LLVM API Documentation

SampleProfile.cpp
Go to the documentation of this file.
00001 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
00002 //
00003 //                      The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements the SampleProfileLoader transformation. This pass
00011 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
00012 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
00013 // profile information in the given profile.
00014 //
00015 // This pass generates branch weight annotations on the IR:
00016 //
00017 // - prof: Represents branch weights. This annotation is added to branches
00018 //      to indicate the weights of each edge coming out of the branch.
00019 //      The weight of each edge is the weight of the target block for
00020 //      that edge. The weight of a block B is computed as the maximum
00021 //      number of samples found in B.
00022 //
00023 //===----------------------------------------------------------------------===//
00024 
00025 #include "llvm/Transforms/Scalar.h"
00026 #include "llvm/ADT/DenseMap.h"
00027 #include "llvm/ADT/SmallPtrSet.h"
00028 #include "llvm/ADT/SmallSet.h"
00029 #include "llvm/ADT/StringRef.h"
00030 #include "llvm/Analysis/LoopInfo.h"
00031 #include "llvm/Analysis/PostDominators.h"
00032 #include "llvm/IR/Constants.h"
00033 #include "llvm/IR/DebugInfo.h"
00034 #include "llvm/IR/DiagnosticInfo.h"
00035 #include "llvm/IR/Dominators.h"
00036 #include "llvm/IR/Function.h"
00037 #include "llvm/IR/InstIterator.h"
00038 #include "llvm/IR/Instructions.h"
00039 #include "llvm/IR/LLVMContext.h"
00040 #include "llvm/IR/MDBuilder.h"
00041 #include "llvm/IR/Metadata.h"
00042 #include "llvm/IR/Module.h"
00043 #include "llvm/Pass.h"
00044 #include "llvm/ProfileData/SampleProfReader.h"
00045 #include "llvm/Support/CommandLine.h"
00046 #include "llvm/Support/Debug.h"
00047 #include "llvm/Support/raw_ostream.h"
00048 #include <cctype>
00049 
00050 using namespace llvm;
00051 using namespace sampleprof;
00052 
00053 #define DEBUG_TYPE "sample-profile"
00054 
00055 // Command line option to specify the file to read samples from. This is
00056 // mainly used for debugging.
00057 static cl::opt<std::string> SampleProfileFile(
00058     "sample-profile-file", cl::init(""), cl::value_desc("filename"),
00059     cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
00060 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
00061     "sample-profile-max-propagate-iterations", cl::init(100),
00062     cl::desc("Maximum number of iterations to go through when propagating "
00063              "sample block/edge weights through the CFG."));
00064 
00065 namespace {
00066 typedef DenseMap<BasicBlock *, unsigned> BlockWeightMap;
00067 typedef DenseMap<BasicBlock *, BasicBlock *> EquivalenceClassMap;
00068 typedef std::pair<BasicBlock *, BasicBlock *> Edge;
00069 typedef DenseMap<Edge, unsigned> EdgeWeightMap;
00070 typedef DenseMap<BasicBlock *, SmallVector<BasicBlock *, 8>> BlockEdgeMap;
00071 
00072 /// \brief Sample profile pass.
00073 ///
00074 /// This pass reads profile data from the file specified by
00075 /// -sample-profile-file and annotates every affected function with the
00076 /// profile information found in that file.
00077 class SampleProfileLoader : public FunctionPass {
00078 public:
00079   // Class identification, replacement for typeinfo
00080   static char ID;
00081 
00082   SampleProfileLoader(StringRef Name = SampleProfileFile)
00083       : FunctionPass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Ctx(nullptr),
00084         Reader(), Samples(nullptr), Filename(Name), ProfileIsValid(false) {
00085     initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry());
00086   }
00087 
00088   bool doInitialization(Module &M) override;
00089 
00090   void dump() { Reader->dump(); }
00091 
00092   const char *getPassName() const override { return "Sample profile pass"; }
00093 
00094   bool runOnFunction(Function &F) override;
00095 
00096   void getAnalysisUsage(AnalysisUsage &AU) const override {
00097     AU.setPreservesCFG();
00098     AU.addRequired<LoopInfo>();
00099     AU.addRequired<DominatorTreeWrapperPass>();
00100     AU.addRequired<PostDominatorTree>();
00101   }
00102 
00103 protected:
00104   unsigned getFunctionLoc(Function &F);
00105   bool emitAnnotations(Function &F);
00106   unsigned getInstWeight(Instruction &I);
00107   unsigned getBlockWeight(BasicBlock *B);
00108   void printEdgeWeight(raw_ostream &OS, Edge E);
00109   void printBlockWeight(raw_ostream &OS, BasicBlock *BB);
00110   void printBlockEquivalence(raw_ostream &OS, BasicBlock *BB);
00111   bool computeBlockWeights(Function &F);
00112   void findEquivalenceClasses(Function &F);
00113   void findEquivalencesFor(BasicBlock *BB1,
00114                            SmallVector<BasicBlock *, 8> Descendants,
00115                            DominatorTreeBase<BasicBlock> *DomTree);
00116   void propagateWeights(Function &F);
00117   unsigned visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
00118   void buildEdges(Function &F);
00119   bool propagateThroughEdges(Function &F);
00120 
00121   /// \brief Line number for the function header. Used to compute absolute
00122   /// line numbers from the relative line numbers found in the profile.
00123   unsigned HeaderLineno;
00124 
00125   /// \brief Map basic blocks to their computed weights.
00126   ///
00127   /// The weight of a basic block is defined to be the maximum
00128   /// of all the instruction weights in that block.
00129   BlockWeightMap BlockWeights;
00130 
00131   /// \brief Map edges to their computed weights.
00132   ///
00133   /// Edge weights are computed by propagating basic block weights in
00134   /// SampleProfile::propagateWeights.
00135   EdgeWeightMap EdgeWeights;
00136 
00137   /// \brief Set of visited blocks during propagation.
00138   SmallPtrSet<BasicBlock *, 128> VisitedBlocks;
00139 
00140   /// \brief Set of visited edges during propagation.
00141   SmallSet<Edge, 128> VisitedEdges;
00142 
00143   /// \brief Equivalence classes for block weights.
00144   ///
00145   /// Two blocks BB1 and BB2 are in the same equivalence class if they
00146   /// dominate and post-dominate each other, and they are in the same loop
00147   /// nest. When this happens, the two blocks are guaranteed to execute
00148   /// the same number of times.
00149   EquivalenceClassMap EquivalenceClass;
00150 
00151   /// \brief Dominance, post-dominance and loop information.
00152   DominatorTree *DT;
00153   PostDominatorTree *PDT;
00154   LoopInfo *LI;
00155 
00156   /// \brief Predecessors for each basic block in the CFG.
00157   BlockEdgeMap Predecessors;
00158 
00159   /// \brief Successors for each basic block in the CFG.
00160   BlockEdgeMap Successors;
00161 
00162   /// \brief LLVM context holding the debug data we need.
00163   LLVMContext *Ctx;
00164 
00165   /// \brief Profile reader object.
00166   std::unique_ptr<SampleProfileReader> Reader;
00167 
00168   /// \brief Samples collected for the body of this function.
00169   FunctionSamples *Samples;
00170 
00171   /// \brief Name of the profile file to load.
00172   StringRef Filename;
00173 
00174   /// \brief Flag indicating whether the profile input loaded successfully.
00175   bool ProfileIsValid;
00176 };
00177 }
00178 
00179 /// \brief Print the weight of edge \p E on stream \p OS.
00180 ///
00181 /// \param OS  Stream to emit the output to.
00182 /// \param E  Edge to print.
00183 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
00184   OS << "weight[" << E.first->getName() << "->" << E.second->getName()
00185      << "]: " << EdgeWeights[E] << "\n";
00186 }
00187 
00188 /// \brief Print the equivalence class of block \p BB on stream \p OS.
00189 ///
00190 /// \param OS  Stream to emit the output to.
00191 /// \param BB  Block to print.
00192 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
00193                                                 BasicBlock *BB) {
00194   BasicBlock *Equiv = EquivalenceClass[BB];
00195   OS << "equivalence[" << BB->getName()
00196      << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
00197 }
00198 
00199 /// \brief Print the weight of block \p BB on stream \p OS.
00200 ///
00201 /// \param OS  Stream to emit the output to.
00202 /// \param BB  Block to print.
00203 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, BasicBlock *BB) {
00204   OS << "weight[" << BB->getName() << "]: " << BlockWeights[BB] << "\n";
00205 }
00206 
00207 /// \brief Get the weight for an instruction.
00208 ///
00209 /// The "weight" of an instruction \p Inst is the number of samples
00210 /// collected on that instruction at runtime. To retrieve it, we
00211 /// need to compute the line number of \p Inst relative to the start of its
00212 /// function. We use HeaderLineno to compute the offset. We then
00213 /// look up the samples collected for \p Inst using BodySamples.
00214 ///
00215 /// \param Inst Instruction to query.
00216 ///
00217 /// \returns The profiled weight of I.
00218 unsigned SampleProfileLoader::getInstWeight(Instruction &Inst) {
00219   DebugLoc DLoc = Inst.getDebugLoc();
00220   unsigned Lineno = DLoc.getLine();
00221   if (Lineno < HeaderLineno)
00222     return 0;
00223 
00224   DILocation DIL(DLoc.getAsMDNode(*Ctx));
00225   int LOffset = Lineno - HeaderLineno;
00226   unsigned Discriminator = DIL.getDiscriminator();
00227   unsigned Weight = Samples->samplesAt(LOffset, Discriminator);
00228   DEBUG(dbgs() << "    " << Lineno << "." << Discriminator << ":" << Inst
00229                << " (line offset: " << LOffset << "." << Discriminator
00230                << " - weight: " << Weight << ")\n");
00231   return Weight;
00232 }
00233 
00234 /// \brief Compute the weight of a basic block.
00235 ///
00236 /// The weight of basic block \p B is the maximum weight of all the
00237 /// instructions in B. The weight of \p B is computed and cached in
00238 /// the BlockWeights map.
00239 ///
00240 /// \param B The basic block to query.
00241 ///
00242 /// \returns The computed weight of B.
00243 unsigned SampleProfileLoader::getBlockWeight(BasicBlock *B) {
00244   // If we've computed B's weight before, return it.
00245   std::pair<BlockWeightMap::iterator, bool> Entry =
00246       BlockWeights.insert(std::make_pair(B, 0));
00247   if (!Entry.second)
00248     return Entry.first->second;
00249 
00250   // Otherwise, compute and cache B's weight.
00251   unsigned Weight = 0;
00252   for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
00253     unsigned InstWeight = getInstWeight(*I);
00254     if (InstWeight > Weight)
00255       Weight = InstWeight;
00256   }
00257   Entry.first->second = Weight;
00258   return Weight;
00259 }
00260 
00261 /// \brief Compute and store the weights of every basic block.
00262 ///
00263 /// This populates the BlockWeights map by computing
00264 /// the weights of every basic block in the CFG.
00265 ///
00266 /// \param F The function to query.
00267 bool SampleProfileLoader::computeBlockWeights(Function &F) {
00268   bool Changed = false;
00269   DEBUG(dbgs() << "Block weights\n");
00270   for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
00271     unsigned Weight = getBlockWeight(B);
00272     Changed |= (Weight > 0);
00273     DEBUG(printBlockWeight(dbgs(), B));
00274   }
00275 
00276   return Changed;
00277 }
00278 
00279 /// \brief Find equivalence classes for the given block.
00280 ///
00281 /// This finds all the blocks that are guaranteed to execute the same
00282 /// number of times as \p BB1. To do this, it traverses all the the
00283 /// descendants of \p BB1 in the dominator or post-dominator tree.
00284 ///
00285 /// A block BB2 will be in the same equivalence class as \p BB1 if
00286 /// the following holds:
00287 ///
00288 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
00289 ///    is a descendant of \p BB1 in the dominator tree, then BB2 should
00290 ///    dominate BB1 in the post-dominator tree.
00291 ///
00292 /// 2- Both BB2 and \p BB1 must be in the same loop.
00293 ///
00294 /// For every block BB2 that meets those two requirements, we set BB2's
00295 /// equivalence class to \p BB1.
00296 ///
00297 /// \param BB1  Block to check.
00298 /// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
00299 /// \param DomTree  Opposite dominator tree. If \p Descendants is filled
00300 ///                 with blocks from \p BB1's dominator tree, then
00301 ///                 this is the post-dominator tree, and vice versa.
00302 void SampleProfileLoader::findEquivalencesFor(
00303     BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants,
00304     DominatorTreeBase<BasicBlock> *DomTree) {
00305   for (SmallVectorImpl<BasicBlock *>::iterator I = Descendants.begin(),
00306                                                E = Descendants.end();
00307        I != E; ++I) {
00308     BasicBlock *BB2 = *I;
00309     bool IsDomParent = DomTree->dominates(BB2, BB1);
00310     bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
00311     if (BB1 != BB2 && VisitedBlocks.insert(BB2) && IsDomParent &&
00312         IsInSameLoop) {
00313       EquivalenceClass[BB2] = BB1;
00314 
00315       // If BB2 is heavier than BB1, make BB2 have the same weight
00316       // as BB1.
00317       //
00318       // Note that we don't worry about the opposite situation here
00319       // (when BB2 is lighter than BB1). We will deal with this
00320       // during the propagation phase. Right now, we just want to
00321       // make sure that BB1 has the largest weight of all the
00322       // members of its equivalence set.
00323       unsigned &BB1Weight = BlockWeights[BB1];
00324       unsigned &BB2Weight = BlockWeights[BB2];
00325       BB1Weight = std::max(BB1Weight, BB2Weight);
00326     }
00327   }
00328 }
00329 
00330 /// \brief Find equivalence classes.
00331 ///
00332 /// Since samples may be missing from blocks, we can fill in the gaps by setting
00333 /// the weights of all the blocks in the same equivalence class to the same
00334 /// weight. To compute the concept of equivalence, we use dominance and loop
00335 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
00336 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
00337 ///
00338 /// \param F The function to query.
00339 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
00340   SmallVector<BasicBlock *, 8> DominatedBBs;
00341   DEBUG(dbgs() << "\nBlock equivalence classes\n");
00342   // Find equivalence sets based on dominance and post-dominance information.
00343   for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
00344     BasicBlock *BB1 = B;
00345 
00346     // Compute BB1's equivalence class once.
00347     if (EquivalenceClass.count(BB1)) {
00348       DEBUG(printBlockEquivalence(dbgs(), BB1));
00349       continue;
00350     }
00351 
00352     // By default, blocks are in their own equivalence class.
00353     EquivalenceClass[BB1] = BB1;
00354 
00355     // Traverse all the blocks dominated by BB1. We are looking for
00356     // every basic block BB2 such that:
00357     //
00358     // 1- BB1 dominates BB2.
00359     // 2- BB2 post-dominates BB1.
00360     // 3- BB1 and BB2 are in the same loop nest.
00361     //
00362     // If all those conditions hold, it means that BB2 is executed
00363     // as many times as BB1, so they are placed in the same equivalence
00364     // class by making BB2's equivalence class be BB1.
00365     DominatedBBs.clear();
00366     DT->getDescendants(BB1, DominatedBBs);
00367     findEquivalencesFor(BB1, DominatedBBs, PDT->DT);
00368 
00369     // Repeat the same logic for all the blocks post-dominated by BB1.
00370     // We are looking for every basic block BB2 such that:
00371     //
00372     // 1- BB1 post-dominates BB2.
00373     // 2- BB2 dominates BB1.
00374     // 3- BB1 and BB2 are in the same loop nest.
00375     //
00376     // If all those conditions hold, BB2's equivalence class is BB1.
00377     DominatedBBs.clear();
00378     PDT->getDescendants(BB1, DominatedBBs);
00379     findEquivalencesFor(BB1, DominatedBBs, DT);
00380 
00381     DEBUG(printBlockEquivalence(dbgs(), BB1));
00382   }
00383 
00384   // Assign weights to equivalence classes.
00385   //
00386   // All the basic blocks in the same equivalence class will execute
00387   // the same number of times. Since we know that the head block in
00388   // each equivalence class has the largest weight, assign that weight
00389   // to all the blocks in that equivalence class.
00390   DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
00391   for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
00392     BasicBlock *BB = B;
00393     BasicBlock *EquivBB = EquivalenceClass[BB];
00394     if (BB != EquivBB)
00395       BlockWeights[BB] = BlockWeights[EquivBB];
00396     DEBUG(printBlockWeight(dbgs(), BB));
00397   }
00398 }
00399 
00400 /// \brief Visit the given edge to decide if it has a valid weight.
00401 ///
00402 /// If \p E has not been visited before, we copy to \p UnknownEdge
00403 /// and increment the count of unknown edges.
00404 ///
00405 /// \param E  Edge to visit.
00406 /// \param NumUnknownEdges  Current number of unknown edges.
00407 /// \param UnknownEdge  Set if E has not been visited before.
00408 ///
00409 /// \returns E's weight, if known. Otherwise, return 0.
00410 unsigned SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
00411                                         Edge *UnknownEdge) {
00412   if (!VisitedEdges.count(E)) {
00413     (*NumUnknownEdges)++;
00414     *UnknownEdge = E;
00415     return 0;
00416   }
00417 
00418   return EdgeWeights[E];
00419 }
00420 
00421 /// \brief Propagate weights through incoming/outgoing edges.
00422 ///
00423 /// If the weight of a basic block is known, and there is only one edge
00424 /// with an unknown weight, we can calculate the weight of that edge.
00425 ///
00426 /// Similarly, if all the edges have a known count, we can calculate the
00427 /// count of the basic block, if needed.
00428 ///
00429 /// \param F  Function to process.
00430 ///
00431 /// \returns  True if new weights were assigned to edges or blocks.
00432 bool SampleProfileLoader::propagateThroughEdges(Function &F) {
00433   bool Changed = false;
00434   DEBUG(dbgs() << "\nPropagation through edges\n");
00435   for (Function::iterator BI = F.begin(), EI = F.end(); BI != EI; ++BI) {
00436     BasicBlock *BB = BI;
00437 
00438     // Visit all the predecessor and successor edges to determine
00439     // which ones have a weight assigned already. Note that it doesn't
00440     // matter that we only keep track of a single unknown edge. The
00441     // only case we are interested in handling is when only a single
00442     // edge is unknown (see setEdgeOrBlockWeight).
00443     for (unsigned i = 0; i < 2; i++) {
00444       unsigned TotalWeight = 0;
00445       unsigned NumUnknownEdges = 0;
00446       Edge UnknownEdge, SelfReferentialEdge;
00447 
00448       if (i == 0) {
00449         // First, visit all predecessor edges.
00450         for (size_t I = 0; I < Predecessors[BB].size(); I++) {
00451           Edge E = std::make_pair(Predecessors[BB][I], BB);
00452           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
00453           if (E.first == E.second)
00454             SelfReferentialEdge = E;
00455         }
00456       } else {
00457         // On the second round, visit all successor edges.
00458         for (size_t I = 0; I < Successors[BB].size(); I++) {
00459           Edge E = std::make_pair(BB, Successors[BB][I]);
00460           TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
00461         }
00462       }
00463 
00464       // After visiting all the edges, there are three cases that we
00465       // can handle immediately:
00466       //
00467       // - All the edge weights are known (i.e., NumUnknownEdges == 0).
00468       //   In this case, we simply check that the sum of all the edges
00469       //   is the same as BB's weight. If not, we change BB's weight
00470       //   to match. Additionally, if BB had not been visited before,
00471       //   we mark it visited.
00472       //
00473       // - Only one edge is unknown and BB has already been visited.
00474       //   In this case, we can compute the weight of the edge by
00475       //   subtracting the total block weight from all the known
00476       //   edge weights. If the edges weight more than BB, then the
00477       //   edge of the last remaining edge is set to zero.
00478       //
00479       // - There exists a self-referential edge and the weight of BB is
00480       //   known. In this case, this edge can be based on BB's weight.
00481       //   We add up all the other known edges and set the weight on
00482       //   the self-referential edge as we did in the previous case.
00483       //
00484       // In any other case, we must continue iterating. Eventually,
00485       // all edges will get a weight, or iteration will stop when
00486       // it reaches SampleProfileMaxPropagateIterations.
00487       if (NumUnknownEdges <= 1) {
00488         unsigned &BBWeight = BlockWeights[BB];
00489         if (NumUnknownEdges == 0) {
00490           // If we already know the weight of all edges, the weight of the
00491           // basic block can be computed. It should be no larger than the sum
00492           // of all edge weights.
00493           if (TotalWeight > BBWeight) {
00494             BBWeight = TotalWeight;
00495             Changed = true;
00496             DEBUG(dbgs() << "All edge weights for " << BB->getName()
00497                          << " known. Set weight for block: ";
00498                   printBlockWeight(dbgs(), BB););
00499           }
00500           if (VisitedBlocks.insert(BB))
00501             Changed = true;
00502         } else if (NumUnknownEdges == 1 && VisitedBlocks.count(BB)) {
00503           // If there is a single unknown edge and the block has been
00504           // visited, then we can compute E's weight.
00505           if (BBWeight >= TotalWeight)
00506             EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
00507           else
00508             EdgeWeights[UnknownEdge] = 0;
00509           VisitedEdges.insert(UnknownEdge);
00510           Changed = true;
00511           DEBUG(dbgs() << "Set weight for edge: ";
00512                 printEdgeWeight(dbgs(), UnknownEdge));
00513         }
00514       } else if (SelfReferentialEdge.first && VisitedBlocks.count(BB)) {
00515         unsigned &BBWeight = BlockWeights[BB];
00516         // We have a self-referential edge and the weight of BB is known.
00517         if (BBWeight >= TotalWeight)
00518           EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
00519         else
00520           EdgeWeights[SelfReferentialEdge] = 0;
00521         VisitedEdges.insert(SelfReferentialEdge);
00522         Changed = true;
00523         DEBUG(dbgs() << "Set self-referential edge weight to: ";
00524               printEdgeWeight(dbgs(), SelfReferentialEdge));
00525       }
00526     }
00527   }
00528 
00529   return Changed;
00530 }
00531 
00532 /// \brief Build in/out edge lists for each basic block in the CFG.
00533 ///
00534 /// We are interested in unique edges. If a block B1 has multiple
00535 /// edges to another block B2, we only add a single B1->B2 edge.
00536 void SampleProfileLoader::buildEdges(Function &F) {
00537   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
00538     BasicBlock *B1 = I;
00539 
00540     // Add predecessors for B1.
00541     SmallPtrSet<BasicBlock *, 16> Visited;
00542     if (!Predecessors[B1].empty())
00543       llvm_unreachable("Found a stale predecessors list in a basic block.");
00544     for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
00545       BasicBlock *B2 = *PI;
00546       if (Visited.insert(B2))
00547         Predecessors[B1].push_back(B2);
00548     }
00549 
00550     // Add successors for B1.
00551     Visited.clear();
00552     if (!Successors[B1].empty())
00553       llvm_unreachable("Found a stale successors list in a basic block.");
00554     for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
00555       BasicBlock *B2 = *SI;
00556       if (Visited.insert(B2))
00557         Successors[B1].push_back(B2);
00558     }
00559   }
00560 }
00561 
00562 /// \brief Propagate weights into edges
00563 ///
00564 /// The following rules are applied to every block B in the CFG:
00565 ///
00566 /// - If B has a single predecessor/successor, then the weight
00567 ///   of that edge is the weight of the block.
00568 ///
00569 /// - If all incoming or outgoing edges are known except one, and the
00570 ///   weight of the block is already known, the weight of the unknown
00571 ///   edge will be the weight of the block minus the sum of all the known
00572 ///   edges. If the sum of all the known edges is larger than B's weight,
00573 ///   we set the unknown edge weight to zero.
00574 ///
00575 /// - If there is a self-referential edge, and the weight of the block is
00576 ///   known, the weight for that edge is set to the weight of the block
00577 ///   minus the weight of the other incoming edges to that block (if
00578 ///   known).
00579 void SampleProfileLoader::propagateWeights(Function &F) {
00580   bool Changed = true;
00581   unsigned i = 0;
00582 
00583   // Before propagation starts, build, for each block, a list of
00584   // unique predecessors and successors. This is necessary to handle
00585   // identical edges in multiway branches. Since we visit all blocks and all
00586   // edges of the CFG, it is cleaner to build these lists once at the start
00587   // of the pass.
00588   buildEdges(F);
00589 
00590   // Propagate until we converge or we go past the iteration limit.
00591   while (Changed && i++ < SampleProfileMaxPropagateIterations) {
00592     Changed = propagateThroughEdges(F);
00593   }
00594 
00595   // Generate MD_prof metadata for every branch instruction using the
00596   // edge weights computed during propagation.
00597   DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
00598   MDBuilder MDB(F.getContext());
00599   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
00600     BasicBlock *B = I;
00601     TerminatorInst *TI = B->getTerminator();
00602     if (TI->getNumSuccessors() == 1)
00603       continue;
00604     if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
00605       continue;
00606 
00607     DEBUG(dbgs() << "\nGetting weights for branch at line "
00608                  << TI->getDebugLoc().getLine() << ".\n");
00609     SmallVector<unsigned, 4> Weights;
00610     bool AllWeightsZero = true;
00611     for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
00612       BasicBlock *Succ = TI->getSuccessor(I);
00613       Edge E = std::make_pair(B, Succ);
00614       unsigned Weight = EdgeWeights[E];
00615       DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
00616       Weights.push_back(Weight);
00617       if (Weight != 0)
00618         AllWeightsZero = false;
00619     }
00620 
00621     // Only set weights if there is at least one non-zero weight.
00622     // In any other case, let the analyzer set weights.
00623     if (!AllWeightsZero) {
00624       DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
00625       TI->setMetadata(llvm::LLVMContext::MD_prof,
00626                       MDB.createBranchWeights(Weights));
00627     } else {
00628       DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
00629     }
00630   }
00631 }
00632 
00633 /// \brief Get the line number for the function header.
00634 ///
00635 /// This looks up function \p F in the current compilation unit and
00636 /// retrieves the line number where the function is defined. This is
00637 /// line 0 for all the samples read from the profile file. Every line
00638 /// number is relative to this line.
00639 ///
00640 /// \param F  Function object to query.
00641 ///
00642 /// \returns the line number where \p F is defined. If it returns 0,
00643 ///          it means that there is no debug information available for \p F.
00644 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
00645   NamedMDNode *CUNodes = F.getParent()->getNamedMetadata("llvm.dbg.cu");
00646   if (CUNodes) {
00647     for (unsigned I = 0, E1 = CUNodes->getNumOperands(); I != E1; ++I) {
00648       DICompileUnit CU(CUNodes->getOperand(I));
00649       DIArray Subprograms = CU.getSubprograms();
00650       for (unsigned J = 0, E2 = Subprograms.getNumElements(); J != E2; ++J) {
00651         DISubprogram Subprogram(Subprograms.getElement(J));
00652         if (Subprogram.describes(&F))
00653           return Subprogram.getLineNumber();
00654       }
00655     }
00656   }
00657 
00658   F.getContext().diagnose(DiagnosticInfoSampleProfile(
00659       "No debug information found in function " + F.getName()));
00660   return 0;
00661 }
00662 
00663 /// \brief Generate branch weight metadata for all branches in \p F.
00664 ///
00665 /// Branch weights are computed out of instruction samples using a
00666 /// propagation heuristic. Propagation proceeds in 3 phases:
00667 ///
00668 /// 1- Assignment of block weights. All the basic blocks in the function
00669 ///    are initial assigned the same weight as their most frequently
00670 ///    executed instruction.
00671 ///
00672 /// 2- Creation of equivalence classes. Since samples may be missing from
00673 ///    blocks, we can fill in the gaps by setting the weights of all the
00674 ///    blocks in the same equivalence class to the same weight. To compute
00675 ///    the concept of equivalence, we use dominance and loop information.
00676 ///    Two blocks B1 and B2 are in the same equivalence class if B1
00677 ///    dominates B2, B2 post-dominates B1 and both are in the same loop.
00678 ///
00679 /// 3- Propagation of block weights into edges. This uses a simple
00680 ///    propagation heuristic. The following rules are applied to every
00681 ///    block B in the CFG:
00682 ///
00683 ///    - If B has a single predecessor/successor, then the weight
00684 ///      of that edge is the weight of the block.
00685 ///
00686 ///    - If all the edges are known except one, and the weight of the
00687 ///      block is already known, the weight of the unknown edge will
00688 ///      be the weight of the block minus the sum of all the known
00689 ///      edges. If the sum of all the known edges is larger than B's weight,
00690 ///      we set the unknown edge weight to zero.
00691 ///
00692 ///    - If there is a self-referential edge, and the weight of the block is
00693 ///      known, the weight for that edge is set to the weight of the block
00694 ///      minus the weight of the other incoming edges to that block (if
00695 ///      known).
00696 ///
00697 /// Since this propagation is not guaranteed to finalize for every CFG, we
00698 /// only allow it to proceed for a limited number of iterations (controlled
00699 /// by -sample-profile-max-propagate-iterations).
00700 ///
00701 /// FIXME: Try to replace this propagation heuristic with a scheme
00702 /// that is guaranteed to finalize. A work-list approach similar to
00703 /// the standard value propagation algorithm used by SSA-CCP might
00704 /// work here.
00705 ///
00706 /// Once all the branch weights are computed, we emit the MD_prof
00707 /// metadata on B using the computed values for each of its branches.
00708 ///
00709 /// \param F The function to query.
00710 ///
00711 /// \returns true if \p F was modified. Returns false, otherwise.
00712 bool SampleProfileLoader::emitAnnotations(Function &F) {
00713   bool Changed = false;
00714 
00715   // Initialize invariants used during computation and propagation.
00716   HeaderLineno = getFunctionLoc(F);
00717   if (HeaderLineno == 0)
00718     return false;
00719 
00720   DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
00721                << ": " << HeaderLineno << "\n");
00722 
00723   // Compute basic block weights.
00724   Changed |= computeBlockWeights(F);
00725 
00726   if (Changed) {
00727     // Find equivalence classes.
00728     findEquivalenceClasses(F);
00729 
00730     // Propagate weights to all edges.
00731     propagateWeights(F);
00732   }
00733 
00734   return Changed;
00735 }
00736 
00737 char SampleProfileLoader::ID = 0;
00738 INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile",
00739                       "Sample Profile loader", false, false)
00740 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
00741 INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
00742 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
00743 INITIALIZE_PASS_DEPENDENCY(AddDiscriminators)
00744 INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile",
00745                     "Sample Profile loader", false, false)
00746 
00747 bool SampleProfileLoader::doInitialization(Module &M) {
00748   Reader.reset(new SampleProfileReader(M, Filename));
00749   ProfileIsValid = Reader->load();
00750   return true;
00751 }
00752 
00753 FunctionPass *llvm::createSampleProfileLoaderPass() {
00754   return new SampleProfileLoader(SampleProfileFile);
00755 }
00756 
00757 FunctionPass *llvm::createSampleProfileLoaderPass(StringRef Name) {
00758   return new SampleProfileLoader(Name);
00759 }
00760 
00761 bool SampleProfileLoader::runOnFunction(Function &F) {
00762   if (!ProfileIsValid)
00763     return false;
00764 
00765   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
00766   PDT = &getAnalysis<PostDominatorTree>();
00767   LI = &getAnalysis<LoopInfo>();
00768   Ctx = &F.getParent()->getContext();
00769   Samples = Reader->getSamplesFor(F);
00770   if (!Samples->empty())
00771     return emitAnnotations(F);
00772   return false;
00773 }