126         addRelocationForSymbol(REHi, Value.SymbolName);
01127         addRelocationForSymbol(RELo, Value.SymbolName);
01128       } else {
01129         addRelocationForSection(REHi, Value.SectionID);
01130         addRelocationForSection(RELo, Value.SectionID);
01131       }
01132 
01133       RelocationEntry RE(SectionID, Offset, RelType, Section.StubOffset);
01134       addRelocationForSection(RE, SectionID);
01135       Section.StubOffset += getMaxStubSize();
01136     }
01137   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
01138     if (RelType == ELF::R_PPC64_REL24) {
01139       // Determine ABI variant in use for this object.
01140       unsigned AbiVariant;
01141       Obj.getObjectFile()->getPlatformFlags(AbiVariant);
01142       AbiVariant &= ELF::EF_PPC64_ABI;
01143       // A PPC branch relocation will need a stub function if the target is
01144       // an external symbol (Symbol::ST_Unknown) or if the target address
01145       // is not within the signed 24-bits branch address.
01146       SectionEntry &Section = Sections[SectionID];
01147       uint8_t *Target = Section.Address + Offset;
01148       bool RangeOverflow = false;
01149       if (SymType != SymbolRef::ST_Unknown) {
01150         if (AbiVariant != 2) {
01151           // In the ELFv1 ABI, a function call may point to the .opd entry,
01152           // so the final symbol value is calculated based on the relocation
01153           // values in the .opd section.
01154           findOPDEntrySection(Obj, ObjSectionToID, Value);
01155         } else {
01156           // In the ELFv2 ABI, a function symbol may provide a local entry
01157           // point, which must be used for direct calls.
01158           uint8_t SymOther;
01159           Symbol->getOther(SymOther);
01160           Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
01161         }
01162         uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
01163         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
01164         // If it is within 24-bits branch range, just set the branch target
01165         if (SignExtend32<24>(delta) == delta) {
01166           RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
01167           if (Value.SymbolName)
01168             addRelocationForSymbol(RE, Value.SymbolName);
01169           else
01170             addRelocationForSection(RE, Value.SectionID);
01171         } else {
01172           RangeOverflow = true;
01173         }
01174       }
01175       if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
01176         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
01177         // larger than 24-bits.
01178         StubMap::const_iterator i = Stubs.find(Value);
01179         if (i != Stubs.end()) {
01180           // Symbol function stub already created, just relocate to it
01181           resolveRelocation(Section, Offset,
01182                             (uint64_t)Section.Address + i->second, RelType, 0);
01183           DEBUG(dbgs() << " Stub function found\n");
01184         } else {
01185           // Create a new stub function.
01186           DEBUG(dbgs() << " Create a new stub function\n");
01187           Stubs[Value] = Section.StubOffset;
01188           uint8_t *StubTargetAddr =
01189               createStubFunction(Section.Address + Section.StubOffset,
01190                                  AbiVariant);
01191           RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
01192                              ELF::R_PPC64_ADDR64, Value.Addend);
01193 
01194           // Generates the 64-bits address loads as exemplified in section
01195           // 4.5.1 in PPC64 ELF ABI.  Note that the relocations need to
01196           // apply to the low part of the instructions, so we have to update
01197           // the offset according to the target endianness.
01198           uint64_t StubRelocOffset = StubTargetAddr - Section.Address;
01199           if (!IsTargetLittleEndian)
01200             StubRelocOffset += 2;
01201 
01202           RelocationEntry REhst(SectionID, StubRelocOffset + 0,
01203                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
01204           RelocationEntry REhr(SectionID, StubRelocOffset + 4,
01205                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
01206           RelocationEntry REh(SectionID, StubRelocOffset + 12,
01207                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
01208           RelocationEntry REl(SectionID, StubRelocOffset + 16,
01209                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
01210 
01211           if (Value.SymbolName) {
01212             addRelocationForSymbol(REhst, Value.SymbolName);
01213             addRelocationForSymbol(REhr, Value.SymbolName);
01214             addRelocationForSymbol(REh, Value.SymbolName);
01215             addRelocationForSymbol(REl, Value.SymbolName);
01216           } else {
01217             addRelocationForSection(REhst, Value.SectionID);
01218             addRelocationForSection(REhr, Value.SectionID);
01219             addRelocationForSection(REh, Value.SectionID);
01220             addRelocationForSection(REl, Value.SectionID);
01221           }
01222 
01223           resolveRelocation(Section, Offset,
01224                             (uint64_t)Section.Address + Section.StubOffset,
01225                             RelType, 0);
01226           Section.StubOffset += getMaxStubSize();
01227         }
01228         if (SymType == SymbolRef::ST_Unknown) {
01229           // Restore the TOC for external calls
01230           if (AbiVariant == 2)
01231             writeInt32BE(Target + 4, 0xE8410018); // ld r2,28(r1)
01232           else
01233             writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
01234         }
01235       }
01236     } else if (RelType == ELF::R_PPC64_TOC16 ||
01237                RelType == ELF::R_PPC64_TOC16_DS ||
01238                RelType == ELF::R_PPC64_TOC16_LO ||
01239                RelType == ELF::R_PPC64_TOC16_LO_DS ||
01240                RelType == ELF::R_PPC64_TOC16_HI ||
01241                RelType == ELF::R_PPC64_TOC16_HA) {
01242       // These relocations are supposed to subtract the TOC address from
01243       // the final value.  This does not fit cleanly into the RuntimeDyld
01244       // scheme, since there may be *two* sections involved in determining
01245       // the relocation value (the section of the symbol refered to by the
01246       // relocation, and the TOC section associated with the current module).
01247       //
01248       // Fortunately, these relocations are currently only ever generated
01249       // refering to symbols that themselves reside in the TOC, which means
01250       // that the two sections are actually the same.  Thus they cancel out
01251       // and we can immediately resolve the relocation right now.
01252       switch (RelType) {
01253       case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
01254       case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
01255       case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
01256       case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
01257       case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
01258       case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
01259       default: llvm_unreachable("Wrong relocation type.");
01260       }
01261 
01262       RelocationValueRef TOCValue;
01263       findPPC64TOCSection(Obj, ObjSectionToID, TOCValue);
01264       if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
01265         llvm_unreachable("Unsupported TOC relocation.");
01266       Value.Addend -= TOCValue.Addend;
01267       resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
01268     } else {
01269       // There are two ways to refer to the TOC address directly: either
01270       // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
01271       // ignored), or via any relocation that refers to the magic ".TOC."
01272       // symbols (in which case the addend is respected).
01273       if (RelType == ELF::R_PPC64_TOC) {
01274         RelType = ELF::R_PPC64_ADDR64;
01275         findPPC64TOCSection(Obj, ObjSectionToID, Value);
01276       } else if (TargetName == ".TOC.") {
01277         findPPC64TOCSection(Obj, ObjSectionToID, Value);
01278         Value.Addend += Addend;
01279       }
01280 
01281       RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
01282 
01283       if (Value.SymbolName)
01284         addRelocationForSymbol(RE, Value.SymbolName);
01285       else
01286         addRelocationForSection(RE, Value.SectionID);
01287     }
01288   } else if (Arch == Triple::systemz &&
01289              (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
01290     // Create function stubs for both PLT and GOT references, regardless of
01291     // whether the GOT reference is to data or code.  The stub contains the
01292     // full address of the symbol, as needed by GOT references, and the
01293     // executable part only adds an overhead of 8 bytes.
01294     //
01295     // We could try to conserve space by allocating the code and data
01296     // parts of the stub separately.  However, as things stand, we allocate
01297     // a stub for every relocation, so using a GOT in JIT code should be
01298     // no less space efficient than using an explicit constant pool.
01299     DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
01300     SectionEntry &Section = Sections[SectionID];
01301 
01302     // Look for an existing stub.
01303     StubMap::const_iterator i = Stubs.find(Value);
01304     uintptr_t StubAddress;
01305     if (i != Stubs.end()) {
01306       StubAddress = uintptr_t(Section.Address) + i->second;
01307       DEBUG(dbgs() << " Stub function found\n");
01308     } else {
01309       // Create a new stub function.
01310       DEBUG(dbgs() << " Create a new stub function\n");
01311 
01312       uintptr_t BaseAddress = uintptr_t(Section.Address);
01313       uintptr_t StubAlignment = getStubAlignment();
01314       StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
01315                     -StubAlignment;
01316       unsigned StubOffset = StubAddress - BaseAddress;
01317 
01318       Stubs[Value] = StubOffset;
01319       createStubFunction((uint8_t *)StubAddress);
01320       RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
01321                          Value.Offset);
01322       if (Value.SymbolName)
01323         addRelocationForSymbol(RE, Value.SymbolName);
01324       else
01325         addRelocationForSection(RE, Value.SectionID);
01326       Section.StubOffset = StubOffset + getMaxStubSize();
01327     }
01328 
01329     if (RelType == ELF::R_390_GOTENT)
01330       resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
01331                         Addend);
01332     else
01333       resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
01334   } else if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_PLT32) {
01335     // The way the PLT relocations normally work is that the linker allocates
01336     // the
01337     // PLT and this relocation makes a PC-relative call into the PLT.  The PLT
01338     // entry will then jump to an address provided by the GOT.  On first call,
01339     // the
01340     // GOT address will point back into PLT code that resolves the symbol. After
01341     // the first call, the GOT entry points to the actual function.
01342     //
01343     // For local functions we're ignoring all of that here and just replacing
01344     // the PLT32 relocation type with PC32, which will translate the relocation
01345     // into a PC-relative call directly to the function. For external symbols we
01346     // can't be sure the function will be within 2^32 bytes of the call site, so
01347     // we need to create a stub, which calls into the GOT.  This case is
01348     // equivalent to the usual PLT implementation except that we use the stub
01349     // mechanism in RuntimeDyld (which puts stubs at the end of the section)
01350     // rather than allocating a PLT section.
01351     if (Value.SymbolName) {
01352       // This is a call to an external function.
01353       // Look for an existing stub.
01354       SectionEntry &Section = Sections[SectionID];
01355       StubMap::const_iterator i = Stubs.find(Value);
01356       uintptr_t StubAddress;
01357       if (i != Stubs.end()) {
01358         StubAddress = uintptr_t(Section.Address) + i->second;
01359         DEBUG(dbgs() << " Stub function found\n");
01360       } else {
01361         // Create a new stub function (equivalent to a PLT entry).
01362         DEBUG(dbgs() << " Create a new stub function\n");
01363 
01364         uintptr_t BaseAddress = uintptr_t(Section.Address);
01365         uintptr_t StubAlignment = getStubAlignment();
01366         StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
01367                       -StubAlignment;
01368         unsigned StubOffset = StubAddress - BaseAddress;
01369         Stubs[Value] = StubOffset;
01370         createStubFunction((uint8_t *)StubAddress);
01371 
01372         // Create a GOT entry for the external function.
01373         GOTEntries.push_back(Value);
01374 
01375         // Make our stub function a relative call to the GOT entry.
01376         RelocationEntry RE(SectionID, StubOffset + 2, ELF::R_X86_64_GOTPCREL,
01377                            -4);
01378         addRelocationForSymbol(RE, Value.SymbolName);
01379 
01380         // Bump our stub offset counter
01381         Section.StubOffset = StubOffset + getMaxStubSize();
01382       }
01383 
01384       // Make the target call a call into the stub table.
01385       resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
01386                         Addend);
01387     } else {
01388       RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
01389                          Value.Offset);
01390       addRelocationForSection(RE, Value.SectionID);
01391     }
01392   } else {
01393     if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_GOTPCREL) {
01394       GOTEntries.push_back(Value);
01395     }
01396     RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
01397     if (Value.SymbolName)
01398       addRelocationForSymbol(RE, Value.SymbolName);
01399     else
01400       addRelocationForSection(RE, Value.SectionID);
01401   }
01402   return ++RelI;
01403 }
01404 
01405 void RuntimeDyldELF::updateGOTEntries(StringRef Name, uint64_t Addr) {
01406 
01407   SmallVectorImpl<std::pair<SID, GOTRelocations>>::iterator it;
01408   SmallVectorImpl<std::pair<SID, GOTRelocations>>::iterator end = GOTs.end();
01409 
01410   for (it = GOTs.begin(); it != end; ++it) {
01411     GOTRelocations &GOTEntries = it->second;
01412     for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
01413       if (GOTEntries[i].SymbolName != nullptr &&
01414           GOTEntries[i].SymbolName == Name) {
01415         GOTEntries[i].Offset = Addr;
01416       }
01417     }
01418   }
01419 }
01420 
01421 size_t RuntimeDyldELF::getGOTEntrySize() {
01422   // We don't use the GOT in all of these cases, but it's essentially free
01423   // to put them all here.
01424   size_t Result = 0;
01425   switch (Arch) {
01426   case Triple::x86_64:
01427   case Triple::aarch64:
01428   case Triple::aarch64_be:
01429   case Triple::ppc64:
01430   case Triple::ppc64le:
01431   case Triple::systemz:
01432     Result = sizeof(uint64_t);
01433     break;
01434   case Triple::x86:
01435   case Triple::arm:
01436   case Triple::thumb:
01437   case Triple::mips:
01438   case Triple::mipsel:
01439     Result = sizeof(uint32_t);
01440     break;
01441   default:
01442     llvm_unreachable("Unsupported CPU type!");
01443   }
01444   return Result;
01445 }
01446 
01447 uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, uint64_t Offset) {
01448 
01449   const size_t GOTEntrySize = getGOTEntrySize();
01450 
01451   SmallVectorImpl<std::pair<SID, GOTRelocations>>::const_iterator it;
01452   SmallVectorImpl<std::pair<SID, GOTRelocations>>::const_iterator end =
01453       GOTs.end();
01454 
01455   int GOTIndex = -1;
01456   for (it = GOTs.begin(); it != end; ++it) {
01457     SID GOTSectionID = it->first;
01458     const GOTRelocations &GOTEntries = it->second;
01459 
01460     // Find the matching entry in our vector.
01461     uint64_t SymbolOffset = 0;
01462     for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
01463       if (!GOTEntries[i].SymbolName) {
01464         if (getSectionLoadAddress(GOTEntries[i].SectionID) == LoadAddress &&
01465             GOTEntries[i].Offset == Offset) {
01466           GOTIndex = i;
01467           SymbolOffset = GOTEntries[i].Offset;
01468           break;
01469         }
01470       } else {
01471         // GOT entries for external symbols use the addend as the address when
01472         // the external symbol has been resolved.
01473         if (GOTEntries[i].Offset == LoadAddress) {
01474           GOTIndex = i;
01475           // Don't use the Addend here.  The relocation handler will use it.
01476           break;
01477         }
01478       }
01479     }
01480 
01481     if (GOTIndex != -1) {
01482       if (GOTEntrySize == sizeof(uint64_t)) {
01483         uint64_t *LocalGOTAddr = (uint64_t *)getSectionAddress(GOTSectionID);
01484         // Fill in this entry with the address of the symbol being referenced.
01485         LocalGOTAddr[GOTIndex] = LoadAddress + SymbolOffset;
01486       } else {
01487         uint32_t *LocalGOTAddr = (uint32_t *)getSectionAddress(GOTSectionID);
01488         // Fill in this entry with the address of the symbol being referenced.
01489         LocalGOTAddr[GOTIndex] = (uint32_t)(LoadAddress + SymbolOffset);
01490       }
01491 
01492       // Calculate the load address of this entry
01493       return getSectionLoadAddress(GOTSectionID) + (GOTIndex * GOTEntrySize);
01494     }
01495   }
01496 
01497   assert(GOTIndex != -1 && "Unable to find requested GOT entry.");
01498   return 0;
01499 }
01500 
01501 void RuntimeDyldELF::finalizeLoad(ObjectImage &ObjImg,
01502                                   ObjSectionToIDMap &SectionMap) {
01503   // If necessary, allocate the global offset table
01504   if (MemMgr) {
01505     // Allocate the GOT if necessary
01506     size_t numGOTEntries = GOTEntries.size();
01507     if (numGOTEntries != 0) {
01508       // Allocate memory for the section
01509       unsigned SectionID = Sections.size();
01510       size_t TotalSize = numGOTEntries * getGOTEntrySize();
01511       uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, getGOTEntrySize(),
01512                                                   SectionID, ".got", false);
01513       if (!Addr)
01514         report_fatal_error("Unable to allocate memory for GOT!");
01515 
01516       GOTs.push_back(std::make_pair(SectionID, GOTEntries));
01517       Sections.push_back(SectionEntry(".got", Addr, TotalSize, 0));
01518       // For now, initialize all GOT entries to zero.  We'll fill them in as
01519       // needed when GOT-based relocations are applied.
01520       memset(Addr, 0, TotalSize);
01521     }
01522   } else {
01523     report_fatal_error("Unable to allocate memory for GOT!");
01524   }
01525 
01526   // Look for and record the EH frame section.
01527   ObjSectionToIDMap::iterator i, e;
01528   for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
01529     const SectionRef &Section = i->first;
01530     StringRef Name;
01531     Section.getName(Name);
01532     if (Name == ".eh_frame") {
01533       UnregisteredEHFrameSections.push_back(i->second);
01534       break;
01535     }
01536   }
01537 }
01538 
01539 bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
01540   if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
01541     return false;
01542   return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic,
01543                  strlen(ELF::ElfMagic))) == 0;
01544 }
01545 
01546 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile *Obj) const {
01547   return Obj->isELF();
01548 }
01549 
01550 } // namespace llvm