LLVM API Documentation
00001 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the SSAUpdater class. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "llvm/Transforms/Utils/SSAUpdater.h" 00015 #include "llvm/ADT/DenseMap.h" 00016 #include "llvm/ADT/TinyPtrVector.h" 00017 #include "llvm/Analysis/InstructionSimplify.h" 00018 #include "llvm/IR/CFG.h" 00019 #include "llvm/IR/Constants.h" 00020 #include "llvm/IR/Instructions.h" 00021 #include "llvm/IR/IntrinsicInst.h" 00022 #include "llvm/Support/Debug.h" 00023 #include "llvm/Support/raw_ostream.h" 00024 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 00025 #include "llvm/Transforms/Utils/Local.h" 00026 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 00027 00028 using namespace llvm; 00029 00030 #define DEBUG_TYPE "ssaupdater" 00031 00032 typedef DenseMap<BasicBlock*, Value*> AvailableValsTy; 00033 static AvailableValsTy &getAvailableVals(void *AV) { 00034 return *static_cast<AvailableValsTy*>(AV); 00035 } 00036 00037 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI) 00038 : AV(nullptr), ProtoType(nullptr), ProtoName(), InsertedPHIs(NewPHI) {} 00039 00040 SSAUpdater::~SSAUpdater() { 00041 delete static_cast<AvailableValsTy*>(AV); 00042 } 00043 00044 void SSAUpdater::Initialize(Type *Ty, StringRef Name) { 00045 if (!AV) 00046 AV = new AvailableValsTy(); 00047 else 00048 getAvailableVals(AV).clear(); 00049 ProtoType = Ty; 00050 ProtoName = Name; 00051 } 00052 00053 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { 00054 return getAvailableVals(AV).count(BB); 00055 } 00056 00057 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { 00058 assert(ProtoType && "Need to initialize SSAUpdater"); 00059 assert(ProtoType == V->getType() && 00060 "All rewritten values must have the same type"); 00061 getAvailableVals(AV)[BB] = V; 00062 } 00063 00064 static bool IsEquivalentPHI(PHINode *PHI, 00065 SmallDenseMap<BasicBlock*, Value*, 8> &ValueMapping) { 00066 unsigned PHINumValues = PHI->getNumIncomingValues(); 00067 if (PHINumValues != ValueMapping.size()) 00068 return false; 00069 00070 // Scan the phi to see if it matches. 00071 for (unsigned i = 0, e = PHINumValues; i != e; ++i) 00072 if (ValueMapping[PHI->getIncomingBlock(i)] != 00073 PHI->getIncomingValue(i)) { 00074 return false; 00075 } 00076 00077 return true; 00078 } 00079 00080 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { 00081 Value *Res = GetValueAtEndOfBlockInternal(BB); 00082 return Res; 00083 } 00084 00085 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { 00086 // If there is no definition of the renamed variable in this block, just use 00087 // GetValueAtEndOfBlock to do our work. 00088 if (!HasValueForBlock(BB)) 00089 return GetValueAtEndOfBlock(BB); 00090 00091 // Otherwise, we have the hard case. Get the live-in values for each 00092 // predecessor. 00093 SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues; 00094 Value *SingularValue = nullptr; 00095 00096 // We can get our predecessor info by walking the pred_iterator list, but it 00097 // is relatively slow. If we already have PHI nodes in this block, walk one 00098 // of them to get the predecessor list instead. 00099 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { 00100 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { 00101 BasicBlock *PredBB = SomePhi->getIncomingBlock(i); 00102 Value *PredVal = GetValueAtEndOfBlock(PredBB); 00103 PredValues.push_back(std::make_pair(PredBB, PredVal)); 00104 00105 // Compute SingularValue. 00106 if (i == 0) 00107 SingularValue = PredVal; 00108 else if (PredVal != SingularValue) 00109 SingularValue = nullptr; 00110 } 00111 } else { 00112 bool isFirstPred = true; 00113 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 00114 BasicBlock *PredBB = *PI; 00115 Value *PredVal = GetValueAtEndOfBlock(PredBB); 00116 PredValues.push_back(std::make_pair(PredBB, PredVal)); 00117 00118 // Compute SingularValue. 00119 if (isFirstPred) { 00120 SingularValue = PredVal; 00121 isFirstPred = false; 00122 } else if (PredVal != SingularValue) 00123 SingularValue = nullptr; 00124 } 00125 } 00126 00127 // If there are no predecessors, just return undef. 00128 if (PredValues.empty()) 00129 return UndefValue::get(ProtoType); 00130 00131 // Otherwise, if all the merged values are the same, just use it. 00132 if (SingularValue) 00133 return SingularValue; 00134 00135 // Otherwise, we do need a PHI: check to see if we already have one available 00136 // in this block that produces the right value. 00137 if (isa<PHINode>(BB->begin())) { 00138 SmallDenseMap<BasicBlock*, Value*, 8> ValueMapping(PredValues.begin(), 00139 PredValues.end()); 00140 PHINode *SomePHI; 00141 for (BasicBlock::iterator It = BB->begin(); 00142 (SomePHI = dyn_cast<PHINode>(It)); ++It) { 00143 if (IsEquivalentPHI(SomePHI, ValueMapping)) 00144 return SomePHI; 00145 } 00146 } 00147 00148 // Ok, we have no way out, insert a new one now. 00149 PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(), 00150 ProtoName, &BB->front()); 00151 00152 // Fill in all the predecessors of the PHI. 00153 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) 00154 InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first); 00155 00156 // See if the PHI node can be merged to a single value. This can happen in 00157 // loop cases when we get a PHI of itself and one other value. 00158 if (Value *V = SimplifyInstruction(InsertedPHI)) { 00159 InsertedPHI->eraseFromParent(); 00160 return V; 00161 } 00162 00163 // Set the DebugLoc of the inserted PHI, if available. 00164 DebugLoc DL; 00165 if (const Instruction *I = BB->getFirstNonPHI()) 00166 DL = I->getDebugLoc(); 00167 InsertedPHI->setDebugLoc(DL); 00168 00169 // If the client wants to know about all new instructions, tell it. 00170 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); 00171 00172 DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); 00173 return InsertedPHI; 00174 } 00175 00176 void SSAUpdater::RewriteUse(Use &U) { 00177 Instruction *User = cast<Instruction>(U.getUser()); 00178 00179 Value *V; 00180 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 00181 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 00182 else 00183 V = GetValueInMiddleOfBlock(User->getParent()); 00184 00185 // Notify that users of the existing value that it is being replaced. 00186 Value *OldVal = U.get(); 00187 if (OldVal != V && OldVal->hasValueHandle()) 00188 ValueHandleBase::ValueIsRAUWd(OldVal, V); 00189 00190 U.set(V); 00191 } 00192 00193 void SSAUpdater::RewriteUseAfterInsertions(Use &U) { 00194 Instruction *User = cast<Instruction>(U.getUser()); 00195 00196 Value *V; 00197 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 00198 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); 00199 else 00200 V = GetValueAtEndOfBlock(User->getParent()); 00201 00202 U.set(V); 00203 } 00204 00205 namespace llvm { 00206 template<> 00207 class SSAUpdaterTraits<SSAUpdater> { 00208 public: 00209 typedef BasicBlock BlkT; 00210 typedef Value *ValT; 00211 typedef PHINode PhiT; 00212 00213 typedef succ_iterator BlkSucc_iterator; 00214 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); } 00215 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); } 00216 00217 class PHI_iterator { 00218 private: 00219 PHINode *PHI; 00220 unsigned idx; 00221 00222 public: 00223 explicit PHI_iterator(PHINode *P) // begin iterator 00224 : PHI(P), idx(0) {} 00225 PHI_iterator(PHINode *P, bool) // end iterator 00226 : PHI(P), idx(PHI->getNumIncomingValues()) {} 00227 00228 PHI_iterator &operator++() { ++idx; return *this; } 00229 bool operator==(const PHI_iterator& x) const { return idx == x.idx; } 00230 bool operator!=(const PHI_iterator& x) const { return !operator==(x); } 00231 Value *getIncomingValue() { return PHI->getIncomingValue(idx); } 00232 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); } 00233 }; 00234 00235 static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 00236 static PHI_iterator PHI_end(PhiT *PHI) { 00237 return PHI_iterator(PHI, true); 00238 } 00239 00240 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds 00241 /// vector, set Info->NumPreds, and allocate space in Info->Preds. 00242 static void FindPredecessorBlocks(BasicBlock *BB, 00243 SmallVectorImpl<BasicBlock*> *Preds) { 00244 // We can get our predecessor info by walking the pred_iterator list, 00245 // but it is relatively slow. If we already have PHI nodes in this 00246 // block, walk one of them to get the predecessor list instead. 00247 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { 00248 for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI) 00249 Preds->push_back(SomePhi->getIncomingBlock(PI)); 00250 } else { 00251 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 00252 Preds->push_back(*PI); 00253 } 00254 } 00255 00256 /// GetUndefVal - Get an undefined value of the same type as the value 00257 /// being handled. 00258 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) { 00259 return UndefValue::get(Updater->ProtoType); 00260 } 00261 00262 /// CreateEmptyPHI - Create a new PHI instruction in the specified block. 00263 /// Reserve space for the operands but do not fill them in yet. 00264 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, 00265 SSAUpdater *Updater) { 00266 PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds, 00267 Updater->ProtoName, &BB->front()); 00268 return PHI; 00269 } 00270 00271 /// AddPHIOperand - Add the specified value as an operand of the PHI for 00272 /// the specified predecessor block. 00273 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) { 00274 PHI->addIncoming(Val, Pred); 00275 } 00276 00277 /// InstrIsPHI - Check if an instruction is a PHI. 00278 /// 00279 static PHINode *InstrIsPHI(Instruction *I) { 00280 return dyn_cast<PHINode>(I); 00281 } 00282 00283 /// ValueIsPHI - Check if a value is a PHI. 00284 /// 00285 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) { 00286 return dyn_cast<PHINode>(Val); 00287 } 00288 00289 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 00290 /// operands, i.e., it was just added. 00291 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) { 00292 PHINode *PHI = ValueIsPHI(Val, Updater); 00293 if (PHI && PHI->getNumIncomingValues() == 0) 00294 return PHI; 00295 return nullptr; 00296 } 00297 00298 /// GetPHIValue - For the specified PHI instruction, return the value 00299 /// that it defines. 00300 static Value *GetPHIValue(PHINode *PHI) { 00301 return PHI; 00302 } 00303 }; 00304 00305 } // End llvm namespace 00306 00307 /// Check to see if AvailableVals has an entry for the specified BB and if so, 00308 /// return it. If not, construct SSA form by first calculating the required 00309 /// placement of PHIs and then inserting new PHIs where needed. 00310 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { 00311 AvailableValsTy &AvailableVals = getAvailableVals(AV); 00312 if (Value *V = AvailableVals[BB]) 00313 return V; 00314 00315 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs); 00316 return Impl.GetValue(BB); 00317 } 00318 00319 //===----------------------------------------------------------------------===// 00320 // LoadAndStorePromoter Implementation 00321 //===----------------------------------------------------------------------===// 00322 00323 LoadAndStorePromoter:: 00324 LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts, 00325 SSAUpdater &S, StringRef BaseName) : SSA(S) { 00326 if (Insts.empty()) return; 00327 00328 Value *SomeVal; 00329 if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0])) 00330 SomeVal = LI; 00331 else 00332 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0); 00333 00334 if (BaseName.empty()) 00335 BaseName = SomeVal->getName(); 00336 SSA.Initialize(SomeVal->getType(), BaseName); 00337 } 00338 00339 00340 void LoadAndStorePromoter:: 00341 run(const SmallVectorImpl<Instruction*> &Insts) const { 00342 00343 // First step: bucket up uses of the alloca by the block they occur in. 00344 // This is important because we have to handle multiple defs/uses in a block 00345 // ourselves: SSAUpdater is purely for cross-block references. 00346 DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock; 00347 00348 for (unsigned i = 0, e = Insts.size(); i != e; ++i) { 00349 Instruction *User = Insts[i]; 00350 UsesByBlock[User->getParent()].push_back(User); 00351 } 00352 00353 // Okay, now we can iterate over all the blocks in the function with uses, 00354 // processing them. Keep track of which loads are loading a live-in value. 00355 // Walk the uses in the use-list order to be determinstic. 00356 SmallVector<LoadInst*, 32> LiveInLoads; 00357 DenseMap<Value*, Value*> ReplacedLoads; 00358 00359 for (unsigned i = 0, e = Insts.size(); i != e; ++i) { 00360 Instruction *User = Insts[i]; 00361 BasicBlock *BB = User->getParent(); 00362 TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB]; 00363 00364 // If this block has already been processed, ignore this repeat use. 00365 if (BlockUses.empty()) continue; 00366 00367 // Okay, this is the first use in the block. If this block just has a 00368 // single user in it, we can rewrite it trivially. 00369 if (BlockUses.size() == 1) { 00370 // If it is a store, it is a trivial def of the value in the block. 00371 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 00372 updateDebugInfo(SI); 00373 SSA.AddAvailableValue(BB, SI->getOperand(0)); 00374 } else 00375 // Otherwise it is a load, queue it to rewrite as a live-in load. 00376 LiveInLoads.push_back(cast<LoadInst>(User)); 00377 BlockUses.clear(); 00378 continue; 00379 } 00380 00381 // Otherwise, check to see if this block is all loads. 00382 bool HasStore = false; 00383 for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) { 00384 if (isa<StoreInst>(BlockUses[i])) { 00385 HasStore = true; 00386 break; 00387 } 00388 } 00389 00390 // If so, we can queue them all as live in loads. We don't have an 00391 // efficient way to tell which on is first in the block and don't want to 00392 // scan large blocks, so just add all loads as live ins. 00393 if (!HasStore) { 00394 for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) 00395 LiveInLoads.push_back(cast<LoadInst>(BlockUses[i])); 00396 BlockUses.clear(); 00397 continue; 00398 } 00399 00400 // Otherwise, we have mixed loads and stores (or just a bunch of stores). 00401 // Since SSAUpdater is purely for cross-block values, we need to determine 00402 // the order of these instructions in the block. If the first use in the 00403 // block is a load, then it uses the live in value. The last store defines 00404 // the live out value. We handle this by doing a linear scan of the block. 00405 Value *StoredValue = nullptr; 00406 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { 00407 if (LoadInst *L = dyn_cast<LoadInst>(II)) { 00408 // If this is a load from an unrelated pointer, ignore it. 00409 if (!isInstInList(L, Insts)) continue; 00410 00411 // If we haven't seen a store yet, this is a live in use, otherwise 00412 // use the stored value. 00413 if (StoredValue) { 00414 replaceLoadWithValue(L, StoredValue); 00415 L->replaceAllUsesWith(StoredValue); 00416 ReplacedLoads[L] = StoredValue; 00417 } else { 00418 LiveInLoads.push_back(L); 00419 } 00420 continue; 00421 } 00422 00423 if (StoreInst *SI = dyn_cast<StoreInst>(II)) { 00424 // If this is a store to an unrelated pointer, ignore it. 00425 if (!isInstInList(SI, Insts)) continue; 00426 updateDebugInfo(SI); 00427 00428 // Remember that this is the active value in the block. 00429 StoredValue = SI->getOperand(0); 00430 } 00431 } 00432 00433 // The last stored value that happened is the live-out for the block. 00434 assert(StoredValue && "Already checked that there is a store in block"); 00435 SSA.AddAvailableValue(BB, StoredValue); 00436 BlockUses.clear(); 00437 } 00438 00439 // Okay, now we rewrite all loads that use live-in values in the loop, 00440 // inserting PHI nodes as necessary. 00441 for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) { 00442 LoadInst *ALoad = LiveInLoads[i]; 00443 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); 00444 replaceLoadWithValue(ALoad, NewVal); 00445 00446 // Avoid assertions in unreachable code. 00447 if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType()); 00448 ALoad->replaceAllUsesWith(NewVal); 00449 ReplacedLoads[ALoad] = NewVal; 00450 } 00451 00452 // Allow the client to do stuff before we start nuking things. 00453 doExtraRewritesBeforeFinalDeletion(); 00454 00455 // Now that everything is rewritten, delete the old instructions from the 00456 // function. They should all be dead now. 00457 for (unsigned i = 0, e = Insts.size(); i != e; ++i) { 00458 Instruction *User = Insts[i]; 00459 00460 // If this is a load that still has uses, then the load must have been added 00461 // as a live value in the SSAUpdate data structure for a block (e.g. because 00462 // the loaded value was stored later). In this case, we need to recursively 00463 // propagate the updates until we get to the real value. 00464 if (!User->use_empty()) { 00465 Value *NewVal = ReplacedLoads[User]; 00466 assert(NewVal && "not a replaced load?"); 00467 00468 // Propagate down to the ultimate replacee. The intermediately loads 00469 // could theoretically already have been deleted, so we don't want to 00470 // dereference the Value*'s. 00471 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); 00472 while (RLI != ReplacedLoads.end()) { 00473 NewVal = RLI->second; 00474 RLI = ReplacedLoads.find(NewVal); 00475 } 00476 00477 replaceLoadWithValue(cast<LoadInst>(User), NewVal); 00478 User->replaceAllUsesWith(NewVal); 00479 } 00480 00481 instructionDeleted(User); 00482 User->eraseFromParent(); 00483 } 00484 } 00485 00486 bool 00487 LoadAndStorePromoter::isInstInList(Instruction *I, 00488 const SmallVectorImpl<Instruction*> &Insts) 00489 const { 00490 return std::find(Insts.begin(), Insts.end(), I) != Insts.end(); 00491 }