00001 /*------------------------------------------------------------------------- 00002 * 00003 * async.c 00004 * Asynchronous notification: NOTIFY, LISTEN, UNLISTEN 00005 * 00006 * Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group 00007 * Portions Copyright (c) 1994, Regents of the University of California 00008 * 00009 * IDENTIFICATION 00010 * src/backend/commands/async.c 00011 * 00012 *------------------------------------------------------------------------- 00013 */ 00014 00015 /*------------------------------------------------------------------------- 00016 * Async Notification Model as of 9.0: 00017 * 00018 * 1. Multiple backends on same machine. Multiple backends listening on 00019 * several channels. (Channels are also called "conditions" in other 00020 * parts of the code.) 00021 * 00022 * 2. There is one central queue in disk-based storage (directory pg_notify/), 00023 * with actively-used pages mapped into shared memory by the slru.c module. 00024 * All notification messages are placed in the queue and later read out 00025 * by listening backends. 00026 * 00027 * There is no central knowledge of which backend listens on which channel; 00028 * every backend has its own list of interesting channels. 00029 * 00030 * Although there is only one queue, notifications are treated as being 00031 * database-local; this is done by including the sender's database OID 00032 * in each notification message. Listening backends ignore messages 00033 * that don't match their database OID. This is important because it 00034 * ensures senders and receivers have the same database encoding and won't 00035 * misinterpret non-ASCII text in the channel name or payload string. 00036 * 00037 * Since notifications are not expected to survive database crashes, 00038 * we can simply clean out the pg_notify data at any reboot, and there 00039 * is no need for WAL support or fsync'ing. 00040 * 00041 * 3. Every backend that is listening on at least one channel registers by 00042 * entering its PID into the array in AsyncQueueControl. It then scans all 00043 * incoming notifications in the central queue and first compares the 00044 * database OID of the notification with its own database OID and then 00045 * compares the notified channel with the list of channels that it listens 00046 * to. In case there is a match it delivers the notification event to its 00047 * frontend. Non-matching events are simply skipped. 00048 * 00049 * 4. The NOTIFY statement (routine Async_Notify) stores the notification in 00050 * a backend-local list which will not be processed until transaction end. 00051 * 00052 * Duplicate notifications from the same transaction are sent out as one 00053 * notification only. This is done to save work when for example a trigger 00054 * on a 2 million row table fires a notification for each row that has been 00055 * changed. If the application needs to receive every single notification 00056 * that has been sent, it can easily add some unique string into the extra 00057 * payload parameter. 00058 * 00059 * When the transaction is ready to commit, PreCommit_Notify() adds the 00060 * pending notifications to the head of the queue. The head pointer of the 00061 * queue always points to the next free position and a position is just a 00062 * page number and the offset in that page. This is done before marking the 00063 * transaction as committed in clog. If we run into problems writing the 00064 * notifications, we can still call elog(ERROR, ...) and the transaction 00065 * will roll back. 00066 * 00067 * Once we have put all of the notifications into the queue, we return to 00068 * CommitTransaction() which will then do the actual transaction commit. 00069 * 00070 * After commit we are called another time (AtCommit_Notify()). Here we 00071 * make the actual updates to the effective listen state (listenChannels). 00072 * 00073 * Finally, after we are out of the transaction altogether, we check if 00074 * we need to signal listening backends. In SignalBackends() we scan the 00075 * list of listening backends and send a PROCSIG_NOTIFY_INTERRUPT signal 00076 * to every listening backend (we don't know which backend is listening on 00077 * which channel so we must signal them all). We can exclude backends that 00078 * are already up to date, though. We don't bother with a self-signal 00079 * either, but just process the queue directly. 00080 * 00081 * 5. Upon receipt of a PROCSIG_NOTIFY_INTERRUPT signal, the signal handler 00082 * can call inbound-notify processing immediately if this backend is idle 00083 * (ie, it is waiting for a frontend command and is not within a transaction 00084 * block). Otherwise the handler may only set a flag, which will cause the 00085 * processing to occur just before we next go idle. 00086 * 00087 * Inbound-notify processing consists of reading all of the notifications 00088 * that have arrived since scanning last time. We read every notification 00089 * until we reach either a notification from an uncommitted transaction or 00090 * the head pointer's position. Then we check if we were the laziest 00091 * backend: if our pointer is set to the same position as the global tail 00092 * pointer is set, then we move the global tail pointer ahead to where the 00093 * second-laziest backend is (in general, we take the MIN of the current 00094 * head position and all active backends' new tail pointers). Whenever we 00095 * move the global tail pointer we also truncate now-unused pages (i.e., 00096 * delete files in pg_notify/ that are no longer used). 00097 * 00098 * An application that listens on the same channel it notifies will get 00099 * NOTIFY messages for its own NOTIFYs. These can be ignored, if not useful, 00100 * by comparing be_pid in the NOTIFY message to the application's own backend's 00101 * PID. (As of FE/BE protocol 2.0, the backend's PID is provided to the 00102 * frontend during startup.) The above design guarantees that notifies from 00103 * other backends will never be missed by ignoring self-notifies. 00104 * 00105 * The amount of shared memory used for notify management (NUM_ASYNC_BUFFERS) 00106 * can be varied without affecting anything but performance. The maximum 00107 * amount of notification data that can be queued at one time is determined 00108 * by slru.c's wraparound limit; see QUEUE_MAX_PAGE below. 00109 *------------------------------------------------------------------------- 00110 */ 00111 00112 #include "postgres.h" 00113 00114 #include <limits.h> 00115 #include <unistd.h> 00116 #include <signal.h> 00117 00118 #include "access/slru.h" 00119 #include "access/transam.h" 00120 #include "access/xact.h" 00121 #include "catalog/pg_database.h" 00122 #include "commands/async.h" 00123 #include "funcapi.h" 00124 #include "libpq/libpq.h" 00125 #include "libpq/pqformat.h" 00126 #include "miscadmin.h" 00127 #include "storage/ipc.h" 00128 #include "storage/lmgr.h" 00129 #include "storage/procsignal.h" 00130 #include "storage/sinval.h" 00131 #include "tcop/tcopprot.h" 00132 #include "utils/builtins.h" 00133 #include "utils/memutils.h" 00134 #include "utils/ps_status.h" 00135 #include "utils/timestamp.h" 00136 00137 00138 /* 00139 * Maximum size of a NOTIFY payload, including terminating NULL. This 00140 * must be kept small enough so that a notification message fits on one 00141 * SLRU page. The magic fudge factor here is noncritical as long as it's 00142 * more than AsyncQueueEntryEmptySize --- we make it significantly bigger 00143 * than that, so changes in that data structure won't affect user-visible 00144 * restrictions. 00145 */ 00146 #define NOTIFY_PAYLOAD_MAX_LENGTH (BLCKSZ - NAMEDATALEN - 128) 00147 00148 /* 00149 * Struct representing an entry in the global notify queue 00150 * 00151 * This struct declaration has the maximal length, but in a real queue entry 00152 * the data area is only big enough for the actual channel and payload strings 00153 * (each null-terminated). AsyncQueueEntryEmptySize is the minimum possible 00154 * entry size, if both channel and payload strings are empty (but note it 00155 * doesn't include alignment padding). 00156 * 00157 * The "length" field should always be rounded up to the next QUEUEALIGN 00158 * multiple so that all fields are properly aligned. 00159 */ 00160 typedef struct AsyncQueueEntry 00161 { 00162 int length; /* total allocated length of entry */ 00163 Oid dboid; /* sender's database OID */ 00164 TransactionId xid; /* sender's XID */ 00165 int32 srcPid; /* sender's PID */ 00166 char data[NAMEDATALEN + NOTIFY_PAYLOAD_MAX_LENGTH]; 00167 } AsyncQueueEntry; 00168 00169 /* Currently, no field of AsyncQueueEntry requires more than int alignment */ 00170 #define QUEUEALIGN(len) INTALIGN(len) 00171 00172 #define AsyncQueueEntryEmptySize (offsetof(AsyncQueueEntry, data) + 2) 00173 00174 /* 00175 * Struct describing a queue position, and assorted macros for working with it 00176 */ 00177 typedef struct QueuePosition 00178 { 00179 int page; /* SLRU page number */ 00180 int offset; /* byte offset within page */ 00181 } QueuePosition; 00182 00183 #define QUEUE_POS_PAGE(x) ((x).page) 00184 #define QUEUE_POS_OFFSET(x) ((x).offset) 00185 00186 #define SET_QUEUE_POS(x,y,z) \ 00187 do { \ 00188 (x).page = (y); \ 00189 (x).offset = (z); \ 00190 } while (0) 00191 00192 #define QUEUE_POS_EQUAL(x,y) \ 00193 ((x).page == (y).page && (x).offset == (y).offset) 00194 00195 /* choose logically smaller QueuePosition */ 00196 #define QUEUE_POS_MIN(x,y) \ 00197 (asyncQueuePagePrecedes((x).page, (y).page) ? (x) : \ 00198 (x).page != (y).page ? (y) : \ 00199 (x).offset < (y).offset ? (x) : (y)) 00200 00201 /* 00202 * Struct describing a listening backend's status 00203 */ 00204 typedef struct QueueBackendStatus 00205 { 00206 int32 pid; /* either a PID or InvalidPid */ 00207 QueuePosition pos; /* backend has read queue up to here */ 00208 } QueueBackendStatus; 00209 00210 #define InvalidPid (-1) 00211 00212 /* 00213 * Shared memory state for LISTEN/NOTIFY (excluding its SLRU stuff) 00214 * 00215 * The AsyncQueueControl structure is protected by the AsyncQueueLock. 00216 * 00217 * When holding the lock in SHARED mode, backends may only inspect their own 00218 * entries as well as the head and tail pointers. Consequently we can allow a 00219 * backend to update its own record while holding only SHARED lock (since no 00220 * other backend will inspect it). 00221 * 00222 * When holding the lock in EXCLUSIVE mode, backends can inspect the entries 00223 * of other backends and also change the head and tail pointers. 00224 * 00225 * In order to avoid deadlocks, whenever we need both locks, we always first 00226 * get AsyncQueueLock and then AsyncCtlLock. 00227 * 00228 * Each backend uses the backend[] array entry with index equal to its 00229 * BackendId (which can range from 1 to MaxBackends). We rely on this to make 00230 * SendProcSignal fast. 00231 */ 00232 typedef struct AsyncQueueControl 00233 { 00234 QueuePosition head; /* head points to the next free location */ 00235 QueuePosition tail; /* the global tail is equivalent to the tail 00236 * of the "slowest" backend */ 00237 TimestampTz lastQueueFillWarn; /* time of last queue-full msg */ 00238 QueueBackendStatus backend[1]; /* actually of length MaxBackends+1 */ 00239 /* DO NOT ADD FURTHER STRUCT MEMBERS HERE */ 00240 } AsyncQueueControl; 00241 00242 static AsyncQueueControl *asyncQueueControl; 00243 00244 #define QUEUE_HEAD (asyncQueueControl->head) 00245 #define QUEUE_TAIL (asyncQueueControl->tail) 00246 #define QUEUE_BACKEND_PID(i) (asyncQueueControl->backend[i].pid) 00247 #define QUEUE_BACKEND_POS(i) (asyncQueueControl->backend[i].pos) 00248 00249 /* 00250 * The SLRU buffer area through which we access the notification queue 00251 */ 00252 static SlruCtlData AsyncCtlData; 00253 00254 #define AsyncCtl (&AsyncCtlData) 00255 #define QUEUE_PAGESIZE BLCKSZ 00256 #define QUEUE_FULL_WARN_INTERVAL 5000 /* warn at most once every 5s */ 00257 00258 /* 00259 * slru.c currently assumes that all filenames are four characters of hex 00260 * digits. That means that we can use segments 0000 through FFFF. 00261 * Each segment contains SLRU_PAGES_PER_SEGMENT pages which gives us 00262 * the pages from 0 to SLRU_PAGES_PER_SEGMENT * 0x10000 - 1. 00263 * 00264 * It's of course possible to enhance slru.c, but this gives us so much 00265 * space already that it doesn't seem worth the trouble. 00266 * 00267 * The most data we can have in the queue at a time is QUEUE_MAX_PAGE/2 00268 * pages, because more than that would confuse slru.c into thinking there 00269 * was a wraparound condition. With the default BLCKSZ this means there 00270 * can be up to 8GB of queued-and-not-read data. 00271 * 00272 * Note: it's possible to redefine QUEUE_MAX_PAGE with a smaller multiple of 00273 * SLRU_PAGES_PER_SEGMENT, for easier testing of queue-full behaviour. 00274 */ 00275 #define QUEUE_MAX_PAGE (SLRU_PAGES_PER_SEGMENT * 0x10000 - 1) 00276 00277 /* 00278 * listenChannels identifies the channels we are actually listening to 00279 * (ie, have committed a LISTEN on). It is a simple list of channel names, 00280 * allocated in TopMemoryContext. 00281 */ 00282 static List *listenChannels = NIL; /* list of C strings */ 00283 00284 /* 00285 * State for pending LISTEN/UNLISTEN actions consists of an ordered list of 00286 * all actions requested in the current transaction. As explained above, 00287 * we don't actually change listenChannels until we reach transaction commit. 00288 * 00289 * The list is kept in CurTransactionContext. In subtransactions, each 00290 * subtransaction has its own list in its own CurTransactionContext, but 00291 * successful subtransactions attach their lists to their parent's list. 00292 * Failed subtransactions simply discard their lists. 00293 */ 00294 typedef enum 00295 { 00296 LISTEN_LISTEN, 00297 LISTEN_UNLISTEN, 00298 LISTEN_UNLISTEN_ALL 00299 } ListenActionKind; 00300 00301 typedef struct 00302 { 00303 ListenActionKind action; 00304 char channel[1]; /* actually, as long as needed */ 00305 } ListenAction; 00306 00307 static List *pendingActions = NIL; /* list of ListenAction */ 00308 00309 static List *upperPendingActions = NIL; /* list of upper-xact lists */ 00310 00311 /* 00312 * State for outbound notifies consists of a list of all channels+payloads 00313 * NOTIFYed in the current transaction. We do not actually perform a NOTIFY 00314 * until and unless the transaction commits. pendingNotifies is NIL if no 00315 * NOTIFYs have been done in the current transaction. 00316 * 00317 * The list is kept in CurTransactionContext. In subtransactions, each 00318 * subtransaction has its own list in its own CurTransactionContext, but 00319 * successful subtransactions attach their lists to their parent's list. 00320 * Failed subtransactions simply discard their lists. 00321 * 00322 * Note: the action and notify lists do not interact within a transaction. 00323 * In particular, if a transaction does NOTIFY and then LISTEN on the same 00324 * condition name, it will get a self-notify at commit. This is a bit odd 00325 * but is consistent with our historical behavior. 00326 */ 00327 typedef struct Notification 00328 { 00329 char *channel; /* channel name */ 00330 char *payload; /* payload string (can be empty) */ 00331 } Notification; 00332 00333 static List *pendingNotifies = NIL; /* list of Notifications */ 00334 00335 static List *upperPendingNotifies = NIL; /* list of upper-xact lists */ 00336 00337 /* 00338 * State for inbound notifications consists of two flags: one saying whether 00339 * the signal handler is currently allowed to call ProcessIncomingNotify 00340 * directly, and one saying whether the signal has occurred but the handler 00341 * was not allowed to call ProcessIncomingNotify at the time. 00342 * 00343 * NB: the "volatile" on these declarations is critical! If your compiler 00344 * does not grok "volatile", you'd be best advised to compile this file 00345 * with all optimization turned off. 00346 */ 00347 static volatile sig_atomic_t notifyInterruptEnabled = 0; 00348 static volatile sig_atomic_t notifyInterruptOccurred = 0; 00349 00350 /* True if we've registered an on_shmem_exit cleanup */ 00351 static bool unlistenExitRegistered = false; 00352 00353 /* True if we're currently registered as a listener in asyncQueueControl */ 00354 static bool amRegisteredListener = false; 00355 00356 /* has this backend sent notifications in the current transaction? */ 00357 static bool backendHasSentNotifications = false; 00358 00359 /* GUC parameter */ 00360 bool Trace_notify = false; 00361 00362 /* local function prototypes */ 00363 static bool asyncQueuePagePrecedes(int p, int q); 00364 static void queue_listen(ListenActionKind action, const char *channel); 00365 static void Async_UnlistenOnExit(int code, Datum arg); 00366 static void Exec_ListenPreCommit(void); 00367 static void Exec_ListenCommit(const char *channel); 00368 static void Exec_UnlistenCommit(const char *channel); 00369 static void Exec_UnlistenAllCommit(void); 00370 static bool IsListeningOn(const char *channel); 00371 static void asyncQueueUnregister(void); 00372 static bool asyncQueueIsFull(void); 00373 static bool asyncQueueAdvance(QueuePosition *position, int entryLength); 00374 static void asyncQueueNotificationToEntry(Notification *n, AsyncQueueEntry *qe); 00375 static ListCell *asyncQueueAddEntries(ListCell *nextNotify); 00376 static void asyncQueueFillWarning(void); 00377 static bool SignalBackends(void); 00378 static void asyncQueueReadAllNotifications(void); 00379 static bool asyncQueueProcessPageEntries(QueuePosition *current, 00380 QueuePosition stop, 00381 char *page_buffer); 00382 static void asyncQueueAdvanceTail(void); 00383 static void ProcessIncomingNotify(void); 00384 static void NotifyMyFrontEnd(const char *channel, 00385 const char *payload, 00386 int32 srcPid); 00387 static bool AsyncExistsPendingNotify(const char *channel, const char *payload); 00388 static void ClearPendingActionsAndNotifies(void); 00389 00390 /* 00391 * We will work on the page range of 0..QUEUE_MAX_PAGE. 00392 */ 00393 static bool 00394 asyncQueuePagePrecedes(int p, int q) 00395 { 00396 int diff; 00397 00398 /* 00399 * We have to compare modulo (QUEUE_MAX_PAGE+1)/2. Both inputs should be 00400 * in the range 0..QUEUE_MAX_PAGE. 00401 */ 00402 Assert(p >= 0 && p <= QUEUE_MAX_PAGE); 00403 Assert(q >= 0 && q <= QUEUE_MAX_PAGE); 00404 00405 diff = p - q; 00406 if (diff >= ((QUEUE_MAX_PAGE + 1) / 2)) 00407 diff -= QUEUE_MAX_PAGE + 1; 00408 else if (diff < -((QUEUE_MAX_PAGE + 1) / 2)) 00409 diff += QUEUE_MAX_PAGE + 1; 00410 return diff < 0; 00411 } 00412 00413 /* 00414 * Report space needed for our shared memory area 00415 */ 00416 Size 00417 AsyncShmemSize(void) 00418 { 00419 Size size; 00420 00421 /* This had better match AsyncShmemInit */ 00422 size = mul_size(MaxBackends, sizeof(QueueBackendStatus)); 00423 size = add_size(size, sizeof(AsyncQueueControl)); 00424 00425 size = add_size(size, SimpleLruShmemSize(NUM_ASYNC_BUFFERS, 0)); 00426 00427 return size; 00428 } 00429 00430 /* 00431 * Initialize our shared memory area 00432 */ 00433 void 00434 AsyncShmemInit(void) 00435 { 00436 bool found; 00437 int slotno; 00438 Size size; 00439 00440 /* 00441 * Create or attach to the AsyncQueueControl structure. 00442 * 00443 * The used entries in the backend[] array run from 1 to MaxBackends. 00444 * sizeof(AsyncQueueControl) already includes space for the unused zero'th 00445 * entry, but we need to add on space for the used entries. 00446 */ 00447 size = mul_size(MaxBackends, sizeof(QueueBackendStatus)); 00448 size = add_size(size, sizeof(AsyncQueueControl)); 00449 00450 asyncQueueControl = (AsyncQueueControl *) 00451 ShmemInitStruct("Async Queue Control", size, &found); 00452 00453 if (!found) 00454 { 00455 /* First time through, so initialize it */ 00456 int i; 00457 00458 SET_QUEUE_POS(QUEUE_HEAD, 0, 0); 00459 SET_QUEUE_POS(QUEUE_TAIL, 0, 0); 00460 asyncQueueControl->lastQueueFillWarn = 0; 00461 /* zero'th entry won't be used, but let's initialize it anyway */ 00462 for (i = 0; i <= MaxBackends; i++) 00463 { 00464 QUEUE_BACKEND_PID(i) = InvalidPid; 00465 SET_QUEUE_POS(QUEUE_BACKEND_POS(i), 0, 0); 00466 } 00467 } 00468 00469 /* 00470 * Set up SLRU management of the pg_notify data. 00471 */ 00472 AsyncCtl->PagePrecedes = asyncQueuePagePrecedes; 00473 SimpleLruInit(AsyncCtl, "Async Ctl", NUM_ASYNC_BUFFERS, 0, 00474 AsyncCtlLock, "pg_notify"); 00475 /* Override default assumption that writes should be fsync'd */ 00476 AsyncCtl->do_fsync = false; 00477 00478 if (!found) 00479 { 00480 /* 00481 * During start or reboot, clean out the pg_notify directory. 00482 */ 00483 (void) SlruScanDirectory(AsyncCtl, SlruScanDirCbDeleteAll, NULL); 00484 00485 /* Now initialize page zero to empty */ 00486 LWLockAcquire(AsyncCtlLock, LW_EXCLUSIVE); 00487 slotno = SimpleLruZeroPage(AsyncCtl, QUEUE_POS_PAGE(QUEUE_HEAD)); 00488 /* This write is just to verify that pg_notify/ is writable */ 00489 SimpleLruWritePage(AsyncCtl, slotno); 00490 LWLockRelease(AsyncCtlLock); 00491 } 00492 } 00493 00494 00495 /* 00496 * pg_notify - 00497 * SQL function to send a notification event 00498 */ 00499 Datum 00500 pg_notify(PG_FUNCTION_ARGS) 00501 { 00502 const char *channel; 00503 const char *payload; 00504 00505 if (PG_ARGISNULL(0)) 00506 channel = ""; 00507 else 00508 channel = text_to_cstring(PG_GETARG_TEXT_PP(0)); 00509 00510 if (PG_ARGISNULL(1)) 00511 payload = ""; 00512 else 00513 payload = text_to_cstring(PG_GETARG_TEXT_PP(1)); 00514 00515 /* For NOTIFY as a statement, this is checked in ProcessUtility */ 00516 PreventCommandDuringRecovery("NOTIFY"); 00517 00518 Async_Notify(channel, payload); 00519 00520 PG_RETURN_VOID(); 00521 } 00522 00523 00524 /* 00525 * Async_Notify 00526 * 00527 * This is executed by the SQL notify command. 00528 * 00529 * Adds the message to the list of pending notifies. 00530 * Actual notification happens during transaction commit. 00531 * ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 00532 */ 00533 void 00534 Async_Notify(const char *channel, const char *payload) 00535 { 00536 Notification *n; 00537 MemoryContext oldcontext; 00538 00539 if (Trace_notify) 00540 elog(DEBUG1, "Async_Notify(%s)", channel); 00541 00542 /* a channel name must be specified */ 00543 if (!channel || !strlen(channel)) 00544 ereport(ERROR, 00545 (errcode(ERRCODE_INVALID_PARAMETER_VALUE), 00546 errmsg("channel name cannot be empty"))); 00547 00548 if (strlen(channel) >= NAMEDATALEN) 00549 ereport(ERROR, 00550 (errcode(ERRCODE_INVALID_PARAMETER_VALUE), 00551 errmsg("channel name too long"))); 00552 00553 if (payload) 00554 { 00555 if (strlen(payload) >= NOTIFY_PAYLOAD_MAX_LENGTH) 00556 ereport(ERROR, 00557 (errcode(ERRCODE_INVALID_PARAMETER_VALUE), 00558 errmsg("payload string too long"))); 00559 } 00560 00561 /* no point in making duplicate entries in the list ... */ 00562 if (AsyncExistsPendingNotify(channel, payload)) 00563 return; 00564 00565 /* 00566 * The notification list needs to live until end of transaction, so store 00567 * it in the transaction context. 00568 */ 00569 oldcontext = MemoryContextSwitchTo(CurTransactionContext); 00570 00571 n = (Notification *) palloc(sizeof(Notification)); 00572 n->channel = pstrdup(channel); 00573 if (payload) 00574 n->payload = pstrdup(payload); 00575 else 00576 n->payload = ""; 00577 00578 /* 00579 * We want to preserve the order so we need to append every notification. 00580 * See comments at AsyncExistsPendingNotify(). 00581 */ 00582 pendingNotifies = lappend(pendingNotifies, n); 00583 00584 MemoryContextSwitchTo(oldcontext); 00585 } 00586 00587 /* 00588 * queue_listen 00589 * Common code for listen, unlisten, unlisten all commands. 00590 * 00591 * Adds the request to the list of pending actions. 00592 * Actual update of the listenChannels list happens during transaction 00593 * commit. 00594 */ 00595 static void 00596 queue_listen(ListenActionKind action, const char *channel) 00597 { 00598 MemoryContext oldcontext; 00599 ListenAction *actrec; 00600 00601 /* 00602 * Unlike Async_Notify, we don't try to collapse out duplicates. It would 00603 * be too complicated to ensure we get the right interactions of 00604 * conflicting LISTEN/UNLISTEN/UNLISTEN_ALL, and it's unlikely that there 00605 * would be any performance benefit anyway in sane applications. 00606 */ 00607 oldcontext = MemoryContextSwitchTo(CurTransactionContext); 00608 00609 /* space for terminating null is included in sizeof(ListenAction) */ 00610 actrec = (ListenAction *) palloc(sizeof(ListenAction) + strlen(channel)); 00611 actrec->action = action; 00612 strcpy(actrec->channel, channel); 00613 00614 pendingActions = lappend(pendingActions, actrec); 00615 00616 MemoryContextSwitchTo(oldcontext); 00617 } 00618 00619 /* 00620 * Async_Listen 00621 * 00622 * This is executed by the SQL listen command. 00623 */ 00624 void 00625 Async_Listen(const char *channel) 00626 { 00627 if (Trace_notify) 00628 elog(DEBUG1, "Async_Listen(%s,%d)", channel, MyProcPid); 00629 00630 queue_listen(LISTEN_LISTEN, channel); 00631 } 00632 00633 /* 00634 * Async_Unlisten 00635 * 00636 * This is executed by the SQL unlisten command. 00637 */ 00638 void 00639 Async_Unlisten(const char *channel) 00640 { 00641 if (Trace_notify) 00642 elog(DEBUG1, "Async_Unlisten(%s,%d)", channel, MyProcPid); 00643 00644 /* If we couldn't possibly be listening, no need to queue anything */ 00645 if (pendingActions == NIL && !unlistenExitRegistered) 00646 return; 00647 00648 queue_listen(LISTEN_UNLISTEN, channel); 00649 } 00650 00651 /* 00652 * Async_UnlistenAll 00653 * 00654 * This is invoked by UNLISTEN * command, and also at backend exit. 00655 */ 00656 void 00657 Async_UnlistenAll(void) 00658 { 00659 if (Trace_notify) 00660 elog(DEBUG1, "Async_UnlistenAll(%d)", MyProcPid); 00661 00662 /* If we couldn't possibly be listening, no need to queue anything */ 00663 if (pendingActions == NIL && !unlistenExitRegistered) 00664 return; 00665 00666 queue_listen(LISTEN_UNLISTEN_ALL, ""); 00667 } 00668 00669 /* 00670 * SQL function: return a set of the channel names this backend is actively 00671 * listening to. 00672 * 00673 * Note: this coding relies on the fact that the listenChannels list cannot 00674 * change within a transaction. 00675 */ 00676 Datum 00677 pg_listening_channels(PG_FUNCTION_ARGS) 00678 { 00679 FuncCallContext *funcctx; 00680 ListCell **lcp; 00681 00682 /* stuff done only on the first call of the function */ 00683 if (SRF_IS_FIRSTCALL()) 00684 { 00685 MemoryContext oldcontext; 00686 00687 /* create a function context for cross-call persistence */ 00688 funcctx = SRF_FIRSTCALL_INIT(); 00689 00690 /* switch to memory context appropriate for multiple function calls */ 00691 oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); 00692 00693 /* allocate memory for user context */ 00694 lcp = (ListCell **) palloc(sizeof(ListCell *)); 00695 *lcp = list_head(listenChannels); 00696 funcctx->user_fctx = (void *) lcp; 00697 00698 MemoryContextSwitchTo(oldcontext); 00699 } 00700 00701 /* stuff done on every call of the function */ 00702 funcctx = SRF_PERCALL_SETUP(); 00703 lcp = (ListCell **) funcctx->user_fctx; 00704 00705 while (*lcp != NULL) 00706 { 00707 char *channel = (char *) lfirst(*lcp); 00708 00709 *lcp = lnext(*lcp); 00710 SRF_RETURN_NEXT(funcctx, CStringGetTextDatum(channel)); 00711 } 00712 00713 SRF_RETURN_DONE(funcctx); 00714 } 00715 00716 /* 00717 * Async_UnlistenOnExit 00718 * 00719 * This is executed at backend exit if we have done any LISTENs in this 00720 * backend. It might not be necessary anymore, if the user UNLISTENed 00721 * everything, but we don't try to detect that case. 00722 */ 00723 static void 00724 Async_UnlistenOnExit(int code, Datum arg) 00725 { 00726 Exec_UnlistenAllCommit(); 00727 asyncQueueUnregister(); 00728 } 00729 00730 /* 00731 * AtPrepare_Notify 00732 * 00733 * This is called at the prepare phase of a two-phase 00734 * transaction. Save the state for possible commit later. 00735 */ 00736 void 00737 AtPrepare_Notify(void) 00738 { 00739 /* It's not allowed to have any pending LISTEN/UNLISTEN/NOTIFY actions */ 00740 if (pendingActions || pendingNotifies) 00741 ereport(ERROR, 00742 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), 00743 errmsg("cannot PREPARE a transaction that has executed LISTEN, UNLISTEN, or NOTIFY"))); 00744 } 00745 00746 /* 00747 * PreCommit_Notify 00748 * 00749 * This is called at transaction commit, before actually committing to 00750 * clog. 00751 * 00752 * If there are pending LISTEN actions, make sure we are listed in the 00753 * shared-memory listener array. This must happen before commit to 00754 * ensure we don't miss any notifies from transactions that commit 00755 * just after ours. 00756 * 00757 * If there are outbound notify requests in the pendingNotifies list, 00758 * add them to the global queue. We do that before commit so that 00759 * we can still throw error if we run out of queue space. 00760 */ 00761 void 00762 PreCommit_Notify(void) 00763 { 00764 ListCell *p; 00765 00766 if (pendingActions == NIL && pendingNotifies == NIL) 00767 return; /* no relevant statements in this xact */ 00768 00769 if (Trace_notify) 00770 elog(DEBUG1, "PreCommit_Notify"); 00771 00772 /* Preflight for any pending listen/unlisten actions */ 00773 foreach(p, pendingActions) 00774 { 00775 ListenAction *actrec = (ListenAction *) lfirst(p); 00776 00777 switch (actrec->action) 00778 { 00779 case LISTEN_LISTEN: 00780 Exec_ListenPreCommit(); 00781 break; 00782 case LISTEN_UNLISTEN: 00783 /* there is no Exec_UnlistenPreCommit() */ 00784 break; 00785 case LISTEN_UNLISTEN_ALL: 00786 /* there is no Exec_UnlistenAllPreCommit() */ 00787 break; 00788 } 00789 } 00790 00791 /* Queue any pending notifies */ 00792 if (pendingNotifies) 00793 { 00794 ListCell *nextNotify; 00795 00796 /* 00797 * Make sure that we have an XID assigned to the current transaction. 00798 * GetCurrentTransactionId is cheap if we already have an XID, but not 00799 * so cheap if we don't, and we'd prefer not to do that work while 00800 * holding AsyncQueueLock. 00801 */ 00802 (void) GetCurrentTransactionId(); 00803 00804 /* 00805 * Serialize writers by acquiring a special lock that we hold till 00806 * after commit. This ensures that queue entries appear in commit 00807 * order, and in particular that there are never uncommitted queue 00808 * entries ahead of committed ones, so an uncommitted transaction 00809 * can't block delivery of deliverable notifications. 00810 * 00811 * We use a heavyweight lock so that it'll automatically be released 00812 * after either commit or abort. This also allows deadlocks to be 00813 * detected, though really a deadlock shouldn't be possible here. 00814 * 00815 * The lock is on "database 0", which is pretty ugly but it doesn't 00816 * seem worth inventing a special locktag category just for this. 00817 * (Historical note: before PG 9.0, a similar lock on "database 0" was 00818 * used by the flatfiles mechanism.) 00819 */ 00820 LockSharedObject(DatabaseRelationId, InvalidOid, 0, 00821 AccessExclusiveLock); 00822 00823 /* Now push the notifications into the queue */ 00824 backendHasSentNotifications = true; 00825 00826 nextNotify = list_head(pendingNotifies); 00827 while (nextNotify != NULL) 00828 { 00829 /* 00830 * Add the pending notifications to the queue. We acquire and 00831 * release AsyncQueueLock once per page, which might be overkill 00832 * but it does allow readers to get in while we're doing this. 00833 * 00834 * A full queue is very uncommon and should really not happen, 00835 * given that we have so much space available in the SLRU pages. 00836 * Nevertheless we need to deal with this possibility. Note that 00837 * when we get here we are in the process of committing our 00838 * transaction, but we have not yet committed to clog, so at this 00839 * point in time we can still roll the transaction back. 00840 */ 00841 LWLockAcquire(AsyncQueueLock, LW_EXCLUSIVE); 00842 asyncQueueFillWarning(); 00843 if (asyncQueueIsFull()) 00844 ereport(ERROR, 00845 (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), 00846 errmsg("too many notifications in the NOTIFY queue"))); 00847 nextNotify = asyncQueueAddEntries(nextNotify); 00848 LWLockRelease(AsyncQueueLock); 00849 } 00850 } 00851 } 00852 00853 /* 00854 * AtCommit_Notify 00855 * 00856 * This is called at transaction commit, after committing to clog. 00857 * 00858 * Update listenChannels and clear transaction-local state. 00859 */ 00860 void 00861 AtCommit_Notify(void) 00862 { 00863 ListCell *p; 00864 00865 /* 00866 * Allow transactions that have not executed LISTEN/UNLISTEN/NOTIFY to 00867 * return as soon as possible 00868 */ 00869 if (!pendingActions && !pendingNotifies) 00870 return; 00871 00872 if (Trace_notify) 00873 elog(DEBUG1, "AtCommit_Notify"); 00874 00875 /* Perform any pending listen/unlisten actions */ 00876 foreach(p, pendingActions) 00877 { 00878 ListenAction *actrec = (ListenAction *) lfirst(p); 00879 00880 switch (actrec->action) 00881 { 00882 case LISTEN_LISTEN: 00883 Exec_ListenCommit(actrec->channel); 00884 break; 00885 case LISTEN_UNLISTEN: 00886 Exec_UnlistenCommit(actrec->channel); 00887 break; 00888 case LISTEN_UNLISTEN_ALL: 00889 Exec_UnlistenAllCommit(); 00890 break; 00891 } 00892 } 00893 00894 /* If no longer listening to anything, get out of listener array */ 00895 if (amRegisteredListener && listenChannels == NIL) 00896 asyncQueueUnregister(); 00897 00898 /* And clean up */ 00899 ClearPendingActionsAndNotifies(); 00900 } 00901 00902 /* 00903 * Exec_ListenPreCommit --- subroutine for PreCommit_Notify 00904 * 00905 * This function must make sure we are ready to catch any incoming messages. 00906 */ 00907 static void 00908 Exec_ListenPreCommit(void) 00909 { 00910 /* 00911 * Nothing to do if we are already listening to something, nor if we 00912 * already ran this routine in this transaction. 00913 */ 00914 if (amRegisteredListener) 00915 return; 00916 00917 if (Trace_notify) 00918 elog(DEBUG1, "Exec_ListenPreCommit(%d)", MyProcPid); 00919 00920 /* 00921 * Before registering, make sure we will unlisten before dying. (Note: 00922 * this action does not get undone if we abort later.) 00923 */ 00924 if (!unlistenExitRegistered) 00925 { 00926 on_shmem_exit(Async_UnlistenOnExit, 0); 00927 unlistenExitRegistered = true; 00928 } 00929 00930 /* 00931 * This is our first LISTEN, so establish our pointer. 00932 * 00933 * We set our pointer to the global tail pointer and then move it forward 00934 * over already-committed notifications. This ensures we cannot miss any 00935 * not-yet-committed notifications. We might get a few more but that 00936 * doesn't hurt. 00937 */ 00938 LWLockAcquire(AsyncQueueLock, LW_SHARED); 00939 QUEUE_BACKEND_POS(MyBackendId) = QUEUE_TAIL; 00940 QUEUE_BACKEND_PID(MyBackendId) = MyProcPid; 00941 LWLockRelease(AsyncQueueLock); 00942 00943 /* Now we are listed in the global array, so remember we're listening */ 00944 amRegisteredListener = true; 00945 00946 /* 00947 * Try to move our pointer forward as far as possible. This will skip over 00948 * already-committed notifications. Still, we could get notifications that 00949 * have already committed before we started to LISTEN. 00950 * 00951 * Note that we are not yet listening on anything, so we won't deliver any 00952 * notification to the frontend. 00953 * 00954 * This will also advance the global tail pointer if possible. 00955 */ 00956 asyncQueueReadAllNotifications(); 00957 } 00958 00959 /* 00960 * Exec_ListenCommit --- subroutine for AtCommit_Notify 00961 * 00962 * Add the channel to the list of channels we are listening on. 00963 */ 00964 static void 00965 Exec_ListenCommit(const char *channel) 00966 { 00967 MemoryContext oldcontext; 00968 00969 /* Do nothing if we are already listening on this channel */ 00970 if (IsListeningOn(channel)) 00971 return; 00972 00973 /* 00974 * Add the new channel name to listenChannels. 00975 * 00976 * XXX It is theoretically possible to get an out-of-memory failure here, 00977 * which would be bad because we already committed. For the moment it 00978 * doesn't seem worth trying to guard against that, but maybe improve this 00979 * later. 00980 */ 00981 oldcontext = MemoryContextSwitchTo(TopMemoryContext); 00982 listenChannels = lappend(listenChannels, pstrdup(channel)); 00983 MemoryContextSwitchTo(oldcontext); 00984 } 00985 00986 /* 00987 * Exec_UnlistenCommit --- subroutine for AtCommit_Notify 00988 * 00989 * Remove the specified channel name from listenChannels. 00990 */ 00991 static void 00992 Exec_UnlistenCommit(const char *channel) 00993 { 00994 ListCell *q; 00995 ListCell *prev; 00996 00997 if (Trace_notify) 00998 elog(DEBUG1, "Exec_UnlistenCommit(%s,%d)", channel, MyProcPid); 00999 01000 prev = NULL; 01001 foreach(q, listenChannels) 01002 { 01003 char *lchan = (char *) lfirst(q); 01004 01005 if (strcmp(lchan, channel) == 0) 01006 { 01007 listenChannels = list_delete_cell(listenChannels, q, prev); 01008 pfree(lchan); 01009 break; 01010 } 01011 prev = q; 01012 } 01013 01014 /* 01015 * We do not complain about unlistening something not being listened; 01016 * should we? 01017 */ 01018 } 01019 01020 /* 01021 * Exec_UnlistenAllCommit --- subroutine for AtCommit_Notify 01022 * 01023 * Unlisten on all channels for this backend. 01024 */ 01025 static void 01026 Exec_UnlistenAllCommit(void) 01027 { 01028 if (Trace_notify) 01029 elog(DEBUG1, "Exec_UnlistenAllCommit(%d)", MyProcPid); 01030 01031 list_free_deep(listenChannels); 01032 listenChannels = NIL; 01033 } 01034 01035 /* 01036 * ProcessCompletedNotifies --- send out signals and self-notifies 01037 * 01038 * This is called from postgres.c just before going idle at the completion 01039 * of a transaction. If we issued any notifications in the just-completed 01040 * transaction, send signals to other backends to process them, and also 01041 * process the queue ourselves to send messages to our own frontend. 01042 * 01043 * The reason that this is not done in AtCommit_Notify is that there is 01044 * a nonzero chance of errors here (for example, encoding conversion errors 01045 * while trying to format messages to our frontend). An error during 01046 * AtCommit_Notify would be a PANIC condition. The timing is also arranged 01047 * to ensure that a transaction's self-notifies are delivered to the frontend 01048 * before it gets the terminating ReadyForQuery message. 01049 * 01050 * Note that we send signals and process the queue even if the transaction 01051 * eventually aborted. This is because we need to clean out whatever got 01052 * added to the queue. 01053 * 01054 * NOTE: we are outside of any transaction here. 01055 */ 01056 void 01057 ProcessCompletedNotifies(void) 01058 { 01059 MemoryContext caller_context; 01060 bool signalled; 01061 01062 /* Nothing to do if we didn't send any notifications */ 01063 if (!backendHasSentNotifications) 01064 return; 01065 01066 /* 01067 * We reset the flag immediately; otherwise, if any sort of error occurs 01068 * below, we'd be locked up in an infinite loop, because control will come 01069 * right back here after error cleanup. 01070 */ 01071 backendHasSentNotifications = false; 01072 01073 /* 01074 * We must preserve the caller's memory context (probably MessageContext) 01075 * across the transaction we do here. 01076 */ 01077 caller_context = CurrentMemoryContext; 01078 01079 if (Trace_notify) 01080 elog(DEBUG1, "ProcessCompletedNotifies"); 01081 01082 /* 01083 * We must run asyncQueueReadAllNotifications inside a transaction, else 01084 * bad things happen if it gets an error. 01085 */ 01086 StartTransactionCommand(); 01087 01088 /* Send signals to other backends */ 01089 signalled = SignalBackends(); 01090 01091 if (listenChannels != NIL) 01092 { 01093 /* Read the queue ourselves, and send relevant stuff to the frontend */ 01094 asyncQueueReadAllNotifications(); 01095 } 01096 else if (!signalled) 01097 { 01098 /* 01099 * If we found no other listening backends, and we aren't listening 01100 * ourselves, then we must execute asyncQueueAdvanceTail to flush the 01101 * queue, because ain't nobody else gonna do it. This prevents queue 01102 * overflow when we're sending useless notifies to nobody. (A new 01103 * listener could have joined since we looked, but if so this is 01104 * harmless.) 01105 */ 01106 asyncQueueAdvanceTail(); 01107 } 01108 01109 CommitTransactionCommand(); 01110 01111 MemoryContextSwitchTo(caller_context); 01112 01113 /* We don't need pq_flush() here since postgres.c will do one shortly */ 01114 } 01115 01116 /* 01117 * Test whether we are actively listening on the given channel name. 01118 * 01119 * Note: this function is executed for every notification found in the queue. 01120 * Perhaps it is worth further optimization, eg convert the list to a sorted 01121 * array so we can binary-search it. In practice the list is likely to be 01122 * fairly short, though. 01123 */ 01124 static bool 01125 IsListeningOn(const char *channel) 01126 { 01127 ListCell *p; 01128 01129 foreach(p, listenChannels) 01130 { 01131 char *lchan = (char *) lfirst(p); 01132 01133 if (strcmp(lchan, channel) == 0) 01134 return true; 01135 } 01136 return false; 01137 } 01138 01139 /* 01140 * Remove our entry from the listeners array when we are no longer listening 01141 * on any channel. NB: must not fail if we're already not listening. 01142 */ 01143 static void 01144 asyncQueueUnregister(void) 01145 { 01146 bool advanceTail; 01147 01148 Assert(listenChannels == NIL); /* else caller error */ 01149 01150 if (!amRegisteredListener) /* nothing to do */ 01151 return; 01152 01153 LWLockAcquire(AsyncQueueLock, LW_SHARED); 01154 /* check if entry is valid and oldest ... */ 01155 advanceTail = (MyProcPid == QUEUE_BACKEND_PID(MyBackendId)) && 01156 QUEUE_POS_EQUAL(QUEUE_BACKEND_POS(MyBackendId), QUEUE_TAIL); 01157 /* ... then mark it invalid */ 01158 QUEUE_BACKEND_PID(MyBackendId) = InvalidPid; 01159 LWLockRelease(AsyncQueueLock); 01160 01161 /* mark ourselves as no longer listed in the global array */ 01162 amRegisteredListener = false; 01163 01164 /* If we were the laziest backend, try to advance the tail pointer */ 01165 if (advanceTail) 01166 asyncQueueAdvanceTail(); 01167 } 01168 01169 /* 01170 * Test whether there is room to insert more notification messages. 01171 * 01172 * Caller must hold at least shared AsyncQueueLock. 01173 */ 01174 static bool 01175 asyncQueueIsFull(void) 01176 { 01177 int nexthead; 01178 int boundary; 01179 01180 /* 01181 * The queue is full if creating a new head page would create a page that 01182 * logically precedes the current global tail pointer, ie, the head 01183 * pointer would wrap around compared to the tail. We cannot create such 01184 * a head page for fear of confusing slru.c. For safety we round the tail 01185 * pointer back to a segment boundary (compare the truncation logic in 01186 * asyncQueueAdvanceTail). 01187 * 01188 * Note that this test is *not* dependent on how much space there is on 01189 * the current head page. This is necessary because asyncQueueAddEntries 01190 * might try to create the next head page in any case. 01191 */ 01192 nexthead = QUEUE_POS_PAGE(QUEUE_HEAD) + 1; 01193 if (nexthead > QUEUE_MAX_PAGE) 01194 nexthead = 0; /* wrap around */ 01195 boundary = QUEUE_POS_PAGE(QUEUE_TAIL); 01196 boundary -= boundary % SLRU_PAGES_PER_SEGMENT; 01197 return asyncQueuePagePrecedes(nexthead, boundary); 01198 } 01199 01200 /* 01201 * Advance the QueuePosition to the next entry, assuming that the current 01202 * entry is of length entryLength. If we jump to a new page the function 01203 * returns true, else false. 01204 */ 01205 static bool 01206 asyncQueueAdvance(QueuePosition *position, int entryLength) 01207 { 01208 int pageno = QUEUE_POS_PAGE(*position); 01209 int offset = QUEUE_POS_OFFSET(*position); 01210 bool pageJump = false; 01211 01212 /* 01213 * Move to the next writing position: First jump over what we have just 01214 * written or read. 01215 */ 01216 offset += entryLength; 01217 Assert(offset <= QUEUE_PAGESIZE); 01218 01219 /* 01220 * In a second step check if another entry can possibly be written to the 01221 * page. If so, stay here, we have reached the next position. If not, then 01222 * we need to move on to the next page. 01223 */ 01224 if (offset + QUEUEALIGN(AsyncQueueEntryEmptySize) > QUEUE_PAGESIZE) 01225 { 01226 pageno++; 01227 if (pageno > QUEUE_MAX_PAGE) 01228 pageno = 0; /* wrap around */ 01229 offset = 0; 01230 pageJump = true; 01231 } 01232 01233 SET_QUEUE_POS(*position, pageno, offset); 01234 return pageJump; 01235 } 01236 01237 /* 01238 * Fill the AsyncQueueEntry at *qe with an outbound notification message. 01239 */ 01240 static void 01241 asyncQueueNotificationToEntry(Notification *n, AsyncQueueEntry *qe) 01242 { 01243 size_t channellen = strlen(n->channel); 01244 size_t payloadlen = strlen(n->payload); 01245 int entryLength; 01246 01247 Assert(channellen < NAMEDATALEN); 01248 Assert(payloadlen < NOTIFY_PAYLOAD_MAX_LENGTH); 01249 01250 /* The terminators are already included in AsyncQueueEntryEmptySize */ 01251 entryLength = AsyncQueueEntryEmptySize + payloadlen + channellen; 01252 entryLength = QUEUEALIGN(entryLength); 01253 qe->length = entryLength; 01254 qe->dboid = MyDatabaseId; 01255 qe->xid = GetCurrentTransactionId(); 01256 qe->srcPid = MyProcPid; 01257 memcpy(qe->data, n->channel, channellen + 1); 01258 memcpy(qe->data + channellen + 1, n->payload, payloadlen + 1); 01259 } 01260 01261 /* 01262 * Add pending notifications to the queue. 01263 * 01264 * We go page by page here, i.e. we stop once we have to go to a new page but 01265 * we will be called again and then fill that next page. If an entry does not 01266 * fit into the current page, we write a dummy entry with an InvalidOid as the 01267 * database OID in order to fill the page. So every page is always used up to 01268 * the last byte which simplifies reading the page later. 01269 * 01270 * We are passed the list cell containing the next notification to write 01271 * and return the first still-unwritten cell back. Eventually we will return 01272 * NULL indicating all is done. 01273 * 01274 * We are holding AsyncQueueLock already from the caller and grab AsyncCtlLock 01275 * locally in this function. 01276 */ 01277 static ListCell * 01278 asyncQueueAddEntries(ListCell *nextNotify) 01279 { 01280 AsyncQueueEntry qe; 01281 QueuePosition queue_head; 01282 int pageno; 01283 int offset; 01284 int slotno; 01285 01286 /* We hold both AsyncQueueLock and AsyncCtlLock during this operation */ 01287 LWLockAcquire(AsyncCtlLock, LW_EXCLUSIVE); 01288 01289 /* 01290 * We work with a local copy of QUEUE_HEAD, which we write back to shared 01291 * memory upon exiting. The reason for this is that if we have to advance 01292 * to a new page, SimpleLruZeroPage might fail (out of disk space, for 01293 * instance), and we must not advance QUEUE_HEAD if it does. (Otherwise, 01294 * subsequent insertions would try to put entries into a page that slru.c 01295 * thinks doesn't exist yet.) So, use a local position variable. Note 01296 * that if we do fail, any already-inserted queue entries are forgotten; 01297 * this is okay, since they'd be useless anyway after our transaction 01298 * rolls back. 01299 */ 01300 queue_head = QUEUE_HEAD; 01301 01302 /* Fetch the current page */ 01303 pageno = QUEUE_POS_PAGE(queue_head); 01304 slotno = SimpleLruReadPage(AsyncCtl, pageno, true, InvalidTransactionId); 01305 /* Note we mark the page dirty before writing in it */ 01306 AsyncCtl->shared->page_dirty[slotno] = true; 01307 01308 while (nextNotify != NULL) 01309 { 01310 Notification *n = (Notification *) lfirst(nextNotify); 01311 01312 /* Construct a valid queue entry in local variable qe */ 01313 asyncQueueNotificationToEntry(n, &qe); 01314 01315 offset = QUEUE_POS_OFFSET(queue_head); 01316 01317 /* Check whether the entry really fits on the current page */ 01318 if (offset + qe.length <= QUEUE_PAGESIZE) 01319 { 01320 /* OK, so advance nextNotify past this item */ 01321 nextNotify = lnext(nextNotify); 01322 } 01323 else 01324 { 01325 /* 01326 * Write a dummy entry to fill up the page. Actually readers will 01327 * only check dboid and since it won't match any reader's database 01328 * OID, they will ignore this entry and move on. 01329 */ 01330 qe.length = QUEUE_PAGESIZE - offset; 01331 qe.dboid = InvalidOid; 01332 qe.data[0] = '\0'; /* empty channel */ 01333 qe.data[1] = '\0'; /* empty payload */ 01334 } 01335 01336 /* Now copy qe into the shared buffer page */ 01337 memcpy(AsyncCtl->shared->page_buffer[slotno] + offset, 01338 &qe, 01339 qe.length); 01340 01341 /* Advance queue_head appropriately, and detect if page is full */ 01342 if (asyncQueueAdvance(&(queue_head), qe.length)) 01343 { 01344 /* 01345 * Page is full, so we're done here, but first fill the next page 01346 * with zeroes. The reason to do this is to ensure that slru.c's 01347 * idea of the head page is always the same as ours, which avoids 01348 * boundary problems in SimpleLruTruncate. The test in 01349 * asyncQueueIsFull() ensured that there is room to create this 01350 * page without overrunning the queue. 01351 */ 01352 slotno = SimpleLruZeroPage(AsyncCtl, QUEUE_POS_PAGE(queue_head)); 01353 /* And exit the loop */ 01354 break; 01355 } 01356 } 01357 01358 /* Success, so update the global QUEUE_HEAD */ 01359 QUEUE_HEAD = queue_head; 01360 01361 LWLockRelease(AsyncCtlLock); 01362 01363 return nextNotify; 01364 } 01365 01366 /* 01367 * Check whether the queue is at least half full, and emit a warning if so. 01368 * 01369 * This is unlikely given the size of the queue, but possible. 01370 * The warnings show up at most once every QUEUE_FULL_WARN_INTERVAL. 01371 * 01372 * Caller must hold exclusive AsyncQueueLock. 01373 */ 01374 static void 01375 asyncQueueFillWarning(void) 01376 { 01377 int headPage = QUEUE_POS_PAGE(QUEUE_HEAD); 01378 int tailPage = QUEUE_POS_PAGE(QUEUE_TAIL); 01379 int occupied; 01380 double fillDegree; 01381 TimestampTz t; 01382 01383 occupied = headPage - tailPage; 01384 01385 if (occupied == 0) 01386 return; /* fast exit for common case */ 01387 01388 if (occupied < 0) 01389 { 01390 /* head has wrapped around, tail not yet */ 01391 occupied += QUEUE_MAX_PAGE + 1; 01392 } 01393 01394 fillDegree = (double) occupied / (double) ((QUEUE_MAX_PAGE + 1) / 2); 01395 01396 if (fillDegree < 0.5) 01397 return; 01398 01399 t = GetCurrentTimestamp(); 01400 01401 if (TimestampDifferenceExceeds(asyncQueueControl->lastQueueFillWarn, 01402 t, QUEUE_FULL_WARN_INTERVAL)) 01403 { 01404 QueuePosition min = QUEUE_HEAD; 01405 int32 minPid = InvalidPid; 01406 int i; 01407 01408 for (i = 1; i <= MaxBackends; i++) 01409 { 01410 if (QUEUE_BACKEND_PID(i) != InvalidPid) 01411 { 01412 min = QUEUE_POS_MIN(min, QUEUE_BACKEND_POS(i)); 01413 if (QUEUE_POS_EQUAL(min, QUEUE_BACKEND_POS(i))) 01414 minPid = QUEUE_BACKEND_PID(i); 01415 } 01416 } 01417 01418 ereport(WARNING, 01419 (errmsg("NOTIFY queue is %.0f%% full", fillDegree * 100), 01420 (minPid != InvalidPid ? 01421 errdetail("The server process with PID %d is among those with the oldest transactions.", minPid) 01422 : 0), 01423 (minPid != InvalidPid ? 01424 errhint("The NOTIFY queue cannot be emptied until that process ends its current transaction.") 01425 : 0))); 01426 01427 asyncQueueControl->lastQueueFillWarn = t; 01428 } 01429 } 01430 01431 /* 01432 * Send signals to all listening backends (except our own). 01433 * 01434 * Returns true if we sent at least one signal. 01435 * 01436 * Since we need EXCLUSIVE lock anyway we also check the position of the other 01437 * backends and in case one is already up-to-date we don't signal it. 01438 * This can happen if concurrent notifying transactions have sent a signal and 01439 * the signaled backend has read the other notifications and ours in the same 01440 * step. 01441 * 01442 * Since we know the BackendId and the Pid the signalling is quite cheap. 01443 */ 01444 static bool 01445 SignalBackends(void) 01446 { 01447 bool signalled = false; 01448 int32 *pids; 01449 BackendId *ids; 01450 int count; 01451 int i; 01452 int32 pid; 01453 01454 /* 01455 * Identify all backends that are listening and not already up-to-date. We 01456 * don't want to send signals while holding the AsyncQueueLock, so we just 01457 * build a list of target PIDs. 01458 * 01459 * XXX in principle these pallocs could fail, which would be bad. Maybe 01460 * preallocate the arrays? But in practice this is only run in trivial 01461 * transactions, so there should surely be space available. 01462 */ 01463 pids = (int32 *) palloc(MaxBackends * sizeof(int32)); 01464 ids = (BackendId *) palloc(MaxBackends * sizeof(BackendId)); 01465 count = 0; 01466 01467 LWLockAcquire(AsyncQueueLock, LW_EXCLUSIVE); 01468 for (i = 1; i <= MaxBackends; i++) 01469 { 01470 pid = QUEUE_BACKEND_PID(i); 01471 if (pid != InvalidPid && pid != MyProcPid) 01472 { 01473 QueuePosition pos = QUEUE_BACKEND_POS(i); 01474 01475 if (!QUEUE_POS_EQUAL(pos, QUEUE_HEAD)) 01476 { 01477 pids[count] = pid; 01478 ids[count] = i; 01479 count++; 01480 } 01481 } 01482 } 01483 LWLockRelease(AsyncQueueLock); 01484 01485 /* Now send signals */ 01486 for (i = 0; i < count; i++) 01487 { 01488 pid = pids[i]; 01489 01490 /* 01491 * Note: assuming things aren't broken, a signal failure here could 01492 * only occur if the target backend exited since we released 01493 * AsyncQueueLock; which is unlikely but certainly possible. So we 01494 * just log a low-level debug message if it happens. 01495 */ 01496 if (SendProcSignal(pid, PROCSIG_NOTIFY_INTERRUPT, ids[i]) < 0) 01497 elog(DEBUG3, "could not signal backend with PID %d: %m", pid); 01498 else 01499 signalled = true; 01500 } 01501 01502 pfree(pids); 01503 pfree(ids); 01504 01505 return signalled; 01506 } 01507 01508 /* 01509 * AtAbort_Notify 01510 * 01511 * This is called at transaction abort. 01512 * 01513 * Gets rid of pending actions and outbound notifies that we would have 01514 * executed if the transaction got committed. 01515 */ 01516 void 01517 AtAbort_Notify(void) 01518 { 01519 /* 01520 * If we LISTEN but then roll back the transaction after PreCommit_Notify, 01521 * we have registered as a listener but have not made any entry in 01522 * listenChannels. In that case, deregister again. 01523 */ 01524 if (amRegisteredListener && listenChannels == NIL) 01525 asyncQueueUnregister(); 01526 01527 /* And clean up */ 01528 ClearPendingActionsAndNotifies(); 01529 } 01530 01531 /* 01532 * AtSubStart_Notify() --- Take care of subtransaction start. 01533 * 01534 * Push empty state for the new subtransaction. 01535 */ 01536 void 01537 AtSubStart_Notify(void) 01538 { 01539 MemoryContext old_cxt; 01540 01541 /* Keep the list-of-lists in TopTransactionContext for simplicity */ 01542 old_cxt = MemoryContextSwitchTo(TopTransactionContext); 01543 01544 upperPendingActions = lcons(pendingActions, upperPendingActions); 01545 01546 Assert(list_length(upperPendingActions) == 01547 GetCurrentTransactionNestLevel() - 1); 01548 01549 pendingActions = NIL; 01550 01551 upperPendingNotifies = lcons(pendingNotifies, upperPendingNotifies); 01552 01553 Assert(list_length(upperPendingNotifies) == 01554 GetCurrentTransactionNestLevel() - 1); 01555 01556 pendingNotifies = NIL; 01557 01558 MemoryContextSwitchTo(old_cxt); 01559 } 01560 01561 /* 01562 * AtSubCommit_Notify() --- Take care of subtransaction commit. 01563 * 01564 * Reassign all items in the pending lists to the parent transaction. 01565 */ 01566 void 01567 AtSubCommit_Notify(void) 01568 { 01569 List *parentPendingActions; 01570 List *parentPendingNotifies; 01571 01572 parentPendingActions = (List *) linitial(upperPendingActions); 01573 upperPendingActions = list_delete_first(upperPendingActions); 01574 01575 Assert(list_length(upperPendingActions) == 01576 GetCurrentTransactionNestLevel() - 2); 01577 01578 /* 01579 * Mustn't try to eliminate duplicates here --- see queue_listen() 01580 */ 01581 pendingActions = list_concat(parentPendingActions, pendingActions); 01582 01583 parentPendingNotifies = (List *) linitial(upperPendingNotifies); 01584 upperPendingNotifies = list_delete_first(upperPendingNotifies); 01585 01586 Assert(list_length(upperPendingNotifies) == 01587 GetCurrentTransactionNestLevel() - 2); 01588 01589 /* 01590 * We could try to eliminate duplicates here, but it seems not worthwhile. 01591 */ 01592 pendingNotifies = list_concat(parentPendingNotifies, pendingNotifies); 01593 } 01594 01595 /* 01596 * AtSubAbort_Notify() --- Take care of subtransaction abort. 01597 */ 01598 void 01599 AtSubAbort_Notify(void) 01600 { 01601 int my_level = GetCurrentTransactionNestLevel(); 01602 01603 /* 01604 * All we have to do is pop the stack --- the actions/notifies made in 01605 * this subxact are no longer interesting, and the space will be freed 01606 * when CurTransactionContext is recycled. 01607 * 01608 * This routine could be called more than once at a given nesting level if 01609 * there is trouble during subxact abort. Avoid dumping core by using 01610 * GetCurrentTransactionNestLevel as the indicator of how far we need to 01611 * prune the list. 01612 */ 01613 while (list_length(upperPendingActions) > my_level - 2) 01614 { 01615 pendingActions = (List *) linitial(upperPendingActions); 01616 upperPendingActions = list_delete_first(upperPendingActions); 01617 } 01618 01619 while (list_length(upperPendingNotifies) > my_level - 2) 01620 { 01621 pendingNotifies = (List *) linitial(upperPendingNotifies); 01622 upperPendingNotifies = list_delete_first(upperPendingNotifies); 01623 } 01624 } 01625 01626 /* 01627 * HandleNotifyInterrupt 01628 * 01629 * This is called when PROCSIG_NOTIFY_INTERRUPT is received. 01630 * 01631 * If we are idle (notifyInterruptEnabled is set), we can safely invoke 01632 * ProcessIncomingNotify directly. Otherwise, just set a flag 01633 * to do it later. 01634 */ 01635 void 01636 HandleNotifyInterrupt(void) 01637 { 01638 /* 01639 * Note: this is called by a SIGNAL HANDLER. You must be very wary what 01640 * you do here. Some helpful soul had this routine sprinkled with 01641 * TPRINTFs, which would likely lead to corruption of stdio buffers if 01642 * they were ever turned on. 01643 */ 01644 01645 /* Don't joggle the elbow of proc_exit */ 01646 if (proc_exit_inprogress) 01647 return; 01648 01649 if (notifyInterruptEnabled) 01650 { 01651 bool save_ImmediateInterruptOK = ImmediateInterruptOK; 01652 01653 /* 01654 * We may be called while ImmediateInterruptOK is true; turn it off 01655 * while messing with the NOTIFY state. (We would have to save and 01656 * restore it anyway, because PGSemaphore operations inside 01657 * ProcessIncomingNotify() might reset it.) 01658 */ 01659 ImmediateInterruptOK = false; 01660 01661 /* 01662 * I'm not sure whether some flavors of Unix might allow another 01663 * SIGUSR1 occurrence to recursively interrupt this routine. To cope 01664 * with the possibility, we do the same sort of dance that 01665 * EnableNotifyInterrupt must do --- see that routine for comments. 01666 */ 01667 notifyInterruptEnabled = 0; /* disable any recursive signal */ 01668 notifyInterruptOccurred = 1; /* do at least one iteration */ 01669 for (;;) 01670 { 01671 notifyInterruptEnabled = 1; 01672 if (!notifyInterruptOccurred) 01673 break; 01674 notifyInterruptEnabled = 0; 01675 if (notifyInterruptOccurred) 01676 { 01677 /* Here, it is finally safe to do stuff. */ 01678 if (Trace_notify) 01679 elog(DEBUG1, "HandleNotifyInterrupt: perform async notify"); 01680 01681 ProcessIncomingNotify(); 01682 01683 if (Trace_notify) 01684 elog(DEBUG1, "HandleNotifyInterrupt: done"); 01685 } 01686 } 01687 01688 /* 01689 * Restore ImmediateInterruptOK, and check for interrupts if needed. 01690 */ 01691 ImmediateInterruptOK = save_ImmediateInterruptOK; 01692 if (save_ImmediateInterruptOK) 01693 CHECK_FOR_INTERRUPTS(); 01694 } 01695 else 01696 { 01697 /* 01698 * In this path it is NOT SAFE to do much of anything, except this: 01699 */ 01700 notifyInterruptOccurred = 1; 01701 } 01702 } 01703 01704 /* 01705 * EnableNotifyInterrupt 01706 * 01707 * This is called by the PostgresMain main loop just before waiting 01708 * for a frontend command. If we are truly idle (ie, *not* inside 01709 * a transaction block), then process any pending inbound notifies, 01710 * and enable the signal handler to process future notifies directly. 01711 * 01712 * NOTE: the signal handler starts out disabled, and stays so until 01713 * PostgresMain calls this the first time. 01714 */ 01715 void 01716 EnableNotifyInterrupt(void) 01717 { 01718 if (IsTransactionOrTransactionBlock()) 01719 return; /* not really idle */ 01720 01721 /* 01722 * This code is tricky because we are communicating with a signal handler 01723 * that could interrupt us at any point. If we just checked 01724 * notifyInterruptOccurred and then set notifyInterruptEnabled, we could 01725 * fail to respond promptly to a signal that happens in between those two 01726 * steps. (A very small time window, perhaps, but Murphy's Law says you 01727 * can hit it...) Instead, we first set the enable flag, then test the 01728 * occurred flag. If we see an unserviced interrupt has occurred, we 01729 * re-clear the enable flag before going off to do the service work. (That 01730 * prevents re-entrant invocation of ProcessIncomingNotify() if another 01731 * interrupt occurs.) If an interrupt comes in between the setting and 01732 * clearing of notifyInterruptEnabled, then it will have done the service 01733 * work and left notifyInterruptOccurred zero, so we have to check again 01734 * after clearing enable. The whole thing has to be in a loop in case 01735 * another interrupt occurs while we're servicing the first. Once we get 01736 * out of the loop, enable is set and we know there is no unserviced 01737 * interrupt. 01738 * 01739 * NB: an overenthusiastic optimizing compiler could easily break this 01740 * code. Hopefully, they all understand what "volatile" means these days. 01741 */ 01742 for (;;) 01743 { 01744 notifyInterruptEnabled = 1; 01745 if (!notifyInterruptOccurred) 01746 break; 01747 notifyInterruptEnabled = 0; 01748 if (notifyInterruptOccurred) 01749 { 01750 if (Trace_notify) 01751 elog(DEBUG1, "EnableNotifyInterrupt: perform async notify"); 01752 01753 ProcessIncomingNotify(); 01754 01755 if (Trace_notify) 01756 elog(DEBUG1, "EnableNotifyInterrupt: done"); 01757 } 01758 } 01759 } 01760 01761 /* 01762 * DisableNotifyInterrupt 01763 * 01764 * This is called by the PostgresMain main loop just after receiving 01765 * a frontend command. Signal handler execution of inbound notifies 01766 * is disabled until the next EnableNotifyInterrupt call. 01767 * 01768 * The PROCSIG_CATCHUP_INTERRUPT signal handler also needs to call this, 01769 * so as to prevent conflicts if one signal interrupts the other. So we 01770 * must return the previous state of the flag. 01771 */ 01772 bool 01773 DisableNotifyInterrupt(void) 01774 { 01775 bool result = (notifyInterruptEnabled != 0); 01776 01777 notifyInterruptEnabled = 0; 01778 01779 return result; 01780 } 01781 01782 /* 01783 * Read all pending notifications from the queue, and deliver appropriate 01784 * ones to my frontend. Stop when we reach queue head or an uncommitted 01785 * notification. 01786 */ 01787 static void 01788 asyncQueueReadAllNotifications(void) 01789 { 01790 QueuePosition pos; 01791 QueuePosition oldpos; 01792 QueuePosition head; 01793 bool advanceTail; 01794 01795 /* page_buffer must be adequately aligned, so use a union */ 01796 union 01797 { 01798 char buf[QUEUE_PAGESIZE]; 01799 AsyncQueueEntry align; 01800 } page_buffer; 01801 01802 /* Fetch current state */ 01803 LWLockAcquire(AsyncQueueLock, LW_SHARED); 01804 /* Assert checks that we have a valid state entry */ 01805 Assert(MyProcPid == QUEUE_BACKEND_PID(MyBackendId)); 01806 pos = oldpos = QUEUE_BACKEND_POS(MyBackendId); 01807 head = QUEUE_HEAD; 01808 LWLockRelease(AsyncQueueLock); 01809 01810 if (QUEUE_POS_EQUAL(pos, head)) 01811 { 01812 /* Nothing to do, we have read all notifications already. */ 01813 return; 01814 } 01815 01816 /*---------- 01817 * Note that we deliver everything that we see in the queue and that 01818 * matches our _current_ listening state. 01819 * Especially we do not take into account different commit times. 01820 * Consider the following example: 01821 * 01822 * Backend 1: Backend 2: 01823 * 01824 * transaction starts 01825 * NOTIFY foo; 01826 * commit starts 01827 * transaction starts 01828 * LISTEN foo; 01829 * commit starts 01830 * commit to clog 01831 * commit to clog 01832 * 01833 * It could happen that backend 2 sees the notification from backend 1 in 01834 * the queue. Even though the notifying transaction committed before 01835 * the listening transaction, we still deliver the notification. 01836 * 01837 * The idea is that an additional notification does not do any harm, we 01838 * just need to make sure that we do not miss a notification. 01839 * 01840 * It is possible that we fail while trying to send a message to our 01841 * frontend (for example, because of encoding conversion failure). 01842 * If that happens it is critical that we not try to send the same 01843 * message over and over again. Therefore, we place a PG_TRY block 01844 * here that will forcibly advance our backend position before we lose 01845 * control to an error. (We could alternatively retake AsyncQueueLock 01846 * and move the position before handling each individual message, but 01847 * that seems like too much lock traffic.) 01848 *---------- 01849 */ 01850 PG_TRY(); 01851 { 01852 bool reachedStop; 01853 01854 do 01855 { 01856 int curpage = QUEUE_POS_PAGE(pos); 01857 int curoffset = QUEUE_POS_OFFSET(pos); 01858 int slotno; 01859 int copysize; 01860 01861 /* 01862 * We copy the data from SLRU into a local buffer, so as to avoid 01863 * holding the AsyncCtlLock while we are examining the entries and 01864 * possibly transmitting them to our frontend. Copy only the part 01865 * of the page we will actually inspect. 01866 */ 01867 slotno = SimpleLruReadPage_ReadOnly(AsyncCtl, curpage, 01868 InvalidTransactionId); 01869 if (curpage == QUEUE_POS_PAGE(head)) 01870 { 01871 /* we only want to read as far as head */ 01872 copysize = QUEUE_POS_OFFSET(head) - curoffset; 01873 if (copysize < 0) 01874 copysize = 0; /* just for safety */ 01875 } 01876 else 01877 { 01878 /* fetch all the rest of the page */ 01879 copysize = QUEUE_PAGESIZE - curoffset; 01880 } 01881 memcpy(page_buffer.buf + curoffset, 01882 AsyncCtl->shared->page_buffer[slotno] + curoffset, 01883 copysize); 01884 /* Release lock that we got from SimpleLruReadPage_ReadOnly() */ 01885 LWLockRelease(AsyncCtlLock); 01886 01887 /* 01888 * Process messages up to the stop position, end of page, or an 01889 * uncommitted message. 01890 * 01891 * Our stop position is what we found to be the head's position 01892 * when we entered this function. It might have changed already. 01893 * But if it has, we will receive (or have already received and 01894 * queued) another signal and come here again. 01895 * 01896 * We are not holding AsyncQueueLock here! The queue can only 01897 * extend beyond the head pointer (see above) and we leave our 01898 * backend's pointer where it is so nobody will truncate or 01899 * rewrite pages under us. Especially we don't want to hold a lock 01900 * while sending the notifications to the frontend. 01901 */ 01902 reachedStop = asyncQueueProcessPageEntries(&pos, head, 01903 page_buffer.buf); 01904 } while (!reachedStop); 01905 } 01906 PG_CATCH(); 01907 { 01908 /* Update shared state */ 01909 LWLockAcquire(AsyncQueueLock, LW_SHARED); 01910 QUEUE_BACKEND_POS(MyBackendId) = pos; 01911 advanceTail = QUEUE_POS_EQUAL(oldpos, QUEUE_TAIL); 01912 LWLockRelease(AsyncQueueLock); 01913 01914 /* If we were the laziest backend, try to advance the tail pointer */ 01915 if (advanceTail) 01916 asyncQueueAdvanceTail(); 01917 01918 PG_RE_THROW(); 01919 } 01920 PG_END_TRY(); 01921 01922 /* Update shared state */ 01923 LWLockAcquire(AsyncQueueLock, LW_SHARED); 01924 QUEUE_BACKEND_POS(MyBackendId) = pos; 01925 advanceTail = QUEUE_POS_EQUAL(oldpos, QUEUE_TAIL); 01926 LWLockRelease(AsyncQueueLock); 01927 01928 /* If we were the laziest backend, try to advance the tail pointer */ 01929 if (advanceTail) 01930 asyncQueueAdvanceTail(); 01931 } 01932 01933 /* 01934 * Fetch notifications from the shared queue, beginning at position current, 01935 * and deliver relevant ones to my frontend. 01936 * 01937 * The current page must have been fetched into page_buffer from shared 01938 * memory. (We could access the page right in shared memory, but that 01939 * would imply holding the AsyncCtlLock throughout this routine.) 01940 * 01941 * We stop if we reach the "stop" position, or reach a notification from an 01942 * uncommitted transaction, or reach the end of the page. 01943 * 01944 * The function returns true once we have reached the stop position or an 01945 * uncommitted notification, and false if we have finished with the page. 01946 * In other words: once it returns true there is no need to look further. 01947 * The QueuePosition *current is advanced past all processed messages. 01948 */ 01949 static bool 01950 asyncQueueProcessPageEntries(QueuePosition *current, 01951 QueuePosition stop, 01952 char *page_buffer) 01953 { 01954 bool reachedStop = false; 01955 bool reachedEndOfPage; 01956 AsyncQueueEntry *qe; 01957 01958 do 01959 { 01960 QueuePosition thisentry = *current; 01961 01962 if (QUEUE_POS_EQUAL(thisentry, stop)) 01963 break; 01964 01965 qe = (AsyncQueueEntry *) (page_buffer + QUEUE_POS_OFFSET(thisentry)); 01966 01967 /* 01968 * Advance *current over this message, possibly to the next page. As 01969 * noted in the comments for asyncQueueReadAllNotifications, we must 01970 * do this before possibly failing while processing the message. 01971 */ 01972 reachedEndOfPage = asyncQueueAdvance(current, qe->length); 01973 01974 /* Ignore messages destined for other databases */ 01975 if (qe->dboid == MyDatabaseId) 01976 { 01977 if (TransactionIdDidCommit(qe->xid)) 01978 { 01979 /* qe->data is the null-terminated channel name */ 01980 char *channel = qe->data; 01981 01982 if (IsListeningOn(channel)) 01983 { 01984 /* payload follows channel name */ 01985 char *payload = qe->data + strlen(channel) + 1; 01986 01987 NotifyMyFrontEnd(channel, payload, qe->srcPid); 01988 } 01989 } 01990 else if (TransactionIdDidAbort(qe->xid)) 01991 { 01992 /* 01993 * If the source transaction aborted, we just ignore its 01994 * notifications. 01995 */ 01996 } 01997 else 01998 { 01999 /* 02000 * The transaction has neither committed nor aborted so far, 02001 * so we can't process its message yet. Break out of the 02002 * loop, but first back up *current so we will reprocess the 02003 * message next time. (Note: it is unlikely but not 02004 * impossible for TransactionIdDidCommit to fail, so we can't 02005 * really avoid this advance-then-back-up behavior when 02006 * dealing with an uncommitted message.) 02007 */ 02008 *current = thisentry; 02009 reachedStop = true; 02010 break; 02011 } 02012 } 02013 02014 /* Loop back if we're not at end of page */ 02015 } while (!reachedEndOfPage); 02016 02017 if (QUEUE_POS_EQUAL(*current, stop)) 02018 reachedStop = true; 02019 02020 return reachedStop; 02021 } 02022 02023 /* 02024 * Advance the shared queue tail variable to the minimum of all the 02025 * per-backend tail pointers. Truncate pg_notify space if possible. 02026 */ 02027 static void 02028 asyncQueueAdvanceTail(void) 02029 { 02030 QueuePosition min; 02031 int i; 02032 int oldtailpage; 02033 int newtailpage; 02034 int boundary; 02035 02036 LWLockAcquire(AsyncQueueLock, LW_EXCLUSIVE); 02037 min = QUEUE_HEAD; 02038 for (i = 1; i <= MaxBackends; i++) 02039 { 02040 if (QUEUE_BACKEND_PID(i) != InvalidPid) 02041 min = QUEUE_POS_MIN(min, QUEUE_BACKEND_POS(i)); 02042 } 02043 oldtailpage = QUEUE_POS_PAGE(QUEUE_TAIL); 02044 QUEUE_TAIL = min; 02045 LWLockRelease(AsyncQueueLock); 02046 02047 /* 02048 * We can truncate something if the global tail advanced across an SLRU 02049 * segment boundary. 02050 * 02051 * XXX it might be better to truncate only once every several segments, to 02052 * reduce the number of directory scans. 02053 */ 02054 newtailpage = QUEUE_POS_PAGE(min); 02055 boundary = newtailpage - (newtailpage % SLRU_PAGES_PER_SEGMENT); 02056 if (asyncQueuePagePrecedes(oldtailpage, boundary)) 02057 { 02058 /* 02059 * SimpleLruTruncate() will ask for AsyncCtlLock but will also release 02060 * the lock again. 02061 */ 02062 SimpleLruTruncate(AsyncCtl, newtailpage); 02063 } 02064 } 02065 02066 /* 02067 * ProcessIncomingNotify 02068 * 02069 * Deal with arriving NOTIFYs from other backends. 02070 * This is called either directly from the PROCSIG_NOTIFY_INTERRUPT 02071 * signal handler, or the next time control reaches the outer idle loop. 02072 * Scan the queue for arriving notifications and report them to my front 02073 * end. 02074 * 02075 * NOTE: since we are outside any transaction, we must create our own. 02076 */ 02077 static void 02078 ProcessIncomingNotify(void) 02079 { 02080 bool catchup_enabled; 02081 02082 /* We *must* reset the flag */ 02083 notifyInterruptOccurred = 0; 02084 02085 /* Do nothing else if we aren't actively listening */ 02086 if (listenChannels == NIL) 02087 return; 02088 02089 /* Must prevent catchup interrupt while I am running */ 02090 catchup_enabled = DisableCatchupInterrupt(); 02091 02092 if (Trace_notify) 02093 elog(DEBUG1, "ProcessIncomingNotify"); 02094 02095 set_ps_display("notify interrupt", false); 02096 02097 /* 02098 * We must run asyncQueueReadAllNotifications inside a transaction, else 02099 * bad things happen if it gets an error. 02100 */ 02101 StartTransactionCommand(); 02102 02103 asyncQueueReadAllNotifications(); 02104 02105 CommitTransactionCommand(); 02106 02107 /* 02108 * Must flush the notify messages to ensure frontend gets them promptly. 02109 */ 02110 pq_flush(); 02111 02112 set_ps_display("idle", false); 02113 02114 if (Trace_notify) 02115 elog(DEBUG1, "ProcessIncomingNotify: done"); 02116 02117 if (catchup_enabled) 02118 EnableCatchupInterrupt(); 02119 } 02120 02121 /* 02122 * Send NOTIFY message to my front end. 02123 */ 02124 static void 02125 NotifyMyFrontEnd(const char *channel, const char *payload, int32 srcPid) 02126 { 02127 if (whereToSendOutput == DestRemote) 02128 { 02129 StringInfoData buf; 02130 02131 pq_beginmessage(&buf, 'A'); 02132 pq_sendint(&buf, srcPid, sizeof(int32)); 02133 pq_sendstring(&buf, channel); 02134 if (PG_PROTOCOL_MAJOR(FrontendProtocol) >= 3) 02135 pq_sendstring(&buf, payload); 02136 pq_endmessage(&buf); 02137 02138 /* 02139 * NOTE: we do not do pq_flush() here. For a self-notify, it will 02140 * happen at the end of the transaction, and for incoming notifies 02141 * ProcessIncomingNotify will do it after finding all the notifies. 02142 */ 02143 } 02144 else 02145 elog(INFO, "NOTIFY for \"%s\" payload \"%s\"", channel, payload); 02146 } 02147 02148 /* Does pendingNotifies include the given channel/payload? */ 02149 static bool 02150 AsyncExistsPendingNotify(const char *channel, const char *payload) 02151 { 02152 ListCell *p; 02153 Notification *n; 02154 02155 if (pendingNotifies == NIL) 02156 return false; 02157 02158 if (payload == NULL) 02159 payload = ""; 02160 02161 /*---------- 02162 * We need to append new elements to the end of the list in order to keep 02163 * the order. However, on the other hand we'd like to check the list 02164 * backwards in order to make duplicate-elimination a tad faster when the 02165 * same condition is signaled many times in a row. So as a compromise we 02166 * check the tail element first which we can access directly. If this 02167 * doesn't match, we check the whole list. 02168 * 02169 * As we are not checking our parents' lists, we can still get duplicates 02170 * in combination with subtransactions, like in: 02171 * 02172 * begin; 02173 * notify foo '1'; 02174 * savepoint foo; 02175 * notify foo '1'; 02176 * commit; 02177 *---------- 02178 */ 02179 n = (Notification *) llast(pendingNotifies); 02180 if (strcmp(n->channel, channel) == 0 && 02181 strcmp(n->payload, payload) == 0) 02182 return true; 02183 02184 foreach(p, pendingNotifies) 02185 { 02186 n = (Notification *) lfirst(p); 02187 02188 if (strcmp(n->channel, channel) == 0 && 02189 strcmp(n->payload, payload) == 0) 02190 return true; 02191 } 02192 02193 return false; 02194 } 02195 02196 /* Clear the pendingActions and pendingNotifies lists. */ 02197 static void 02198 ClearPendingActionsAndNotifies(void) 02199 { 02200 /* 02201 * We used to have to explicitly deallocate the list members and nodes, 02202 * because they were malloc'd. Now, since we know they are palloc'd in 02203 * CurTransactionContext, we need not do that --- they'll go away 02204 * automatically at transaction exit. We need only reset the list head 02205 * pointers. 02206 */ 02207 pendingActions = NIL; 02208 pendingNotifies = NIL; 02209 }