LLVM API Documentation

Scalarizer.cpp
Go to the documentation of this file.
00001 //===--- Scalarizer.cpp - Scalarize vector operations ---------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This pass converts vector operations into scalar operations, in order
00011 // to expose optimization opportunities on the individual scalar operations.
00012 // It is mainly intended for targets that do not have vector units, but it
00013 // may also be useful for revectorizing code to different vector widths.
00014 //
00015 //===----------------------------------------------------------------------===//
00016 
00017 #include "llvm/ADT/STLExtras.h"
00018 #include "llvm/IR/IRBuilder.h"
00019 #include "llvm/IR/InstVisitor.h"
00020 #include "llvm/Pass.h"
00021 #include "llvm/Support/CommandLine.h"
00022 #include "llvm/Transforms/Scalar.h"
00023 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
00024 
00025 using namespace llvm;
00026 
00027 #define DEBUG_TYPE "scalarizer"
00028 
00029 namespace {
00030 // Used to store the scattered form of a vector.
00031 typedef SmallVector<Value *, 8> ValueVector;
00032 
00033 // Used to map a vector Value to its scattered form.  We use std::map
00034 // because we want iterators to persist across insertion and because the
00035 // values are relatively large.
00036 typedef std::map<Value *, ValueVector> ScatterMap;
00037 
00038 // Lists Instructions that have been replaced with scalar implementations,
00039 // along with a pointer to their scattered forms.
00040 typedef SmallVector<std::pair<Instruction *, ValueVector *>, 16> GatherList;
00041 
00042 // Provides a very limited vector-like interface for lazily accessing one
00043 // component of a scattered vector or vector pointer.
00044 class Scatterer {
00045 public:
00046   Scatterer() {}
00047 
00048   // Scatter V into Size components.  If new instructions are needed,
00049   // insert them before BBI in BB.  If Cache is nonnull, use it to cache
00050   // the results.
00051   Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
00052             ValueVector *cachePtr = nullptr);
00053 
00054   // Return component I, creating a new Value for it if necessary.
00055   Value *operator[](unsigned I);
00056 
00057   // Return the number of components.
00058   unsigned size() const { return Size; }
00059 
00060 private:
00061   BasicBlock *BB;
00062   BasicBlock::iterator BBI;
00063   Value *V;
00064   ValueVector *CachePtr;
00065   PointerType *PtrTy;
00066   ValueVector Tmp;
00067   unsigned Size;
00068 };
00069 
00070 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
00071 // called Name that compares X and Y in the same way as FCI.
00072 struct FCmpSplitter {
00073   FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
00074   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
00075                     const Twine &Name) const {
00076     return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
00077   }
00078   FCmpInst &FCI;
00079 };
00080 
00081 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
00082 // called Name that compares X and Y in the same way as ICI.
00083 struct ICmpSplitter {
00084   ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
00085   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
00086                     const Twine &Name) const {
00087     return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
00088   }
00089   ICmpInst &ICI;
00090 };
00091 
00092 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
00093 // a binary operator like BO called Name with operands X and Y.
00094 struct BinarySplitter {
00095   BinarySplitter(BinaryOperator &bo) : BO(bo) {}
00096   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
00097                     const Twine &Name) const {
00098     return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
00099   }
00100   BinaryOperator &BO;
00101 };
00102 
00103 // Information about a load or store that we're scalarizing.
00104 struct VectorLayout {
00105   VectorLayout() : VecTy(nullptr), ElemTy(nullptr), VecAlign(0), ElemSize(0) {}
00106 
00107   // Return the alignment of element I.
00108   uint64_t getElemAlign(unsigned I) {
00109     return MinAlign(VecAlign, I * ElemSize);
00110   }
00111 
00112   // The type of the vector.
00113   VectorType *VecTy;
00114 
00115   // The type of each element.
00116   Type *ElemTy;
00117 
00118   // The alignment of the vector.
00119   uint64_t VecAlign;
00120 
00121   // The size of each element.
00122   uint64_t ElemSize;
00123 };
00124 
00125 class Scalarizer : public FunctionPass,
00126                    public InstVisitor<Scalarizer, bool> {
00127 public:
00128   static char ID;
00129 
00130   Scalarizer() :
00131     FunctionPass(ID) {
00132     initializeScalarizerPass(*PassRegistry::getPassRegistry());
00133   }
00134 
00135   bool doInitialization(Module &M) override;
00136   bool runOnFunction(Function &F) override;
00137 
00138   // InstVisitor methods.  They return true if the instruction was scalarized,
00139   // false if nothing changed.
00140   bool visitInstruction(Instruction &) { return false; }
00141   bool visitSelectInst(SelectInst &SI);
00142   bool visitICmpInst(ICmpInst &);
00143   bool visitFCmpInst(FCmpInst &);
00144   bool visitBinaryOperator(BinaryOperator &);
00145   bool visitGetElementPtrInst(GetElementPtrInst &);
00146   bool visitCastInst(CastInst &);
00147   bool visitBitCastInst(BitCastInst &);
00148   bool visitShuffleVectorInst(ShuffleVectorInst &);
00149   bool visitPHINode(PHINode &);
00150   bool visitLoadInst(LoadInst &);
00151   bool visitStoreInst(StoreInst &);
00152 
00153 private:
00154   Scatterer scatter(Instruction *, Value *);
00155   void gather(Instruction *, const ValueVector &);
00156   bool canTransferMetadata(unsigned Kind);
00157   void transferMetadata(Instruction *, const ValueVector &);
00158   bool getVectorLayout(Type *, unsigned, VectorLayout &);
00159   bool finish();
00160 
00161   template<typename T> bool splitBinary(Instruction &, const T &);
00162 
00163   ScatterMap Scattered;
00164   GatherList Gathered;
00165   unsigned ParallelLoopAccessMDKind;
00166   const DataLayout *DL;
00167 };
00168 
00169 char Scalarizer::ID = 0;
00170 } // end anonymous namespace
00171 
00172 // This is disabled by default because having separate loads and stores makes
00173 // it more likely that the -combiner-alias-analysis limits will be reached.
00174 static cl::opt<bool> ScalarizeLoadStore
00175   ("scalarize-load-store", cl::Hidden, cl::init(false),
00176    cl::desc("Allow the scalarizer pass to scalarize loads and store"));
00177 
00178 INITIALIZE_PASS(Scalarizer, "scalarizer", "Scalarize vector operations",
00179                 false, false)
00180 
00181 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
00182                      ValueVector *cachePtr)
00183   : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
00184   Type *Ty = V->getType();
00185   PtrTy = dyn_cast<PointerType>(Ty);
00186   if (PtrTy)
00187     Ty = PtrTy->getElementType();
00188   Size = Ty->getVectorNumElements();
00189   if (!CachePtr)
00190     Tmp.resize(Size, nullptr);
00191   else if (CachePtr->empty())
00192     CachePtr->resize(Size, nullptr);
00193   else
00194     assert(Size == CachePtr->size() && "Inconsistent vector sizes");
00195 }
00196 
00197 // Return component I, creating a new Value for it if necessary.
00198 Value *Scatterer::operator[](unsigned I) {
00199   ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
00200   // Try to reuse a previous value.
00201   if (CV[I])
00202     return CV[I];
00203   IRBuilder<> Builder(BB, BBI);
00204   if (PtrTy) {
00205     if (!CV[0]) {
00206       Type *Ty =
00207         PointerType::get(PtrTy->getElementType()->getVectorElementType(),
00208                          PtrTy->getAddressSpace());
00209       CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0");
00210     }
00211     if (I != 0)
00212       CV[I] = Builder.CreateConstGEP1_32(CV[0], I,
00213                                          V->getName() + ".i" + Twine(I));
00214   } else {
00215     // Search through a chain of InsertElementInsts looking for element I.
00216     // Record other elements in the cache.  The new V is still suitable
00217     // for all uncached indices.
00218     for (;;) {
00219       InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
00220       if (!Insert)
00221         break;
00222       ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
00223       if (!Idx)
00224         break;
00225       unsigned J = Idx->getZExtValue();
00226       CV[J] = Insert->getOperand(1);
00227       V = Insert->getOperand(0);
00228       if (I == J)
00229         return CV[J];
00230     }
00231     CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
00232                                          V->getName() + ".i" + Twine(I));
00233   }
00234   return CV[I];
00235 }
00236 
00237 bool Scalarizer::doInitialization(Module &M) {
00238   ParallelLoopAccessMDKind =
00239     M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
00240   return false;
00241 }
00242 
00243 bool Scalarizer::runOnFunction(Function &F) {
00244   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
00245   DL = DLP ? &DLP->getDataLayout() : nullptr;
00246   for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
00247     BasicBlock *BB = BBI;
00248     for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
00249       Instruction *I = II;
00250       bool Done = visit(I);
00251       ++II;
00252       if (Done && I->getType()->isVoidTy())
00253         I->eraseFromParent();
00254     }
00255   }
00256   return finish();
00257 }
00258 
00259 // Return a scattered form of V that can be accessed by Point.  V must be a
00260 // vector or a pointer to a vector.
00261 Scatterer Scalarizer::scatter(Instruction *Point, Value *V) {
00262   if (Argument *VArg = dyn_cast<Argument>(V)) {
00263     // Put the scattered form of arguments in the entry block,
00264     // so that it can be used everywhere.
00265     Function *F = VArg->getParent();
00266     BasicBlock *BB = &F->getEntryBlock();
00267     return Scatterer(BB, BB->begin(), V, &Scattered[V]);
00268   }
00269   if (Instruction *VOp = dyn_cast<Instruction>(V)) {
00270     // Put the scattered form of an instruction directly after the
00271     // instruction.
00272     BasicBlock *BB = VOp->getParent();
00273     return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
00274                      V, &Scattered[V]);
00275   }
00276   // In the fallback case, just put the scattered before Point and
00277   // keep the result local to Point.
00278   return Scatterer(Point->getParent(), Point, V);
00279 }
00280 
00281 // Replace Op with the gathered form of the components in CV.  Defer the
00282 // deletion of Op and creation of the gathered form to the end of the pass,
00283 // so that we can avoid creating the gathered form if all uses of Op are
00284 // replaced with uses of CV.
00285 void Scalarizer::gather(Instruction *Op, const ValueVector &CV) {
00286   // Since we're not deleting Op yet, stub out its operands, so that it
00287   // doesn't make anything live unnecessarily.
00288   for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
00289     Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
00290 
00291   transferMetadata(Op, CV);
00292 
00293   // If we already have a scattered form of Op (created from ExtractElements
00294   // of Op itself), replace them with the new form.
00295   ValueVector &SV = Scattered[Op];
00296   if (!SV.empty()) {
00297     for (unsigned I = 0, E = SV.size(); I != E; ++I) {
00298       Instruction *Old = cast<Instruction>(SV[I]);
00299       CV[I]->takeName(Old);
00300       Old->replaceAllUsesWith(CV[I]);
00301       Old->eraseFromParent();
00302     }
00303   }
00304   SV = CV;
00305   Gathered.push_back(GatherList::value_type(Op, &SV));
00306 }
00307 
00308 // Return true if it is safe to transfer the given metadata tag from
00309 // vector to scalar instructions.
00310 bool Scalarizer::canTransferMetadata(unsigned Tag) {
00311   return (Tag == LLVMContext::MD_tbaa
00312           || Tag == LLVMContext::MD_fpmath
00313           || Tag == LLVMContext::MD_tbaa_struct
00314           || Tag == LLVMContext::MD_invariant_load
00315           || Tag == LLVMContext::MD_alias_scope
00316           || Tag == LLVMContext::MD_noalias
00317           || Tag == ParallelLoopAccessMDKind);
00318 }
00319 
00320 // Transfer metadata from Op to the instructions in CV if it is known
00321 // to be safe to do so.
00322 void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
00323   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
00324   Op->getAllMetadataOtherThanDebugLoc(MDs);
00325   for (unsigned I = 0, E = CV.size(); I != E; ++I) {
00326     if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
00327       for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator
00328              MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI)
00329         if (canTransferMetadata(MI->first))
00330           New->setMetadata(MI->first, MI->second);
00331       New->setDebugLoc(Op->getDebugLoc());
00332     }
00333   }
00334 }
00335 
00336 // Try to fill in Layout from Ty, returning true on success.  Alignment is
00337 // the alignment of the vector, or 0 if the ABI default should be used.
00338 bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
00339                                  VectorLayout &Layout) {
00340   if (!DL)
00341     return false;
00342 
00343   // Make sure we're dealing with a vector.
00344   Layout.VecTy = dyn_cast<VectorType>(Ty);
00345   if (!Layout.VecTy)
00346     return false;
00347 
00348   // Check that we're dealing with full-byte elements.
00349   Layout.ElemTy = Layout.VecTy->getElementType();
00350   if (DL->getTypeSizeInBits(Layout.ElemTy) !=
00351       DL->getTypeStoreSizeInBits(Layout.ElemTy))
00352     return false;
00353 
00354   if (Alignment)
00355     Layout.VecAlign = Alignment;
00356   else
00357     Layout.VecAlign = DL->getABITypeAlignment(Layout.VecTy);
00358   Layout.ElemSize = DL->getTypeStoreSize(Layout.ElemTy);
00359   return true;
00360 }
00361 
00362 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
00363 // to create an instruction like I with operands X and Y and name Name.
00364 template<typename Splitter>
00365 bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) {
00366   VectorType *VT = dyn_cast<VectorType>(I.getType());
00367   if (!VT)
00368     return false;
00369 
00370   unsigned NumElems = VT->getNumElements();
00371   IRBuilder<> Builder(I.getParent(), &I);
00372   Scatterer Op0 = scatter(&I, I.getOperand(0));
00373   Scatterer Op1 = scatter(&I, I.getOperand(1));
00374   assert(Op0.size() == NumElems && "Mismatched binary operation");
00375   assert(Op1.size() == NumElems && "Mismatched binary operation");
00376   ValueVector Res;
00377   Res.resize(NumElems);
00378   for (unsigned Elem = 0; Elem < NumElems; ++Elem)
00379     Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
00380                       I.getName() + ".i" + Twine(Elem));
00381   gather(&I, Res);
00382   return true;
00383 }
00384 
00385 bool Scalarizer::visitSelectInst(SelectInst &SI) {
00386   VectorType *VT = dyn_cast<VectorType>(SI.getType());
00387   if (!VT)
00388     return false;
00389 
00390   unsigned NumElems = VT->getNumElements();
00391   IRBuilder<> Builder(SI.getParent(), &SI);
00392   Scatterer Op1 = scatter(&SI, SI.getOperand(1));
00393   Scatterer Op2 = scatter(&SI, SI.getOperand(2));
00394   assert(Op1.size() == NumElems && "Mismatched select");
00395   assert(Op2.size() == NumElems && "Mismatched select");
00396   ValueVector Res;
00397   Res.resize(NumElems);
00398 
00399   if (SI.getOperand(0)->getType()->isVectorTy()) {
00400     Scatterer Op0 = scatter(&SI, SI.getOperand(0));
00401     assert(Op0.size() == NumElems && "Mismatched select");
00402     for (unsigned I = 0; I < NumElems; ++I)
00403       Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
00404                                     SI.getName() + ".i" + Twine(I));
00405   } else {
00406     Value *Op0 = SI.getOperand(0);
00407     for (unsigned I = 0; I < NumElems; ++I)
00408       Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
00409                                     SI.getName() + ".i" + Twine(I));
00410   }
00411   gather(&SI, Res);
00412   return true;
00413 }
00414 
00415 bool Scalarizer::visitICmpInst(ICmpInst &ICI) {
00416   return splitBinary(ICI, ICmpSplitter(ICI));
00417 }
00418 
00419 bool Scalarizer::visitFCmpInst(FCmpInst &FCI) {
00420   return splitBinary(FCI, FCmpSplitter(FCI));
00421 }
00422 
00423 bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) {
00424   return splitBinary(BO, BinarySplitter(BO));
00425 }
00426 
00427 bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
00428   VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
00429   if (!VT)
00430     return false;
00431 
00432   IRBuilder<> Builder(GEPI.getParent(), &GEPI);
00433   unsigned NumElems = VT->getNumElements();
00434   unsigned NumIndices = GEPI.getNumIndices();
00435 
00436   Scatterer Base = scatter(&GEPI, GEPI.getOperand(0));
00437 
00438   SmallVector<Scatterer, 8> Ops;
00439   Ops.resize(NumIndices);
00440   for (unsigned I = 0; I < NumIndices; ++I)
00441     Ops[I] = scatter(&GEPI, GEPI.getOperand(I + 1));
00442 
00443   ValueVector Res;
00444   Res.resize(NumElems);
00445   for (unsigned I = 0; I < NumElems; ++I) {
00446     SmallVector<Value *, 8> Indices;
00447     Indices.resize(NumIndices);
00448     for (unsigned J = 0; J < NumIndices; ++J)
00449       Indices[J] = Ops[J][I];
00450     Res[I] = Builder.CreateGEP(Base[I], Indices,
00451                                GEPI.getName() + ".i" + Twine(I));
00452     if (GEPI.isInBounds())
00453       if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
00454         NewGEPI->setIsInBounds();
00455   }
00456   gather(&GEPI, Res);
00457   return true;
00458 }
00459 
00460 bool Scalarizer::visitCastInst(CastInst &CI) {
00461   VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
00462   if (!VT)
00463     return false;
00464 
00465   unsigned NumElems = VT->getNumElements();
00466   IRBuilder<> Builder(CI.getParent(), &CI);
00467   Scatterer Op0 = scatter(&CI, CI.getOperand(0));
00468   assert(Op0.size() == NumElems && "Mismatched cast");
00469   ValueVector Res;
00470   Res.resize(NumElems);
00471   for (unsigned I = 0; I < NumElems; ++I)
00472     Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
00473                                 CI.getName() + ".i" + Twine(I));
00474   gather(&CI, Res);
00475   return true;
00476 }
00477 
00478 bool Scalarizer::visitBitCastInst(BitCastInst &BCI) {
00479   VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
00480   VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
00481   if (!DstVT || !SrcVT)
00482     return false;
00483 
00484   unsigned DstNumElems = DstVT->getNumElements();
00485   unsigned SrcNumElems = SrcVT->getNumElements();
00486   IRBuilder<> Builder(BCI.getParent(), &BCI);
00487   Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
00488   ValueVector Res;
00489   Res.resize(DstNumElems);
00490 
00491   if (DstNumElems == SrcNumElems) {
00492     for (unsigned I = 0; I < DstNumElems; ++I)
00493       Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
00494                                      BCI.getName() + ".i" + Twine(I));
00495   } else if (DstNumElems > SrcNumElems) {
00496     // <M x t1> -> <N*M x t2>.  Convert each t1 to <N x t2> and copy the
00497     // individual elements to the destination.
00498     unsigned FanOut = DstNumElems / SrcNumElems;
00499     Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
00500     unsigned ResI = 0;
00501     for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
00502       Value *V = Op0[Op0I];
00503       Instruction *VI;
00504       // Look through any existing bitcasts before converting to <N x t2>.
00505       // In the best case, the resulting conversion might be a no-op.
00506       while ((VI = dyn_cast<Instruction>(V)) &&
00507              VI->getOpcode() == Instruction::BitCast)
00508         V = VI->getOperand(0);
00509       V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
00510       Scatterer Mid = scatter(&BCI, V);
00511       for (unsigned MidI = 0; MidI < FanOut; ++MidI)
00512         Res[ResI++] = Mid[MidI];
00513     }
00514   } else {
00515     // <N*M x t1> -> <M x t2>.  Convert each group of <N x t1> into a t2.
00516     unsigned FanIn = SrcNumElems / DstNumElems;
00517     Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
00518     unsigned Op0I = 0;
00519     for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
00520       Value *V = UndefValue::get(MidTy);
00521       for (unsigned MidI = 0; MidI < FanIn; ++MidI)
00522         V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
00523                                         BCI.getName() + ".i" + Twine(ResI)
00524                                         + ".upto" + Twine(MidI));
00525       Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
00526                                         BCI.getName() + ".i" + Twine(ResI));
00527     }
00528   }
00529   gather(&BCI, Res);
00530   return true;
00531 }
00532 
00533 bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
00534   VectorType *VT = dyn_cast<VectorType>(SVI.getType());
00535   if (!VT)
00536     return false;
00537 
00538   unsigned NumElems = VT->getNumElements();
00539   Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
00540   Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
00541   ValueVector Res;
00542   Res.resize(NumElems);
00543 
00544   for (unsigned I = 0; I < NumElems; ++I) {
00545     int Selector = SVI.getMaskValue(I);
00546     if (Selector < 0)
00547       Res[I] = UndefValue::get(VT->getElementType());
00548     else if (unsigned(Selector) < Op0.size())
00549       Res[I] = Op0[Selector];
00550     else
00551       Res[I] = Op1[Selector - Op0.size()];
00552   }
00553   gather(&SVI, Res);
00554   return true;
00555 }
00556 
00557 bool Scalarizer::visitPHINode(PHINode &PHI) {
00558   VectorType *VT = dyn_cast<VectorType>(PHI.getType());
00559   if (!VT)
00560     return false;
00561 
00562   unsigned NumElems = VT->getNumElements();
00563   IRBuilder<> Builder(PHI.getParent(), &PHI);
00564   ValueVector Res;
00565   Res.resize(NumElems);
00566 
00567   unsigned NumOps = PHI.getNumOperands();
00568   for (unsigned I = 0; I < NumElems; ++I)
00569     Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
00570                                PHI.getName() + ".i" + Twine(I));
00571 
00572   for (unsigned I = 0; I < NumOps; ++I) {
00573     Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
00574     BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
00575     for (unsigned J = 0; J < NumElems; ++J)
00576       cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
00577   }
00578   gather(&PHI, Res);
00579   return true;
00580 }
00581 
00582 bool Scalarizer::visitLoadInst(LoadInst &LI) {
00583   if (!ScalarizeLoadStore)
00584     return false;
00585   if (!LI.isSimple())
00586     return false;
00587 
00588   VectorLayout Layout;
00589   if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout))
00590     return false;
00591 
00592   unsigned NumElems = Layout.VecTy->getNumElements();
00593   IRBuilder<> Builder(LI.getParent(), &LI);
00594   Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
00595   ValueVector Res;
00596   Res.resize(NumElems);
00597 
00598   for (unsigned I = 0; I < NumElems; ++I)
00599     Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I),
00600                                        LI.getName() + ".i" + Twine(I));
00601   gather(&LI, Res);
00602   return true;
00603 }
00604 
00605 bool Scalarizer::visitStoreInst(StoreInst &SI) {
00606   if (!ScalarizeLoadStore)
00607     return false;
00608   if (!SI.isSimple())
00609     return false;
00610 
00611   VectorLayout Layout;
00612   Value *FullValue = SI.getValueOperand();
00613   if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout))
00614     return false;
00615 
00616   unsigned NumElems = Layout.VecTy->getNumElements();
00617   IRBuilder<> Builder(SI.getParent(), &SI);
00618   Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
00619   Scatterer Val = scatter(&SI, FullValue);
00620 
00621   ValueVector Stores;
00622   Stores.resize(NumElems);
00623   for (unsigned I = 0; I < NumElems; ++I) {
00624     unsigned Align = Layout.getElemAlign(I);
00625     Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
00626   }
00627   transferMetadata(&SI, Stores);
00628   return true;
00629 }
00630 
00631 // Delete the instructions that we scalarized.  If a full vector result
00632 // is still needed, recreate it using InsertElements.
00633 bool Scalarizer::finish() {
00634   if (Gathered.empty())
00635     return false;
00636   for (GatherList::iterator GMI = Gathered.begin(), GME = Gathered.end();
00637        GMI != GME; ++GMI) {
00638     Instruction *Op = GMI->first;
00639     ValueVector &CV = *GMI->second;
00640     if (!Op->use_empty()) {
00641       // The value is still needed, so recreate it using a series of
00642       // InsertElements.
00643       Type *Ty = Op->getType();
00644       Value *Res = UndefValue::get(Ty);
00645       BasicBlock *BB = Op->getParent();
00646       unsigned Count = Ty->getVectorNumElements();
00647       IRBuilder<> Builder(BB, Op);
00648       if (isa<PHINode>(Op))
00649         Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
00650       for (unsigned I = 0; I < Count; ++I)
00651         Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
00652                                           Op->getName() + ".upto" + Twine(I));
00653       Res->takeName(Op);
00654       Op->replaceAllUsesWith(Res);
00655     }
00656     Op->eraseFromParent();
00657   }
00658   Gathered.clear();
00659   Scattered.clear();
00660   return true;
00661 }
00662 
00663 FunctionPass *llvm::createScalarizerPass() {
00664   return new Scalarizer();
00665 }