LLVM API Documentation
00001 //===- SetTheory.cpp - Generate ordered sets from DAG expressions ---------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the SetTheory class that computes ordered sets of 00011 // Records from DAG expressions. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "llvm/Support/Format.h" 00016 #include "llvm/TableGen/Error.h" 00017 #include "llvm/TableGen/Record.h" 00018 #include "llvm/TableGen/SetTheory.h" 00019 00020 using namespace llvm; 00021 00022 // Define the standard operators. 00023 namespace { 00024 00025 typedef SetTheory::RecSet RecSet; 00026 typedef SetTheory::RecVec RecVec; 00027 00028 // (add a, b, ...) Evaluate and union all arguments. 00029 struct AddOp : public SetTheory::Operator { 00030 void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts, 00031 ArrayRef<SMLoc> Loc) override { 00032 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); 00033 } 00034 }; 00035 00036 // (sub Add, Sub, ...) Set difference. 00037 struct SubOp : public SetTheory::Operator { 00038 void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts, 00039 ArrayRef<SMLoc> Loc) override { 00040 if (Expr->arg_size() < 2) 00041 PrintFatalError(Loc, "Set difference needs at least two arguments: " + 00042 Expr->getAsString()); 00043 RecSet Add, Sub; 00044 ST.evaluate(*Expr->arg_begin(), Add, Loc); 00045 ST.evaluate(Expr->arg_begin() + 1, Expr->arg_end(), Sub, Loc); 00046 for (RecSet::iterator I = Add.begin(), E = Add.end(); I != E; ++I) 00047 if (!Sub.count(*I)) 00048 Elts.insert(*I); 00049 } 00050 }; 00051 00052 // (and S1, S2) Set intersection. 00053 struct AndOp : public SetTheory::Operator { 00054 void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts, 00055 ArrayRef<SMLoc> Loc) override { 00056 if (Expr->arg_size() != 2) 00057 PrintFatalError(Loc, "Set intersection requires two arguments: " + 00058 Expr->getAsString()); 00059 RecSet S1, S2; 00060 ST.evaluate(Expr->arg_begin()[0], S1, Loc); 00061 ST.evaluate(Expr->arg_begin()[1], S2, Loc); 00062 for (RecSet::iterator I = S1.begin(), E = S1.end(); I != E; ++I) 00063 if (S2.count(*I)) 00064 Elts.insert(*I); 00065 } 00066 }; 00067 00068 // SetIntBinOp - Abstract base class for (Op S, N) operators. 00069 struct SetIntBinOp : public SetTheory::Operator { 00070 virtual void apply2(SetTheory &ST, DagInit *Expr, RecSet &Set, int64_t N, 00071 RecSet &Elts, ArrayRef<SMLoc> Loc) = 0; 00072 00073 void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts, 00074 ArrayRef<SMLoc> Loc) override { 00075 if (Expr->arg_size() != 2) 00076 PrintFatalError(Loc, "Operator requires (Op Set, Int) arguments: " + 00077 Expr->getAsString()); 00078 RecSet Set; 00079 ST.evaluate(Expr->arg_begin()[0], Set, Loc); 00080 IntInit *II = dyn_cast<IntInit>(Expr->arg_begin()[1]); 00081 if (!II) 00082 PrintFatalError(Loc, "Second argument must be an integer: " + 00083 Expr->getAsString()); 00084 apply2(ST, Expr, Set, II->getValue(), Elts, Loc); 00085 } 00086 }; 00087 00088 // (shl S, N) Shift left, remove the first N elements. 00089 struct ShlOp : public SetIntBinOp { 00090 void apply2(SetTheory &ST, DagInit *Expr, RecSet &Set, int64_t N, 00091 RecSet &Elts, ArrayRef<SMLoc> Loc) override { 00092 if (N < 0) 00093 PrintFatalError(Loc, "Positive shift required: " + 00094 Expr->getAsString()); 00095 if (unsigned(N) < Set.size()) 00096 Elts.insert(Set.begin() + N, Set.end()); 00097 } 00098 }; 00099 00100 // (trunc S, N) Truncate after the first N elements. 00101 struct TruncOp : public SetIntBinOp { 00102 void apply2(SetTheory &ST, DagInit *Expr, RecSet &Set, int64_t N, 00103 RecSet &Elts, ArrayRef<SMLoc> Loc) override { 00104 if (N < 0) 00105 PrintFatalError(Loc, "Positive length required: " + 00106 Expr->getAsString()); 00107 if (unsigned(N) > Set.size()) 00108 N = Set.size(); 00109 Elts.insert(Set.begin(), Set.begin() + N); 00110 } 00111 }; 00112 00113 // Left/right rotation. 00114 struct RotOp : public SetIntBinOp { 00115 const bool Reverse; 00116 00117 RotOp(bool Rev) : Reverse(Rev) {} 00118 00119 void apply2(SetTheory &ST, DagInit *Expr, RecSet &Set, int64_t N, 00120 RecSet &Elts, ArrayRef<SMLoc> Loc) override { 00121 if (Reverse) 00122 N = -N; 00123 // N > 0 -> rotate left, N < 0 -> rotate right. 00124 if (Set.empty()) 00125 return; 00126 if (N < 0) 00127 N = Set.size() - (-N % Set.size()); 00128 else 00129 N %= Set.size(); 00130 Elts.insert(Set.begin() + N, Set.end()); 00131 Elts.insert(Set.begin(), Set.begin() + N); 00132 } 00133 }; 00134 00135 // (decimate S, N) Pick every N'th element of S. 00136 struct DecimateOp : public SetIntBinOp { 00137 void apply2(SetTheory &ST, DagInit *Expr, RecSet &Set, int64_t N, 00138 RecSet &Elts, ArrayRef<SMLoc> Loc) override { 00139 if (N <= 0) 00140 PrintFatalError(Loc, "Positive stride required: " + 00141 Expr->getAsString()); 00142 for (unsigned I = 0; I < Set.size(); I += N) 00143 Elts.insert(Set[I]); 00144 } 00145 }; 00146 00147 // (interleave S1, S2, ...) Interleave elements of the arguments. 00148 struct InterleaveOp : public SetTheory::Operator { 00149 void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts, 00150 ArrayRef<SMLoc> Loc) override { 00151 // Evaluate the arguments individually. 00152 SmallVector<RecSet, 4> Args(Expr->getNumArgs()); 00153 unsigned MaxSize = 0; 00154 for (unsigned i = 0, e = Expr->getNumArgs(); i != e; ++i) { 00155 ST.evaluate(Expr->getArg(i), Args[i], Loc); 00156 MaxSize = std::max(MaxSize, unsigned(Args[i].size())); 00157 } 00158 // Interleave arguments into Elts. 00159 for (unsigned n = 0; n != MaxSize; ++n) 00160 for (unsigned i = 0, e = Expr->getNumArgs(); i != e; ++i) 00161 if (n < Args[i].size()) 00162 Elts.insert(Args[i][n]); 00163 } 00164 }; 00165 00166 // (sequence "Format", From, To) Generate a sequence of records by name. 00167 struct SequenceOp : public SetTheory::Operator { 00168 void apply(SetTheory &ST, DagInit *Expr, RecSet &Elts, 00169 ArrayRef<SMLoc> Loc) override { 00170 int Step = 1; 00171 if (Expr->arg_size() > 4) 00172 PrintFatalError(Loc, "Bad args to (sequence \"Format\", From, To): " + 00173 Expr->getAsString()); 00174 else if (Expr->arg_size() == 4) { 00175 if (IntInit *II = dyn_cast<IntInit>(Expr->arg_begin()[3])) { 00176 Step = II->getValue(); 00177 } else 00178 PrintFatalError(Loc, "Stride must be an integer: " + 00179 Expr->getAsString()); 00180 } 00181 00182 std::string Format; 00183 if (StringInit *SI = dyn_cast<StringInit>(Expr->arg_begin()[0])) 00184 Format = SI->getValue(); 00185 else 00186 PrintFatalError(Loc, "Format must be a string: " + Expr->getAsString()); 00187 00188 int64_t From, To; 00189 if (IntInit *II = dyn_cast<IntInit>(Expr->arg_begin()[1])) 00190 From = II->getValue(); 00191 else 00192 PrintFatalError(Loc, "From must be an integer: " + Expr->getAsString()); 00193 if (From < 0 || From >= (1 << 30)) 00194 PrintFatalError(Loc, "From out of range"); 00195 00196 if (IntInit *II = dyn_cast<IntInit>(Expr->arg_begin()[2])) 00197 To = II->getValue(); 00198 else 00199 PrintFatalError(Loc, "From must be an integer: " + Expr->getAsString()); 00200 if (To < 0 || To >= (1 << 30)) 00201 PrintFatalError(Loc, "To out of range"); 00202 00203 RecordKeeper &Records = 00204 cast<DefInit>(Expr->getOperator())->getDef()->getRecords(); 00205 00206 Step *= From <= To ? 1 : -1; 00207 while (true) { 00208 if (Step > 0 && From > To) 00209 break; 00210 else if (Step < 0 && From < To) 00211 break; 00212 std::string Name; 00213 raw_string_ostream OS(Name); 00214 OS << format(Format.c_str(), unsigned(From)); 00215 Record *Rec = Records.getDef(OS.str()); 00216 if (!Rec) 00217 PrintFatalError(Loc, "No def named '" + Name + "': " + 00218 Expr->getAsString()); 00219 // Try to reevaluate Rec in case it is a set. 00220 if (const RecVec *Result = ST.expand(Rec)) 00221 Elts.insert(Result->begin(), Result->end()); 00222 else 00223 Elts.insert(Rec); 00224 00225 From += Step; 00226 } 00227 } 00228 }; 00229 00230 // Expand a Def into a set by evaluating one of its fields. 00231 struct FieldExpander : public SetTheory::Expander { 00232 StringRef FieldName; 00233 00234 FieldExpander(StringRef fn) : FieldName(fn) {} 00235 00236 void expand(SetTheory &ST, Record *Def, RecSet &Elts) override { 00237 ST.evaluate(Def->getValueInit(FieldName), Elts, Def->getLoc()); 00238 } 00239 }; 00240 } // end anonymous namespace 00241 00242 // Pin the vtables to this file. 00243 void SetTheory::Operator::anchor() {} 00244 void SetTheory::Expander::anchor() {} 00245 00246 00247 SetTheory::SetTheory() { 00248 addOperator("add", new AddOp); 00249 addOperator("sub", new SubOp); 00250 addOperator("and", new AndOp); 00251 addOperator("shl", new ShlOp); 00252 addOperator("trunc", new TruncOp); 00253 addOperator("rotl", new RotOp(false)); 00254 addOperator("rotr", new RotOp(true)); 00255 addOperator("decimate", new DecimateOp); 00256 addOperator("interleave", new InterleaveOp); 00257 addOperator("sequence", new SequenceOp); 00258 } 00259 00260 void SetTheory::addOperator(StringRef Name, Operator *Op) { 00261 Operators[Name] = Op; 00262 } 00263 00264 void SetTheory::addExpander(StringRef ClassName, Expander *E) { 00265 Expanders[ClassName] = E; 00266 } 00267 00268 void SetTheory::addFieldExpander(StringRef ClassName, StringRef FieldName) { 00269 addExpander(ClassName, new FieldExpander(FieldName)); 00270 } 00271 00272 void SetTheory::evaluate(Init *Expr, RecSet &Elts, ArrayRef<SMLoc> Loc) { 00273 // A def in a list can be a just an element, or it may expand. 00274 if (DefInit *Def = dyn_cast<DefInit>(Expr)) { 00275 if (const RecVec *Result = expand(Def->getDef())) 00276 return Elts.insert(Result->begin(), Result->end()); 00277 Elts.insert(Def->getDef()); 00278 return; 00279 } 00280 00281 // Lists simply expand. 00282 if (ListInit *LI = dyn_cast<ListInit>(Expr)) 00283 return evaluate(LI->begin(), LI->end(), Elts, Loc); 00284 00285 // Anything else must be a DAG. 00286 DagInit *DagExpr = dyn_cast<DagInit>(Expr); 00287 if (!DagExpr) 00288 PrintFatalError(Loc, "Invalid set element: " + Expr->getAsString()); 00289 DefInit *OpInit = dyn_cast<DefInit>(DagExpr->getOperator()); 00290 if (!OpInit) 00291 PrintFatalError(Loc, "Bad set expression: " + Expr->getAsString()); 00292 Operator *Op = Operators.lookup(OpInit->getDef()->getName()); 00293 if (!Op) 00294 PrintFatalError(Loc, "Unknown set operator: " + Expr->getAsString()); 00295 Op->apply(*this, DagExpr, Elts, Loc); 00296 } 00297 00298 const RecVec *SetTheory::expand(Record *Set) { 00299 // Check existing entries for Set and return early. 00300 ExpandMap::iterator I = Expansions.find(Set); 00301 if (I != Expansions.end()) 00302 return &I->second; 00303 00304 // This is the first time we see Set. Find a suitable expander. 00305 const std::vector<Record*> &SC = Set->getSuperClasses(); 00306 for (unsigned i = 0, e = SC.size(); i != e; ++i) { 00307 // Skip unnamed superclasses. 00308 if (!dyn_cast<StringInit>(SC[i]->getNameInit())) 00309 continue; 00310 if (Expander *Exp = Expanders.lookup(SC[i]->getName())) { 00311 // This breaks recursive definitions. 00312 RecVec &EltVec = Expansions[Set]; 00313 RecSet Elts; 00314 Exp->expand(*this, Set, Elts); 00315 EltVec.assign(Elts.begin(), Elts.end()); 00316 return &EltVec; 00317 } 00318 } 00319 00320 // Set is not expandable. 00321 return nullptr; 00322 } 00323