LLVM API Documentation
00001 //===-- StackColoring.cpp -------------------------------------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This pass implements the stack-coloring optimization that looks for 00011 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END), 00012 // which represent the possible lifetime of stack slots. It attempts to 00013 // merge disjoint stack slots and reduce the used stack space. 00014 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots. 00015 // 00016 // TODO: In the future we plan to improve stack coloring in the following ways: 00017 // 1. Allow merging multiple small slots into a single larger slot at different 00018 // offsets. 00019 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with 00020 // spill slots. 00021 // 00022 //===----------------------------------------------------------------------===// 00023 00024 #include "llvm/CodeGen/Passes.h" 00025 #include "llvm/ADT/BitVector.h" 00026 #include "llvm/ADT/DepthFirstIterator.h" 00027 #include "llvm/ADT/PostOrderIterator.h" 00028 #include "llvm/ADT/SetVector.h" 00029 #include "llvm/ADT/SmallPtrSet.h" 00030 #include "llvm/ADT/SparseSet.h" 00031 #include "llvm/ADT/Statistic.h" 00032 #include "llvm/Analysis/ValueTracking.h" 00033 #include "llvm/CodeGen/LiveInterval.h" 00034 #include "llvm/CodeGen/MachineBasicBlock.h" 00035 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 00036 #include "llvm/CodeGen/MachineDominators.h" 00037 #include "llvm/CodeGen/MachineFrameInfo.h" 00038 #include "llvm/CodeGen/MachineFunctionPass.h" 00039 #include "llvm/CodeGen/MachineLoopInfo.h" 00040 #include "llvm/CodeGen/MachineMemOperand.h" 00041 #include "llvm/CodeGen/MachineModuleInfo.h" 00042 #include "llvm/CodeGen/MachineRegisterInfo.h" 00043 #include "llvm/CodeGen/PseudoSourceValue.h" 00044 #include "llvm/CodeGen/SlotIndexes.h" 00045 #include "llvm/CodeGen/StackProtector.h" 00046 #include "llvm/IR/DebugInfo.h" 00047 #include "llvm/IR/Dominators.h" 00048 #include "llvm/IR/Function.h" 00049 #include "llvm/IR/Instructions.h" 00050 #include "llvm/IR/Module.h" 00051 #include "llvm/MC/MCInstrItineraries.h" 00052 #include "llvm/Support/CommandLine.h" 00053 #include "llvm/Support/Debug.h" 00054 #include "llvm/Support/raw_ostream.h" 00055 #include "llvm/Target/TargetInstrInfo.h" 00056 #include "llvm/Target/TargetRegisterInfo.h" 00057 00058 using namespace llvm; 00059 00060 #define DEBUG_TYPE "stackcoloring" 00061 00062 static cl::opt<bool> 00063 DisableColoring("no-stack-coloring", 00064 cl::init(false), cl::Hidden, 00065 cl::desc("Disable stack coloring")); 00066 00067 /// The user may write code that uses allocas outside of the declared lifetime 00068 /// zone. This can happen when the user returns a reference to a local 00069 /// data-structure. We can detect these cases and decide not to optimize the 00070 /// code. If this flag is enabled, we try to save the user. 00071 static cl::opt<bool> 00072 ProtectFromEscapedAllocas("protect-from-escaped-allocas", 00073 cl::init(false), cl::Hidden, 00074 cl::desc("Do not optimize lifetime zones that " 00075 "are broken")); 00076 00077 STATISTIC(NumMarkerSeen, "Number of lifetime markers found."); 00078 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots."); 00079 STATISTIC(StackSlotMerged, "Number of stack slot merged."); 00080 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region"); 00081 00082 //===----------------------------------------------------------------------===// 00083 // StackColoring Pass 00084 //===----------------------------------------------------------------------===// 00085 00086 namespace { 00087 /// StackColoring - A machine pass for merging disjoint stack allocations, 00088 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions. 00089 class StackColoring : public MachineFunctionPass { 00090 MachineFrameInfo *MFI; 00091 MachineFunction *MF; 00092 00093 /// A class representing liveness information for a single basic block. 00094 /// Each bit in the BitVector represents the liveness property 00095 /// for a different stack slot. 00096 struct BlockLifetimeInfo { 00097 /// Which slots BEGINs in each basic block. 00098 BitVector Begin; 00099 /// Which slots ENDs in each basic block. 00100 BitVector End; 00101 /// Which slots are marked as LIVE_IN, coming into each basic block. 00102 BitVector LiveIn; 00103 /// Which slots are marked as LIVE_OUT, coming out of each basic block. 00104 BitVector LiveOut; 00105 }; 00106 00107 /// Maps active slots (per bit) for each basic block. 00108 typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap; 00109 LivenessMap BlockLiveness; 00110 00111 /// Maps serial numbers to basic blocks. 00112 DenseMap<const MachineBasicBlock*, int> BasicBlocks; 00113 /// Maps basic blocks to a serial number. 00114 SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering; 00115 00116 /// Maps liveness intervals for each slot. 00117 SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals; 00118 /// VNInfo is used for the construction of LiveIntervals. 00119 VNInfo::Allocator VNInfoAllocator; 00120 /// SlotIndex analysis object. 00121 SlotIndexes *Indexes; 00122 /// The stack protector object. 00123 StackProtector *SP; 00124 00125 /// The list of lifetime markers found. These markers are to be removed 00126 /// once the coloring is done. 00127 SmallVector<MachineInstr*, 8> Markers; 00128 00129 public: 00130 static char ID; 00131 StackColoring() : MachineFunctionPass(ID) { 00132 initializeStackColoringPass(*PassRegistry::getPassRegistry()); 00133 } 00134 void getAnalysisUsage(AnalysisUsage &AU) const override; 00135 bool runOnMachineFunction(MachineFunction &MF) override; 00136 00137 private: 00138 /// Debug. 00139 void dump() const; 00140 00141 /// Removes all of the lifetime marker instructions from the function. 00142 /// \returns true if any markers were removed. 00143 bool removeAllMarkers(); 00144 00145 /// Scan the machine function and find all of the lifetime markers. 00146 /// Record the findings in the BEGIN and END vectors. 00147 /// \returns the number of markers found. 00148 unsigned collectMarkers(unsigned NumSlot); 00149 00150 /// Perform the dataflow calculation and calculate the lifetime for each of 00151 /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and 00152 /// LifetimeLIVE_OUT maps that represent which stack slots are live coming 00153 /// in and out blocks. 00154 void calculateLocalLiveness(); 00155 00156 /// Construct the LiveIntervals for the slots. 00157 void calculateLiveIntervals(unsigned NumSlots); 00158 00159 /// Go over the machine function and change instructions which use stack 00160 /// slots to use the joint slots. 00161 void remapInstructions(DenseMap<int, int> &SlotRemap); 00162 00163 /// The input program may contain instructions which are not inside lifetime 00164 /// markers. This can happen due to a bug in the compiler or due to a bug in 00165 /// user code (for example, returning a reference to a local variable). 00166 /// This procedure checks all of the instructions in the function and 00167 /// invalidates lifetime ranges which do not contain all of the instructions 00168 /// which access that frame slot. 00169 void removeInvalidSlotRanges(); 00170 00171 /// Map entries which point to other entries to their destination. 00172 /// A->B->C becomes A->C. 00173 void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots); 00174 }; 00175 } // end anonymous namespace 00176 00177 char StackColoring::ID = 0; 00178 char &llvm::StackColoringID = StackColoring::ID; 00179 00180 INITIALIZE_PASS_BEGIN(StackColoring, 00181 "stack-coloring", "Merge disjoint stack slots", false, false) 00182 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 00183 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 00184 INITIALIZE_PASS_DEPENDENCY(StackProtector) 00185 INITIALIZE_PASS_END(StackColoring, 00186 "stack-coloring", "Merge disjoint stack slots", false, false) 00187 00188 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const { 00189 AU.addRequired<MachineDominatorTree>(); 00190 AU.addPreserved<MachineDominatorTree>(); 00191 AU.addRequired<SlotIndexes>(); 00192 AU.addRequired<StackProtector>(); 00193 MachineFunctionPass::getAnalysisUsage(AU); 00194 } 00195 00196 void StackColoring::dump() const { 00197 for (MachineBasicBlock *MBB : depth_first(MF)) { 00198 DEBUG(dbgs() << "Inspecting block #" << BasicBlocks.lookup(MBB) << " [" 00199 << MBB->getName() << "]\n"); 00200 00201 LivenessMap::const_iterator BI = BlockLiveness.find(MBB); 00202 assert(BI != BlockLiveness.end() && "Block not found"); 00203 const BlockLifetimeInfo &BlockInfo = BI->second; 00204 00205 DEBUG(dbgs()<<"BEGIN : {"); 00206 for (unsigned i=0; i < BlockInfo.Begin.size(); ++i) 00207 DEBUG(dbgs()<<BlockInfo.Begin.test(i)<<" "); 00208 DEBUG(dbgs()<<"}\n"); 00209 00210 DEBUG(dbgs()<<"END : {"); 00211 for (unsigned i=0; i < BlockInfo.End.size(); ++i) 00212 DEBUG(dbgs()<<BlockInfo.End.test(i)<<" "); 00213 00214 DEBUG(dbgs()<<"}\n"); 00215 00216 DEBUG(dbgs()<<"LIVE_IN: {"); 00217 for (unsigned i=0; i < BlockInfo.LiveIn.size(); ++i) 00218 DEBUG(dbgs()<<BlockInfo.LiveIn.test(i)<<" "); 00219 00220 DEBUG(dbgs()<<"}\n"); 00221 DEBUG(dbgs()<<"LIVEOUT: {"); 00222 for (unsigned i=0; i < BlockInfo.LiveOut.size(); ++i) 00223 DEBUG(dbgs()<<BlockInfo.LiveOut.test(i)<<" "); 00224 DEBUG(dbgs()<<"}\n"); 00225 } 00226 } 00227 00228 unsigned StackColoring::collectMarkers(unsigned NumSlot) { 00229 unsigned MarkersFound = 0; 00230 // Scan the function to find all lifetime markers. 00231 // NOTE: We use a reverse-post-order iteration to ensure that we obtain a 00232 // deterministic numbering, and because we'll need a post-order iteration 00233 // later for solving the liveness dataflow problem. 00234 for (MachineBasicBlock *MBB : depth_first(MF)) { 00235 00236 // Assign a serial number to this basic block. 00237 BasicBlocks[MBB] = BasicBlockNumbering.size(); 00238 BasicBlockNumbering.push_back(MBB); 00239 00240 // Keep a reference to avoid repeated lookups. 00241 BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB]; 00242 00243 BlockInfo.Begin.resize(NumSlot); 00244 BlockInfo.End.resize(NumSlot); 00245 00246 for (MachineInstr &MI : *MBB) { 00247 if (MI.getOpcode() != TargetOpcode::LIFETIME_START && 00248 MI.getOpcode() != TargetOpcode::LIFETIME_END) 00249 continue; 00250 00251 Markers.push_back(&MI); 00252 00253 bool IsStart = MI.getOpcode() == TargetOpcode::LIFETIME_START; 00254 const MachineOperand &MO = MI.getOperand(0); 00255 unsigned Slot = MO.getIndex(); 00256 00257 MarkersFound++; 00258 00259 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot); 00260 if (Allocation) { 00261 DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<< 00262 " with allocation: "<< Allocation->getName()<<"\n"); 00263 } 00264 00265 if (IsStart) { 00266 BlockInfo.Begin.set(Slot); 00267 } else { 00268 if (BlockInfo.Begin.test(Slot)) { 00269 // Allocas that start and end within a single block are handled 00270 // specially when computing the LiveIntervals to avoid pessimizing 00271 // the liveness propagation. 00272 BlockInfo.Begin.reset(Slot); 00273 } else { 00274 BlockInfo.End.set(Slot); 00275 } 00276 } 00277 } 00278 } 00279 00280 // Update statistics. 00281 NumMarkerSeen += MarkersFound; 00282 return MarkersFound; 00283 } 00284 00285 void StackColoring::calculateLocalLiveness() { 00286 // Perform a standard reverse dataflow computation to solve for 00287 // global liveness. The BEGIN set here is equivalent to KILL in the standard 00288 // formulation, and END is equivalent to GEN. The result of this computation 00289 // is a map from blocks to bitvectors where the bitvectors represent which 00290 // allocas are live in/out of that block. 00291 SmallPtrSet<const MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(), 00292 BasicBlockNumbering.end()); 00293 unsigned NumSSMIters = 0; 00294 bool changed = true; 00295 while (changed) { 00296 changed = false; 00297 ++NumSSMIters; 00298 00299 SmallPtrSet<const MachineBasicBlock*, 8> NextBBSet; 00300 00301 for (const MachineBasicBlock *BB : BasicBlockNumbering) { 00302 if (!BBSet.count(BB)) continue; 00303 00304 // Use an iterator to avoid repeated lookups. 00305 LivenessMap::iterator BI = BlockLiveness.find(BB); 00306 assert(BI != BlockLiveness.end() && "Block not found"); 00307 BlockLifetimeInfo &BlockInfo = BI->second; 00308 00309 BitVector LocalLiveIn; 00310 BitVector LocalLiveOut; 00311 00312 // Forward propagation from begins to ends. 00313 for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(), 00314 PE = BB->pred_end(); PI != PE; ++PI) { 00315 LivenessMap::const_iterator I = BlockLiveness.find(*PI); 00316 assert(I != BlockLiveness.end() && "Predecessor not found"); 00317 LocalLiveIn |= I->second.LiveOut; 00318 } 00319 LocalLiveIn |= BlockInfo.End; 00320 LocalLiveIn.reset(BlockInfo.Begin); 00321 00322 // Reverse propagation from ends to begins. 00323 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(), 00324 SE = BB->succ_end(); SI != SE; ++SI) { 00325 LivenessMap::const_iterator I = BlockLiveness.find(*SI); 00326 assert(I != BlockLiveness.end() && "Successor not found"); 00327 LocalLiveOut |= I->second.LiveIn; 00328 } 00329 LocalLiveOut |= BlockInfo.Begin; 00330 LocalLiveOut.reset(BlockInfo.End); 00331 00332 LocalLiveIn |= LocalLiveOut; 00333 LocalLiveOut |= LocalLiveIn; 00334 00335 // After adopting the live bits, we need to turn-off the bits which 00336 // are de-activated in this block. 00337 LocalLiveOut.reset(BlockInfo.End); 00338 LocalLiveIn.reset(BlockInfo.Begin); 00339 00340 // If we have both BEGIN and END markers in the same basic block then 00341 // we know that the BEGIN marker comes after the END, because we already 00342 // handle the case where the BEGIN comes before the END when collecting 00343 // the markers (and building the BEGIN/END vectore). 00344 // Want to enable the LIVE_IN and LIVE_OUT of slots that have both 00345 // BEGIN and END because it means that the value lives before and after 00346 // this basic block. 00347 BitVector LocalEndBegin = BlockInfo.End; 00348 LocalEndBegin &= BlockInfo.Begin; 00349 LocalLiveIn |= LocalEndBegin; 00350 LocalLiveOut |= LocalEndBegin; 00351 00352 if (LocalLiveIn.test(BlockInfo.LiveIn)) { 00353 changed = true; 00354 BlockInfo.LiveIn |= LocalLiveIn; 00355 00356 NextBBSet.insert(BB->pred_begin(), BB->pred_end()); 00357 } 00358 00359 if (LocalLiveOut.test(BlockInfo.LiveOut)) { 00360 changed = true; 00361 BlockInfo.LiveOut |= LocalLiveOut; 00362 00363 NextBBSet.insert(BB->succ_begin(), BB->succ_end()); 00364 } 00365 } 00366 00367 BBSet = NextBBSet; 00368 }// while changed. 00369 } 00370 00371 void StackColoring::calculateLiveIntervals(unsigned NumSlots) { 00372 SmallVector<SlotIndex, 16> Starts; 00373 SmallVector<SlotIndex, 16> Finishes; 00374 00375 // For each block, find which slots are active within this block 00376 // and update the live intervals. 00377 for (const MachineBasicBlock &MBB : *MF) { 00378 Starts.clear(); 00379 Starts.resize(NumSlots); 00380 Finishes.clear(); 00381 Finishes.resize(NumSlots); 00382 00383 // Create the interval for the basic blocks with lifetime markers in them. 00384 for (const MachineInstr *MI : Markers) { 00385 if (MI->getParent() != &MBB) 00386 continue; 00387 00388 assert((MI->getOpcode() == TargetOpcode::LIFETIME_START || 00389 MI->getOpcode() == TargetOpcode::LIFETIME_END) && 00390 "Invalid Lifetime marker"); 00391 00392 bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START; 00393 const MachineOperand &Mo = MI->getOperand(0); 00394 int Slot = Mo.getIndex(); 00395 assert(Slot >= 0 && "Invalid slot"); 00396 00397 SlotIndex ThisIndex = Indexes->getInstructionIndex(MI); 00398 00399 if (IsStart) { 00400 if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex) 00401 Starts[Slot] = ThisIndex; 00402 } else { 00403 if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex) 00404 Finishes[Slot] = ThisIndex; 00405 } 00406 } 00407 00408 // Create the interval of the blocks that we previously found to be 'alive'. 00409 BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB]; 00410 for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1; 00411 pos = MBBLiveness.LiveIn.find_next(pos)) { 00412 Starts[pos] = Indexes->getMBBStartIdx(&MBB); 00413 } 00414 for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1; 00415 pos = MBBLiveness.LiveOut.find_next(pos)) { 00416 Finishes[pos] = Indexes->getMBBEndIdx(&MBB); 00417 } 00418 00419 for (unsigned i = 0; i < NumSlots; ++i) { 00420 assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range"); 00421 if (!Starts[i].isValid()) 00422 continue; 00423 00424 assert(Starts[i] && Finishes[i] && "Invalid interval"); 00425 VNInfo *ValNum = Intervals[i]->getValNumInfo(0); 00426 SlotIndex S = Starts[i]; 00427 SlotIndex F = Finishes[i]; 00428 if (S < F) { 00429 // We have a single consecutive region. 00430 Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum)); 00431 } else { 00432 // We have two non-consecutive regions. This happens when 00433 // LIFETIME_START appears after the LIFETIME_END marker. 00434 SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB); 00435 SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB); 00436 Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum)); 00437 Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum)); 00438 } 00439 } 00440 } 00441 } 00442 00443 bool StackColoring::removeAllMarkers() { 00444 unsigned Count = 0; 00445 for (MachineInstr *MI : Markers) { 00446 MI->eraseFromParent(); 00447 Count++; 00448 } 00449 Markers.clear(); 00450 00451 DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n"); 00452 return Count; 00453 } 00454 00455 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) { 00456 unsigned FixedInstr = 0; 00457 unsigned FixedMemOp = 0; 00458 unsigned FixedDbg = 0; 00459 MachineModuleInfo *MMI = &MF->getMMI(); 00460 00461 // Remap debug information that refers to stack slots. 00462 for (auto &VI : MMI->getVariableDbgInfo()) { 00463 if (!VI.Var) 00464 continue; 00465 if (SlotRemap.count(VI.Slot)) { 00466 DEBUG(dbgs()<<"Remapping debug info for ["<<VI.Var->getName()<<"].\n"); 00467 VI.Slot = SlotRemap[VI.Slot]; 00468 FixedDbg++; 00469 } 00470 } 00471 00472 // Keep a list of *allocas* which need to be remapped. 00473 DenseMap<const AllocaInst*, const AllocaInst*> Allocas; 00474 for (const std::pair<int, int> &SI : SlotRemap) { 00475 const AllocaInst *From = MFI->getObjectAllocation(SI.first); 00476 const AllocaInst *To = MFI->getObjectAllocation(SI.second); 00477 assert(To && From && "Invalid allocation object"); 00478 Allocas[From] = To; 00479 00480 // AA might be used later for instruction scheduling, and we need it to be 00481 // able to deduce the correct aliasing releationships between pointers 00482 // derived from the alloca being remapped and the target of that remapping. 00483 // The only safe way, without directly informing AA about the remapping 00484 // somehow, is to directly update the IR to reflect the change being made 00485 // here. 00486 Instruction *Inst = const_cast<AllocaInst *>(To); 00487 if (From->getType() != To->getType()) { 00488 BitCastInst *Cast = new BitCastInst(Inst, From->getType()); 00489 Cast->insertAfter(Inst); 00490 Inst = Cast; 00491 } 00492 00493 // Allow the stack protector to adjust its value map to account for the 00494 // upcoming replacement. 00495 SP->adjustForColoring(From, To); 00496 00497 // Note that this will not replace uses in MMOs (which we'll update below), 00498 // or anywhere else (which is why we won't delete the original 00499 // instruction). 00500 const_cast<AllocaInst *>(From)->replaceAllUsesWith(Inst); 00501 } 00502 00503 // Remap all instructions to the new stack slots. 00504 for (MachineBasicBlock &BB : *MF) 00505 for (MachineInstr &I : BB) { 00506 // Skip lifetime markers. We'll remove them soon. 00507 if (I.getOpcode() == TargetOpcode::LIFETIME_START || 00508 I.getOpcode() == TargetOpcode::LIFETIME_END) 00509 continue; 00510 00511 // Update the MachineMemOperand to use the new alloca. 00512 for (MachineMemOperand *MMO : I.memoperands()) { 00513 // FIXME: In order to enable the use of TBAA when using AA in CodeGen, 00514 // we'll also need to update the TBAA nodes in MMOs with values 00515 // derived from the merged allocas. When doing this, we'll need to use 00516 // the same variant of GetUnderlyingObjects that is used by the 00517 // instruction scheduler (that can look through ptrtoint/inttoptr 00518 // pairs). 00519 00520 // We've replaced IR-level uses of the remapped allocas, so we only 00521 // need to replace direct uses here. 00522 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue()); 00523 if (!AI) 00524 continue; 00525 00526 if (!Allocas.count(AI)) 00527 continue; 00528 00529 MMO->setValue(Allocas[AI]); 00530 FixedMemOp++; 00531 } 00532 00533 // Update all of the machine instruction operands. 00534 for (MachineOperand &MO : I.operands()) { 00535 if (!MO.isFI()) 00536 continue; 00537 int FromSlot = MO.getIndex(); 00538 00539 // Don't touch arguments. 00540 if (FromSlot<0) 00541 continue; 00542 00543 // Only look at mapped slots. 00544 if (!SlotRemap.count(FromSlot)) 00545 continue; 00546 00547 // In a debug build, check that the instruction that we are modifying is 00548 // inside the expected live range. If the instruction is not inside 00549 // the calculated range then it means that the alloca usage moved 00550 // outside of the lifetime markers, or that the user has a bug. 00551 // NOTE: Alloca address calculations which happen outside the lifetime 00552 // zone are are okay, despite the fact that we don't have a good way 00553 // for validating all of the usages of the calculation. 00554 #ifndef NDEBUG 00555 bool TouchesMemory = I.mayLoad() || I.mayStore(); 00556 // If we *don't* protect the user from escaped allocas, don't bother 00557 // validating the instructions. 00558 if (!I.isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) { 00559 SlotIndex Index = Indexes->getInstructionIndex(&I); 00560 const LiveInterval *Interval = &*Intervals[FromSlot]; 00561 assert(Interval->find(Index) != Interval->end() && 00562 "Found instruction usage outside of live range."); 00563 } 00564 #endif 00565 00566 // Fix the machine instructions. 00567 int ToSlot = SlotRemap[FromSlot]; 00568 MO.setIndex(ToSlot); 00569 FixedInstr++; 00570 } 00571 } 00572 00573 DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n"); 00574 DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n"); 00575 DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n"); 00576 } 00577 00578 void StackColoring::removeInvalidSlotRanges() { 00579 for (MachineBasicBlock &BB : *MF) 00580 for (MachineInstr &I : BB) { 00581 if (I.getOpcode() == TargetOpcode::LIFETIME_START || 00582 I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugValue()) 00583 continue; 00584 00585 // Some intervals are suspicious! In some cases we find address 00586 // calculations outside of the lifetime zone, but not actual memory 00587 // read or write. Memory accesses outside of the lifetime zone are a clear 00588 // violation, but address calculations are okay. This can happen when 00589 // GEPs are hoisted outside of the lifetime zone. 00590 // So, in here we only check instructions which can read or write memory. 00591 if (!I.mayLoad() && !I.mayStore()) 00592 continue; 00593 00594 // Check all of the machine operands. 00595 for (const MachineOperand &MO : I.operands()) { 00596 if (!MO.isFI()) 00597 continue; 00598 00599 int Slot = MO.getIndex(); 00600 00601 if (Slot<0) 00602 continue; 00603 00604 if (Intervals[Slot]->empty()) 00605 continue; 00606 00607 // Check that the used slot is inside the calculated lifetime range. 00608 // If it is not, warn about it and invalidate the range. 00609 LiveInterval *Interval = &*Intervals[Slot]; 00610 SlotIndex Index = Indexes->getInstructionIndex(&I); 00611 if (Interval->find(Index) == Interval->end()) { 00612 Interval->clear(); 00613 DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n"); 00614 EscapedAllocas++; 00615 } 00616 } 00617 } 00618 } 00619 00620 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap, 00621 unsigned NumSlots) { 00622 // Expunge slot remap map. 00623 for (unsigned i=0; i < NumSlots; ++i) { 00624 // If we are remapping i 00625 if (SlotRemap.count(i)) { 00626 int Target = SlotRemap[i]; 00627 // As long as our target is mapped to something else, follow it. 00628 while (SlotRemap.count(Target)) { 00629 Target = SlotRemap[Target]; 00630 SlotRemap[i] = Target; 00631 } 00632 } 00633 } 00634 } 00635 00636 bool StackColoring::runOnMachineFunction(MachineFunction &Func) { 00637 if (skipOptnoneFunction(*Func.getFunction())) 00638 return false; 00639 00640 DEBUG(dbgs() << "********** Stack Coloring **********\n" 00641 << "********** Function: " 00642 << ((const Value*)Func.getFunction())->getName() << '\n'); 00643 MF = &Func; 00644 MFI = MF->getFrameInfo(); 00645 Indexes = &getAnalysis<SlotIndexes>(); 00646 SP = &getAnalysis<StackProtector>(); 00647 BlockLiveness.clear(); 00648 BasicBlocks.clear(); 00649 BasicBlockNumbering.clear(); 00650 Markers.clear(); 00651 Intervals.clear(); 00652 VNInfoAllocator.Reset(); 00653 00654 unsigned NumSlots = MFI->getObjectIndexEnd(); 00655 00656 // If there are no stack slots then there are no markers to remove. 00657 if (!NumSlots) 00658 return false; 00659 00660 SmallVector<int, 8> SortedSlots; 00661 00662 SortedSlots.reserve(NumSlots); 00663 Intervals.reserve(NumSlots); 00664 00665 unsigned NumMarkers = collectMarkers(NumSlots); 00666 00667 unsigned TotalSize = 0; 00668 DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n"); 00669 DEBUG(dbgs()<<"Slot structure:\n"); 00670 00671 for (int i=0; i < MFI->getObjectIndexEnd(); ++i) { 00672 DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n"); 00673 TotalSize += MFI->getObjectSize(i); 00674 } 00675 00676 DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n"); 00677 00678 // Don't continue because there are not enough lifetime markers, or the 00679 // stack is too small, or we are told not to optimize the slots. 00680 if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) { 00681 DEBUG(dbgs()<<"Will not try to merge slots.\n"); 00682 return removeAllMarkers(); 00683 } 00684 00685 for (unsigned i=0; i < NumSlots; ++i) { 00686 std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0)); 00687 LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator); 00688 Intervals.push_back(std::move(LI)); 00689 SortedSlots.push_back(i); 00690 } 00691 00692 // Calculate the liveness of each block. 00693 calculateLocalLiveness(); 00694 00695 // Propagate the liveness information. 00696 calculateLiveIntervals(NumSlots); 00697 00698 // Search for allocas which are used outside of the declared lifetime 00699 // markers. 00700 if (ProtectFromEscapedAllocas) 00701 removeInvalidSlotRanges(); 00702 00703 // Maps old slots to new slots. 00704 DenseMap<int, int> SlotRemap; 00705 unsigned RemovedSlots = 0; 00706 unsigned ReducedSize = 0; 00707 00708 // Do not bother looking at empty intervals. 00709 for (unsigned I = 0; I < NumSlots; ++I) { 00710 if (Intervals[SortedSlots[I]]->empty()) 00711 SortedSlots[I] = -1; 00712 } 00713 00714 // This is a simple greedy algorithm for merging allocas. First, sort the 00715 // slots, placing the largest slots first. Next, perform an n^2 scan and look 00716 // for disjoint slots. When you find disjoint slots, merge the samller one 00717 // into the bigger one and update the live interval. Remove the small alloca 00718 // and continue. 00719 00720 // Sort the slots according to their size. Place unused slots at the end. 00721 // Use stable sort to guarantee deterministic code generation. 00722 std::stable_sort(SortedSlots.begin(), SortedSlots.end(), 00723 [this](int LHS, int RHS) { 00724 // We use -1 to denote a uninteresting slot. Place these slots at the end. 00725 if (LHS == -1) return false; 00726 if (RHS == -1) return true; 00727 // Sort according to size. 00728 return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS); 00729 }); 00730 00731 bool Changed = true; 00732 while (Changed) { 00733 Changed = false; 00734 for (unsigned I = 0; I < NumSlots; ++I) { 00735 if (SortedSlots[I] == -1) 00736 continue; 00737 00738 for (unsigned J=I+1; J < NumSlots; ++J) { 00739 if (SortedSlots[J] == -1) 00740 continue; 00741 00742 int FirstSlot = SortedSlots[I]; 00743 int SecondSlot = SortedSlots[J]; 00744 LiveInterval *First = &*Intervals[FirstSlot]; 00745 LiveInterval *Second = &*Intervals[SecondSlot]; 00746 assert (!First->empty() && !Second->empty() && "Found an empty range"); 00747 00748 // Merge disjoint slots. 00749 if (!First->overlaps(*Second)) { 00750 Changed = true; 00751 First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0)); 00752 SlotRemap[SecondSlot] = FirstSlot; 00753 SortedSlots[J] = -1; 00754 DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<< 00755 SecondSlot<<" together.\n"); 00756 unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot), 00757 MFI->getObjectAlignment(SecondSlot)); 00758 00759 assert(MFI->getObjectSize(FirstSlot) >= 00760 MFI->getObjectSize(SecondSlot) && 00761 "Merging a small object into a larger one"); 00762 00763 RemovedSlots+=1; 00764 ReducedSize += MFI->getObjectSize(SecondSlot); 00765 MFI->setObjectAlignment(FirstSlot, MaxAlignment); 00766 MFI->RemoveStackObject(SecondSlot); 00767 } 00768 } 00769 } 00770 }// While changed. 00771 00772 // Record statistics. 00773 StackSpaceSaved += ReducedSize; 00774 StackSlotMerged += RemovedSlots; 00775 DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<< 00776 ReducedSize<<" bytes\n"); 00777 00778 // Scan the entire function and update all machine operands that use frame 00779 // indices to use the remapped frame index. 00780 expungeSlotMap(SlotRemap, NumSlots); 00781 remapInstructions(SlotRemap); 00782 00783 return removeAllMarkers(); 00784 }