#include "postgres.h"
#include "catalog/pg_type.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/placeholder.h"
#include "optimizer/prep.h"
#include "optimizer/subselect.h"
#include "optimizer/tlist.h"
#include "parser/parse_relation.h"
#include "parser/parsetree.h"
#include "rewrite/rewriteManip.h"
Go to the source code of this file.
typedef struct pullup_replace_vars_context pullup_replace_vars_context |
typedef struct reduce_outer_joins_state reduce_outer_joins_state |
Definition at line 2463 of file prepjointree.c.
References elog, ERROR, FromExpr::fromlist, IsA, JoinExpr::larg, lfirst, nodeTag, NULL, JoinExpr::rarg, and JoinExpr::rtindex.
Referenced by get_relids_for_join().
{ if (jtnode == NULL) return NULL; if (IsA(jtnode, RangeTblRef)) { int varno = ((RangeTblRef *) jtnode)->rtindex; if (relid == varno) return jtnode; } else if (IsA(jtnode, FromExpr)) { FromExpr *f = (FromExpr *) jtnode; ListCell *l; foreach(l, f->fromlist) { jtnode = find_jointree_node_for_rel(lfirst(l), relid); if (jtnode) return jtnode; } } else if (IsA(jtnode, JoinExpr)) { JoinExpr *j = (JoinExpr *) jtnode; if (relid == j->rtindex) return jtnode; jtnode = find_jointree_node_for_rel(j->larg, relid); if (jtnode) return jtnode; jtnode = find_jointree_node_for_rel(j->rarg, relid); if (jtnode) return jtnode; } else elog(ERROR, "unrecognized node type: %d", (int) nodeTag(jtnode)); return NULL; }
Definition at line 2364 of file prepjointree.c.
References Assert, bms_singleton_member(), AppendRelInfo::child_relid, lfirst, AppendRelInfo::parent_relid, substitute_multiple_relids(), and AppendRelInfo::translated_vars.
Referenced by pull_up_simple_subquery().
{ ListCell *l; int subvarno = -1; /* * We only want to extract the member relid once, but we mustn't fail * immediately if there are multiple members; it could be that none of the * AppendRelInfo nodes refer to it. So compute it on first use. Note that * bms_singleton_member will complain if set is not singleton. */ foreach(l, append_rel_list) { AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l); /* The parent_relid shouldn't ever be a pullup target */ Assert(appinfo->parent_relid != varno); if (appinfo->child_relid == varno) { if (subvarno < 0) subvarno = bms_singleton_member(subrelids); appinfo->child_relid = subvarno; } /* Also finish fixups for its translated vars */ substitute_multiple_relids((Node *) appinfo->translated_vars, varno, subrelids); } }
void flatten_simple_union_all | ( | PlannerInfo * | root | ) |
Definition at line 1779 of file prepjointree.c.
References Assert, copyObject(), FromExpr::fromlist, PlannerInfo::hasRecursion, RangeTblEntry::inh, is_simple_union_all_recurse(), IsA, Query::jointree, lappend(), list_length(), list_make1, makeNode, NIL, PlannerInfo::parse, parse(), pull_up_union_leaf_queries(), rt_fetch, Query::rtable, RTE_SUBQUERY, RangeTblEntry::rtekind, RangeTblRef::rtindex, and Query::setOperations.
Referenced by subquery_planner().
{ Query *parse = root->parse; SetOperationStmt *topop; Node *leftmostjtnode; int leftmostRTI; RangeTblEntry *leftmostRTE; int childRTI; RangeTblEntry *childRTE; RangeTblRef *rtr; /* Shouldn't be called unless query has setops */ topop = (SetOperationStmt *) parse->setOperations; Assert(topop && IsA(topop, SetOperationStmt)); /* Can't optimize away a recursive UNION */ if (root->hasRecursion) return; /* * Recursively check the tree of set operations. If not all UNION ALL * with identical column types, punt. */ if (!is_simple_union_all_recurse((Node *) topop, parse, topop->colTypes)) return; /* * Locate the leftmost leaf query in the setops tree. The upper query's * Vars all refer to this RTE (see transformSetOperationStmt). */ leftmostjtnode = topop->larg; while (leftmostjtnode && IsA(leftmostjtnode, SetOperationStmt)) leftmostjtnode = ((SetOperationStmt *) leftmostjtnode)->larg; Assert(leftmostjtnode && IsA(leftmostjtnode, RangeTblRef)); leftmostRTI = ((RangeTblRef *) leftmostjtnode)->rtindex; leftmostRTE = rt_fetch(leftmostRTI, parse->rtable); Assert(leftmostRTE->rtekind == RTE_SUBQUERY); /* * Make a copy of the leftmost RTE and add it to the rtable. This copy * will represent the leftmost leaf query in its capacity as a member of * the appendrel. The original will represent the appendrel as a whole. * (We must do things this way because the upper query's Vars have to be * seen as referring to the whole appendrel.) */ childRTE = copyObject(leftmostRTE); parse->rtable = lappend(parse->rtable, childRTE); childRTI = list_length(parse->rtable); /* Modify the setops tree to reference the child copy */ ((RangeTblRef *) leftmostjtnode)->rtindex = childRTI; /* Modify the formerly-leftmost RTE to mark it as an appendrel parent */ leftmostRTE->inh = true; /* * Form a RangeTblRef for the appendrel, and insert it into FROM. The top * Query of a setops tree should have had an empty FromClause initially. */ rtr = makeNode(RangeTblRef); rtr->rtindex = leftmostRTI; Assert(parse->jointree->fromlist == NIL); parse->jointree->fromlist = list_make1(rtr); /* * Now pretend the query has no setops. We must do this before trying to * do subquery pullup, because of Assert in pull_up_simple_subquery. */ parse->setOperations = NULL; /* * Build AppendRelInfo information, and apply pull_up_subqueries to the * leaf queries of the UNION ALL. (We must do that now because they * weren't previously referenced by the jointree, and so were missed by * the main invocation of pull_up_subqueries.) */ pull_up_union_leaf_queries((Node *) topop, root, leftmostRTI, parse, 0); }
Relids get_relids_for_join | ( | PlannerInfo * | root, | |
int | joinrelid | |||
) |
Definition at line 2446 of file prepjointree.c.
References elog, ERROR, find_jointree_node_for_rel(), get_relids_in_jointree(), Query::jointree, and PlannerInfo::parse.
Referenced by alias_relid_set().
{ Node *jtnode; jtnode = find_jointree_node_for_rel((Node *) root->parse->jointree, joinrelid); if (!jtnode) elog(ERROR, "could not find join node %d", joinrelid); return get_relids_in_jointree(jtnode, false); }
Definition at line 2402 of file prepjointree.c.
References bms_add_member(), bms_join(), bms_make_singleton(), elog, ERROR, FromExpr::fromlist, get_relids_in_jointree(), IsA, JoinExpr::larg, lfirst, nodeTag, NULL, JoinExpr::rarg, and JoinExpr::rtindex.
Referenced by distribute_qual_to_rels(), get_relids_for_join(), get_relids_in_jointree(), is_simple_subquery(), and pull_up_simple_subquery().
{ Relids result = NULL; if (jtnode == NULL) return result; if (IsA(jtnode, RangeTblRef)) { int varno = ((RangeTblRef *) jtnode)->rtindex; result = bms_make_singleton(varno); } else if (IsA(jtnode, FromExpr)) { FromExpr *f = (FromExpr *) jtnode; ListCell *l; foreach(l, f->fromlist) { result = bms_join(result, get_relids_in_jointree(lfirst(l), include_joins)); } } else if (IsA(jtnode, JoinExpr)) { JoinExpr *j = (JoinExpr *) jtnode; result = get_relids_in_jointree(j->larg, include_joins); result = bms_join(result, get_relids_in_jointree(j->rarg, include_joins)); if (include_joins && j->rtindex) result = bms_add_member(result, j->rtindex); } else elog(ERROR, "unrecognized node type: %d", (int) nodeTag(jtnode)); return result; }
void inline_set_returning_functions | ( | PlannerInfo * | root | ) |
Definition at line 560 of file prepjointree.c.
References RangeTblEntry::funccolcollations, RangeTblEntry::funccoltypes, RangeTblEntry::funccoltypmods, RangeTblEntry::funcexpr, inline_set_returning_function(), lfirst, PlannerInfo::parse, Query::rtable, RTE_FUNCTION, RangeTblEntry::rtekind, and RangeTblEntry::subquery.
Referenced by pull_up_simple_subquery(), and subquery_planner().
{ ListCell *rt; foreach(rt, root->parse->rtable) { RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt); if (rte->rtekind == RTE_FUNCTION) { Query *funcquery; /* Check safety of expansion, and expand if possible */ funcquery = inline_set_returning_function(root, rte); if (funcquery) { /* Successful expansion, replace the rtable entry */ rte->rtekind = RTE_SUBQUERY; rte->subquery = funcquery; rte->funcexpr = NULL; rte->funccoltypes = NIL; rte->funccoltypmods = NIL; rte->funccolcollations = NIL; } } } }
Definition at line 1431 of file prepjointree.c.
References FromExpr::fromlist, IsA, Query::jointree, linitial, list_length(), NULL, and FromExpr::quals.
Referenced by pull_up_simple_subquery(), and pull_up_subqueries_recurse().
{ FromExpr *jtnode; /* * It's only safe to pull up the child if its jointree contains exactly * one RTE, else the AppendRelInfo data structure breaks. The one base RTE * could be buried in several levels of FromExpr, however. * * Also, the child can't have any WHERE quals because there's no place to * put them in an appendrel. (This is a bit annoying...) If we didn't * need to check this, we'd just test whether get_relids_in_jointree() * yields a singleton set, to be more consistent with the coding of * fix_append_rel_relids(). */ jtnode = subquery->jointree; while (IsA(jtnode, FromExpr)) { if (jtnode->quals != NULL) return false; if (list_length(jtnode->fromlist) != 1) return false; jtnode = linitial(jtnode->fromlist); } if (!IsA(jtnode, RangeTblRef)) return false; return true; }
static bool is_simple_subquery | ( | Query * | subquery, | |
RangeTblEntry * | rte, | |||
JoinExpr * | lowest_outer_join | |||
) | [static] |
Definition at line 1249 of file prepjointree.c.
References bms_is_subset(), CMD_SELECT, Query::commandType, contain_volatile_functions(), Query::cteList, Query::distinctClause, elog, ERROR, expression_returns_set(), FromExpr::fromlist, get_relids_in_jointree(), Query::groupClause, Query::hasAggs, Query::hasForUpdate, Query::hasWindowFuncs, Query::havingQual, IsA, Query::jointree, RangeTblEntry::lateral, Query::limitCount, Query::limitOffset, NIL, NULL, pull_varnos_of_level(), RangeTblEntry::security_barrier, Query::setOperations, Query::sortClause, Query::targetList, and Query::utilityStmt.
Referenced by pull_up_simple_subquery(), and pull_up_subqueries_recurse().
{ /* * Let's just make sure it's a valid subselect ... */ if (!IsA(subquery, Query) || subquery->commandType != CMD_SELECT || subquery->utilityStmt != NULL) elog(ERROR, "subquery is bogus"); /* * Can't currently pull up a query with setops (unless it's simple UNION * ALL, which is handled by a different code path). Maybe after querytree * redesign... */ if (subquery->setOperations) return false; /* * Can't pull up a subquery involving grouping, aggregation, sorting, * limiting, or WITH. (XXX WITH could possibly be allowed later) * * We also don't pull up a subquery that has explicit FOR UPDATE/SHARE * clauses, because pullup would cause the locking to occur semantically * higher than it should. Implicit FOR UPDATE/SHARE is okay because in * that case the locking was originally declared in the upper query * anyway. */ if (subquery->hasAggs || subquery->hasWindowFuncs || subquery->groupClause || subquery->havingQual || subquery->sortClause || subquery->distinctClause || subquery->limitOffset || subquery->limitCount || subquery->hasForUpdate || subquery->cteList) return false; /* * Don't pull up if the RTE represents a security-barrier view; we couldn't * prevent information leakage once the RTE's Vars are scattered about in * the upper query. */ if (rte->security_barrier) return false; /* * If the subquery is LATERAL, and we're below any outer join, and the * subquery contains lateral references to rels outside the outer join, * don't pull up. Doing so would risk creating outer-join quals that * contain references to rels outside the outer join, which is a semantic * mess that doesn't seem worth addressing at the moment. */ if (rte->lateral && lowest_outer_join != NULL) { Relids lvarnos = pull_varnos_of_level((Node *) subquery, 1); Relids jvarnos = get_relids_in_jointree((Node *) lowest_outer_join, true); if (!bms_is_subset(lvarnos, jvarnos)) return false; } /* * Don't pull up a subquery that has any set-returning functions in its * targetlist. Otherwise we might well wind up inserting set-returning * functions into places where they mustn't go, such as quals of higher * queries. */ if (expression_returns_set((Node *) subquery->targetList)) return false; /* * Don't pull up a subquery that has any volatile functions in its * targetlist. Otherwise we might introduce multiple evaluations of these * functions, if they get copied to multiple places in the upper query, * leading to surprising results. (Note: the PlaceHolderVar mechanism * doesn't quite guarantee single evaluation; else we could pull up anyway * and just wrap such items in PlaceHolderVars ...) */ if (contain_volatile_functions((Node *) subquery->targetList)) return false; /* * Hack: don't try to pull up a subquery with an empty jointree. * query_planner() will correctly generate a Result plan for a jointree * that's totally empty, but I don't think the right things happen if an * empty FromExpr appears lower down in a jointree. It would pose a * problem for the PlaceHolderVar mechanism too, since we'd have no way to * identify where to evaluate a PHV coming out of the subquery. Not worth * working hard on this, just to collapse SubqueryScan/Result into Result; * especially since the SubqueryScan can often be optimized away by * setrefs.c anyway. */ if (subquery->jointree->fromlist == NIL) return false; return true; }
Definition at line 1361 of file prepjointree.c.
References Assert, CMD_SELECT, Query::commandType, Query::cteList, elog, ERROR, is_simple_union_all_recurse(), IsA, Query::limitCount, Query::limitOffset, NULL, Query::rowMarks, Query::setOperations, Query::sortClause, and Query::utilityStmt.
Referenced by pull_up_subqueries_recurse().
{ SetOperationStmt *topop; /* Let's just make sure it's a valid subselect ... */ if (!IsA(subquery, Query) || subquery->commandType != CMD_SELECT || subquery->utilityStmt != NULL) elog(ERROR, "subquery is bogus"); /* Is it a set-operation query at all? */ topop = (SetOperationStmt *) subquery->setOperations; if (!topop) return false; Assert(IsA(topop, SetOperationStmt)); /* Can't handle ORDER BY, LIMIT/OFFSET, locking, or WITH */ if (subquery->sortClause || subquery->limitOffset || subquery->limitCount || subquery->rowMarks || subquery->cteList) return false; /* Recursively check the tree of set operations */ return is_simple_union_all_recurse((Node *) topop, subquery, topop->colTypes); }
static bool is_simple_union_all_recurse | ( | Node * | setOp, | |
Query * | setOpQuery, | |||
List * | colTypes | |||
) | [static] |
Definition at line 1391 of file prepjointree.c.
References SetOperationStmt::all, Assert, elog, ERROR, IsA, SetOperationStmt::larg, nodeTag, NULL, SetOperationStmt::op, SetOperationStmt::rarg, rt_fetch, Query::rtable, RangeTblRef::rtindex, SETOP_UNION, RangeTblEntry::subquery, Query::targetList, and tlist_same_datatypes().
Referenced by flatten_simple_union_all(), and is_simple_union_all().
{ if (IsA(setOp, RangeTblRef)) { RangeTblRef *rtr = (RangeTblRef *) setOp; RangeTblEntry *rte = rt_fetch(rtr->rtindex, setOpQuery->rtable); Query *subquery = rte->subquery; Assert(subquery != NULL); /* Leaf nodes are OK if they match the toplevel column types */ /* We don't have to compare typmods or collations here */ return tlist_same_datatypes(subquery->targetList, colTypes, true); } else if (IsA(setOp, SetOperationStmt)) { SetOperationStmt *op = (SetOperationStmt *) setOp; /* Must be UNION ALL */ if (op->op != SETOP_UNION || !op->all) return false; /* Recurse to check inputs */ return is_simple_union_all_recurse(op->larg, setOpQuery, colTypes) && is_simple_union_all_recurse(op->rarg, setOpQuery, colTypes); } else { elog(ERROR, "unrecognized node type: %d", (int) nodeTag(setOp)); return false; /* keep compiler quiet */ } }
static void make_setop_translation_list | ( | Query * | query, | |
Index | newvarno, | |||
List ** | translated_vars | |||
) | [static] |
Definition at line 1219 of file prepjointree.c.
References lappend(), lfirst, makeVarFromTargetEntry(), TargetEntry::resjunk, and Query::targetList.
Referenced by pull_up_union_leaf_queries().
{ List *vars = NIL; ListCell *l; foreach(l, query->targetList) { TargetEntry *tle = (TargetEntry *) lfirst(l); if (tle->resjunk) continue; vars = lappend(vars, makeVarFromTargetEntry(newvarno, tle)); } *translated_vars = vars; }
static Node * pull_up_simple_subquery | ( | PlannerInfo * | root, | |
Node * | jtnode, | |||
RangeTblEntry * | rte, | |||
JoinExpr * | lowest_outer_join, | |||
JoinExpr * | lowest_nulling_outer_join, | |||
AppendRelInfo * | containing_appendrel | |||
) | [static] |
Definition at line 769 of file prepjointree.c.
References PlannerInfo::append_rel_list, Assert, copyObject(), PlannerInfo::cte_plan_ids, Query::cteList, CurrentMemoryContext, PlannerInfo::eq_classes, fix_append_rel_relids(), get_relids_in_jointree(), PlannerInfo::glob, PlannerInfo::hasRecursion, Query::hasSubLinks, Query::havingQual, IncrementVarSublevelsUp(), PlannerInfo::init_plans, inline_set_returning_functions(), is_safe_append_member(), is_simple_subquery(), PlannerInfo::join_info_list, RangeTblEntry::joinaliasvars, Query::jointree, PlannerGlobal::lastPHId, RangeTblEntry::lateral, PlannerInfo::lateral_info_list, lfirst, list_concat(), list_length(), makeNode, pullup_replace_vars_context::need_phvs, NIL, PlannerInfo::non_recursive_plan, OffsetVarNodes(), pullup_replace_vars_context::outer_hasSubLinks, palloc0(), PlannerInfo::parent_root, PlannerInfo::parse, parse(), PlannerInfo::placeholder_list, PlannerInfo::plan_params, PlannerInfo::planner_cxt, pull_up_sublinks(), pull_up_subqueries_recurse(), pullup_replace_vars(), PlannerInfo::query_level, replace_vars_in_jointree(), Query::returningList, pullup_replace_vars_context::root, Query::rowMarks, PlannerInfo::rowMarks, Query::rtable, RTE_CTE, RTE_FUNCTION, RTE_JOIN, RTE_RELATION, RTE_SUBQUERY, RTE_VALUES, RangeTblEntry::rtekind, pullup_replace_vars_context::rv_cache, Query::setOperations, RangeTblEntry::subquery, substitute_multiple_relids(), pullup_replace_vars_context::target_rte, Query::targetList, pullup_replace_vars_context::targetlist, AppendRelInfo::translated_vars, pullup_replace_vars_context::varno, pullup_replace_vars_context::wrap_non_vars, and PlannerInfo::wt_param_id.
Referenced by pull_up_subqueries_recurse().
{ Query *parse = root->parse; int varno = ((RangeTblRef *) jtnode)->rtindex; Query *subquery; PlannerInfo *subroot; int rtoffset; pullup_replace_vars_context rvcontext; ListCell *lc; /* * Need a modifiable copy of the subquery to hack on. Even if we didn't * sometimes choose not to pull up below, we must do this to avoid * problems if the same subquery is referenced from multiple jointree * items (which can't happen normally, but might after rule rewriting). */ subquery = copyObject(rte->subquery); /* * Create a PlannerInfo data structure for this subquery. * * NOTE: the next few steps should match the first processing in * subquery_planner(). Can we refactor to avoid code duplication, or * would that just make things uglier? */ subroot = makeNode(PlannerInfo); subroot->parse = subquery; subroot->glob = root->glob; subroot->query_level = root->query_level; subroot->parent_root = root->parent_root; subroot->plan_params = NIL; subroot->planner_cxt = CurrentMemoryContext; subroot->init_plans = NIL; subroot->cte_plan_ids = NIL; subroot->eq_classes = NIL; subroot->append_rel_list = NIL; subroot->rowMarks = NIL; subroot->hasRecursion = false; subroot->wt_param_id = -1; subroot->non_recursive_plan = NULL; /* No CTEs to worry about */ Assert(subquery->cteList == NIL); /* * Pull up any SubLinks within the subquery's quals, so that we don't * leave unoptimized SubLinks behind. */ if (subquery->hasSubLinks) pull_up_sublinks(subroot); /* * Similarly, inline any set-returning functions in its rangetable. */ inline_set_returning_functions(subroot); /* * Recursively pull up the subquery's subqueries, so that * pull_up_subqueries' processing is complete for its jointree and * rangetable. * * Note: we should pass NULL for containing-join info even if we are * within an outer join in the upper query; the lower query starts with a * clean slate for outer-join semantics. Likewise, we say we aren't * handling an appendrel member. */ subquery->jointree = (FromExpr *) pull_up_subqueries_recurse(subroot, (Node *) subquery->jointree, NULL, NULL, NULL); /* * Now we must recheck whether the subquery is still simple enough to pull * up. If not, abandon processing it. * * We don't really need to recheck all the conditions involved, but it's * easier just to keep this "if" looking the same as the one in * pull_up_subqueries_recurse. */ if (is_simple_subquery(subquery, rte, lowest_outer_join) && (containing_appendrel == NULL || is_safe_append_member(subquery))) { /* good to go */ } else { /* * Give up, return unmodified RangeTblRef. * * Note: The work we just did will be redone when the subquery gets * planned on its own. Perhaps we could avoid that by storing the * modified subquery back into the rangetable, but I'm not gonna risk * it now. */ return jtnode; } /* * Adjust level-0 varnos in subquery so that we can append its rangetable * to upper query's. We have to fix the subquery's append_rel_list as * well. */ rtoffset = list_length(parse->rtable); OffsetVarNodes((Node *) subquery, rtoffset, 0); OffsetVarNodes((Node *) subroot->append_rel_list, rtoffset, 0); /* * Upper-level vars in subquery are now one level closer to their parent * than before. */ IncrementVarSublevelsUp((Node *) subquery, -1, 1); IncrementVarSublevelsUp((Node *) subroot->append_rel_list, -1, 1); /* * The subquery's targetlist items are now in the appropriate form to * insert into the top query, but if we are under an outer join then * non-nullable items may have to be turned into PlaceHolderVars. If we * are dealing with an appendrel member then anything that's not a simple * Var has to be turned into a PlaceHolderVar. Set up appropriate context * data for pullup_replace_vars. */ rvcontext.root = root; rvcontext.targetlist = subquery->targetList; rvcontext.target_rte = rte; rvcontext.outer_hasSubLinks = &parse->hasSubLinks; rvcontext.varno = varno; rvcontext.need_phvs = (lowest_nulling_outer_join != NULL || containing_appendrel != NULL); rvcontext.wrap_non_vars = (containing_appendrel != NULL); /* initialize cache array with indexes 0 .. length(tlist) */ rvcontext.rv_cache = palloc0((list_length(subquery->targetList) + 1) * sizeof(Node *)); /* * Replace all of the top query's references to the subquery's outputs * with copies of the adjusted subtlist items, being careful not to * replace any of the jointree structure. (This'd be a lot cleaner if we * could use query_tree_mutator.) We have to use PHVs in the targetList, * returningList, and havingQual, since those are certainly above any * outer join. replace_vars_in_jointree tracks its location in the * jointree and uses PHVs or not appropriately. */ parse->targetList = (List *) pullup_replace_vars((Node *) parse->targetList, &rvcontext); parse->returningList = (List *) pullup_replace_vars((Node *) parse->returningList, &rvcontext); replace_vars_in_jointree((Node *) parse->jointree, &rvcontext, lowest_nulling_outer_join); Assert(parse->setOperations == NULL); parse->havingQual = pullup_replace_vars(parse->havingQual, &rvcontext); /* * Replace references in the translated_vars lists of appendrels. When * pulling up an appendrel member, we do not need PHVs in the list of the * parent appendrel --- there isn't any outer join between. Elsewhere, use * PHVs for safety. (This analysis could be made tighter but it seems * unlikely to be worth much trouble.) */ foreach(lc, root->append_rel_list) { AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc); bool save_need_phvs = rvcontext.need_phvs; if (appinfo == containing_appendrel) rvcontext.need_phvs = false; appinfo->translated_vars = (List *) pullup_replace_vars((Node *) appinfo->translated_vars, &rvcontext); rvcontext.need_phvs = save_need_phvs; } /* * Replace references in the joinaliasvars lists of join RTEs. * * You might think that we could avoid using PHVs for alias vars of joins * below lowest_nulling_outer_join, but that doesn't work because the * alias vars could be referenced above that join; we need the PHVs to be * present in such references after the alias vars get flattened. (It * might be worth trying to be smarter here, someday.) */ foreach(lc, parse->rtable) { RangeTblEntry *otherrte = (RangeTblEntry *) lfirst(lc); if (otherrte->rtekind == RTE_JOIN) otherrte->joinaliasvars = (List *) pullup_replace_vars((Node *) otherrte->joinaliasvars, &rvcontext); } /* * If the subquery had a LATERAL marker, propagate that to any of its * child RTEs that could possibly now contain lateral cross-references. * The children might or might not contain any actual lateral * cross-references, but we have to mark the pulled-up child RTEs so that * later planner stages will check for such. */ if (rte->lateral) { foreach(lc, subquery->rtable) { RangeTblEntry *child_rte = (RangeTblEntry *) lfirst(lc); switch (child_rte->rtekind) { case RTE_SUBQUERY: case RTE_FUNCTION: case RTE_VALUES: child_rte->lateral = true; break; case RTE_RELATION: case RTE_JOIN: case RTE_CTE: /* these can't contain any lateral references */ break; } } } /* * Now append the adjusted rtable entries to upper query. (We hold off * until after fixing the upper rtable entries; no point in running that * code on the subquery ones too.) */ parse->rtable = list_concat(parse->rtable, subquery->rtable); /* * Pull up any FOR UPDATE/SHARE markers, too. (OffsetVarNodes already * adjusted the marker rtindexes, so just concat the lists.) */ parse->rowMarks = list_concat(parse->rowMarks, subquery->rowMarks); /* * We also have to fix the relid sets of any PlaceHolderVar nodes in the * parent query. (This could perhaps be done by pullup_replace_vars(), * but it seems cleaner to use two passes.) Note in particular that any * PlaceHolderVar nodes just created by pullup_replace_vars() will be * adjusted, so having created them with the subquery's varno is correct. * * Likewise, relids appearing in AppendRelInfo nodes have to be fixed. We * already checked that this won't require introducing multiple subrelids * into the single-slot AppendRelInfo structs. */ if (parse->hasSubLinks || root->glob->lastPHId != 0 || root->append_rel_list) { Relids subrelids; subrelids = get_relids_in_jointree((Node *) subquery->jointree, false); substitute_multiple_relids((Node *) parse, varno, subrelids); fix_append_rel_relids(root->append_rel_list, varno, subrelids); } /* * And now add subquery's AppendRelInfos to our list. */ root->append_rel_list = list_concat(root->append_rel_list, subroot->append_rel_list); /* * We don't have to do the equivalent bookkeeping for outer-join or * LATERAL info, because that hasn't been set up yet. placeholder_list * likewise. */ Assert(root->join_info_list == NIL); Assert(subroot->join_info_list == NIL); Assert(root->lateral_info_list == NIL); Assert(subroot->lateral_info_list == NIL); Assert(root->placeholder_list == NIL); Assert(subroot->placeholder_list == NIL); /* * Miscellaneous housekeeping. * * Although replace_rte_variables() faithfully updated parse->hasSubLinks * if it copied any SubLinks out of the subquery's targetlist, we still * could have SubLinks added to the query in the expressions of FUNCTION * and VALUES RTEs copied up from the subquery. So it's necessary to copy * subquery->hasSubLinks anyway. Perhaps this can be improved someday. */ parse->hasSubLinks |= subquery->hasSubLinks; /* * subquery won't be pulled up if it hasAggs or hasWindowFuncs, so no work * needed on those flags */ /* * Return the adjusted subquery jointree to replace the RangeTblRef entry * in parent's jointree. */ return (Node *) subquery->jointree; }
static Node * pull_up_simple_union_all | ( | PlannerInfo * | root, | |
Node * | jtnode, | |||
RangeTblEntry * | rte | |||
) | [static] |
Definition at line 1074 of file prepjointree.c.
References Assert, copyObject(), IncrementVarSublevelsUp_rtable(), RangeTblEntry::inh, RangeTblEntry::lateral, lfirst, list_concat(), list_length(), PlannerInfo::parse, pull_up_union_leaf_queries(), Query::rtable, RTE_SUBQUERY, RangeTblEntry::rtekind, Query::setOperations, and RangeTblEntry::subquery.
Referenced by pull_up_subqueries_recurse().
{ int varno = ((RangeTblRef *) jtnode)->rtindex; Query *subquery = rte->subquery; int rtoffset = list_length(root->parse->rtable); List *rtable; /* * Make a modifiable copy of the subquery's rtable, so we can adjust * upper-level Vars in it. There are no such Vars in the setOperations * tree proper, so fixing the rtable should be sufficient. */ rtable = copyObject(subquery->rtable); /* * Upper-level vars in subquery are now one level closer to their parent * than before. We don't have to worry about offsetting varnos, though, * because the UNION leaf queries can't cross-reference each other. */ IncrementVarSublevelsUp_rtable(rtable, -1, 1); /* * If the UNION ALL subquery had a LATERAL marker, propagate that to all * its children. The individual children might or might not contain any * actual lateral cross-references, but we have to mark the pulled-up * child RTEs so that later planner stages will check for such. */ if (rte->lateral) { ListCell *rt; foreach(rt, rtable) { RangeTblEntry *child_rte = (RangeTblEntry *) lfirst(rt); Assert(child_rte->rtekind == RTE_SUBQUERY); child_rte->lateral = true; } } /* * Append child RTEs to parent rtable. */ root->parse->rtable = list_concat(root->parse->rtable, rtable); /* * Recursively scan the subquery's setOperations tree and add * AppendRelInfo nodes for leaf subqueries to the parent's * append_rel_list. Also apply pull_up_subqueries to the leaf subqueries. */ Assert(subquery->setOperations); pull_up_union_leaf_queries(subquery->setOperations, root, varno, subquery, rtoffset); /* * Mark the parent as an append relation. */ rte->inh = true; return jtnode; }
void pull_up_sublinks | ( | PlannerInfo * | root | ) |
Definition at line 137 of file prepjointree.c.
References IsA, Query::jointree, list_make1, makeFromExpr(), NULL, PlannerInfo::parse, and pull_up_sublinks_jointree_recurse().
Referenced by pull_up_simple_subquery(), and subquery_planner().
{ Node *jtnode; Relids relids; /* Begin recursion through the jointree */ jtnode = pull_up_sublinks_jointree_recurse(root, (Node *) root->parse->jointree, &relids); /* * root->parse->jointree must always be a FromExpr, so insert a dummy one * if we got a bare RangeTblRef or JoinExpr out of the recursion. */ if (IsA(jtnode, FromExpr)) root->parse->jointree = (FromExpr *) jtnode; else root->parse->jointree = makeFromExpr(list_make1(jtnode), NULL); }
static Node * pull_up_sublinks_jointree_recurse | ( | PlannerInfo * | root, | |
Node * | jtnode, | |||
Relids * | relids | |||
) | [static] |
Definition at line 164 of file prepjointree.c.
References bms_add_member(), bms_join(), bms_make_singleton(), bms_union(), elog, ERROR, FromExpr::fromlist, IsA, JOIN_FULL, JOIN_INNER, JOIN_LEFT, JOIN_RIGHT, JoinExpr::jointype, lappend(), JoinExpr::larg, lfirst, makeFromExpr(), nodeTag, NULL, palloc(), pull_up_sublinks_qual_recurse(), JoinExpr::quals, FromExpr::quals, JoinExpr::rarg, and JoinExpr::rtindex.
Referenced by pull_up_sublinks(), and pull_up_sublinks_qual_recurse().
{ if (jtnode == NULL) { *relids = NULL; } else if (IsA(jtnode, RangeTblRef)) { int varno = ((RangeTblRef *) jtnode)->rtindex; *relids = bms_make_singleton(varno); /* jtnode is returned unmodified */ } else if (IsA(jtnode, FromExpr)) { FromExpr *f = (FromExpr *) jtnode; List *newfromlist = NIL; Relids frelids = NULL; FromExpr *newf; Node *jtlink; ListCell *l; /* First, recurse to process children and collect their relids */ foreach(l, f->fromlist) { Node *newchild; Relids childrelids; newchild = pull_up_sublinks_jointree_recurse(root, lfirst(l), &childrelids); newfromlist = lappend(newfromlist, newchild); frelids = bms_join(frelids, childrelids); } /* Build the replacement FromExpr; no quals yet */ newf = makeFromExpr(newfromlist, NULL); /* Set up a link representing the rebuilt jointree */ jtlink = (Node *) newf; /* Now process qual --- all children are available for use */ newf->quals = pull_up_sublinks_qual_recurse(root, f->quals, &jtlink, frelids, NULL, NULL); /* * Note that the result will be either newf, or a stack of JoinExprs * with newf at the base. We rely on subsequent optimization steps to * flatten this and rearrange the joins as needed. * * Although we could include the pulled-up subqueries in the returned * relids, there's no need since upper quals couldn't refer to their * outputs anyway. */ *relids = frelids; jtnode = jtlink; } else if (IsA(jtnode, JoinExpr)) { JoinExpr *j; Relids leftrelids; Relids rightrelids; Node *jtlink; /* * Make a modifiable copy of join node, but don't bother copying its * subnodes (yet). */ j = (JoinExpr *) palloc(sizeof(JoinExpr)); memcpy(j, jtnode, sizeof(JoinExpr)); jtlink = (Node *) j; /* Recurse to process children and collect their relids */ j->larg = pull_up_sublinks_jointree_recurse(root, j->larg, &leftrelids); j->rarg = pull_up_sublinks_jointree_recurse(root, j->rarg, &rightrelids); /* * Now process qual, showing appropriate child relids as available, * and attach any pulled-up jointree items at the right place. In the * inner-join case we put new JoinExprs above the existing one (much * as for a FromExpr-style join). In outer-join cases the new * JoinExprs must go into the nullable side of the outer join. The * point of the available_rels machinations is to ensure that we only * pull up quals for which that's okay. * * We don't expect to see any pre-existing JOIN_SEMI or JOIN_ANTI * nodes here. */ switch (j->jointype) { case JOIN_INNER: j->quals = pull_up_sublinks_qual_recurse(root, j->quals, &jtlink, bms_union(leftrelids, rightrelids), NULL, NULL); break; case JOIN_LEFT: j->quals = pull_up_sublinks_qual_recurse(root, j->quals, &j->rarg, rightrelids, NULL, NULL); break; case JOIN_FULL: /* can't do anything with full-join quals */ break; case JOIN_RIGHT: j->quals = pull_up_sublinks_qual_recurse(root, j->quals, &j->larg, leftrelids, NULL, NULL); break; default: elog(ERROR, "unrecognized join type: %d", (int) j->jointype); break; } /* * Although we could include the pulled-up subqueries in the returned * relids, there's no need since upper quals couldn't refer to their * outputs anyway. But we *do* need to include the join's own rtindex * because we haven't yet collapsed join alias variables, so upper * levels would mistakenly think they couldn't use references to this * join. */ *relids = bms_join(leftrelids, rightrelids); if (j->rtindex) *relids = bms_add_member(*relids, j->rtindex); jtnode = jtlink; } else elog(ERROR, "unrecognized node type: %d", (int) nodeTag(jtnode)); return jtnode; }
static Node * pull_up_sublinks_qual_recurse | ( | PlannerInfo * | root, | |
Node * | node, | |||
Node ** | jtlink1, | |||
Relids | available_rels1, | |||
Node ** | jtlink2, | |||
Relids | available_rels2 | |||
) | [static] |
Definition at line 318 of file prepjointree.c.
References and_clause(), ANY_SUBLINK, convert_ANY_sublink_to_join(), convert_EXISTS_sublink_to_join(), EXISTS_SUBLINK, get_notclausearg(), IsA, lappend(), JoinExpr::larg, lfirst, linitial, list_length(), make_andclause(), NIL, not_clause(), NULL, pull_up_sublinks_jointree_recurse(), JoinExpr::quals, JoinExpr::rarg, and SubLink::subLinkType.
Referenced by pull_up_sublinks_jointree_recurse().
{ if (node == NULL) return NULL; if (IsA(node, SubLink)) { SubLink *sublink = (SubLink *) node; JoinExpr *j; Relids child_rels; /* Is it a convertible ANY or EXISTS clause? */ if (sublink->subLinkType == ANY_SUBLINK) { if ((j = convert_ANY_sublink_to_join(root, sublink, available_rels1)) != NULL) { /* Yes; insert the new join node into the join tree */ j->larg = *jtlink1; *jtlink1 = (Node *) j; /* Recursively process pulled-up jointree nodes */ j->rarg = pull_up_sublinks_jointree_recurse(root, j->rarg, &child_rels); /* * Now recursively process the pulled-up quals. Any inserted * joins can get stacked onto either j->larg or j->rarg, * depending on which rels they reference. */ j->quals = pull_up_sublinks_qual_recurse(root, j->quals, &j->larg, available_rels1, &j->rarg, child_rels); /* Return NULL representing constant TRUE */ return NULL; } if (available_rels2 != NULL && (j = convert_ANY_sublink_to_join(root, sublink, available_rels2)) != NULL) { /* Yes; insert the new join node into the join tree */ j->larg = *jtlink2; *jtlink2 = (Node *) j; /* Recursively process pulled-up jointree nodes */ j->rarg = pull_up_sublinks_jointree_recurse(root, j->rarg, &child_rels); /* * Now recursively process the pulled-up quals. Any inserted * joins can get stacked onto either j->larg or j->rarg, * depending on which rels they reference. */ j->quals = pull_up_sublinks_qual_recurse(root, j->quals, &j->larg, available_rels2, &j->rarg, child_rels); /* Return NULL representing constant TRUE */ return NULL; } } else if (sublink->subLinkType == EXISTS_SUBLINK) { if ((j = convert_EXISTS_sublink_to_join(root, sublink, false, available_rels1)) != NULL) { /* Yes; insert the new join node into the join tree */ j->larg = *jtlink1; *jtlink1 = (Node *) j; /* Recursively process pulled-up jointree nodes */ j->rarg = pull_up_sublinks_jointree_recurse(root, j->rarg, &child_rels); /* * Now recursively process the pulled-up quals. Any inserted * joins can get stacked onto either j->larg or j->rarg, * depending on which rels they reference. */ j->quals = pull_up_sublinks_qual_recurse(root, j->quals, &j->larg, available_rels1, &j->rarg, child_rels); /* Return NULL representing constant TRUE */ return NULL; } if (available_rels2 != NULL && (j = convert_EXISTS_sublink_to_join(root, sublink, false, available_rels2)) != NULL) { /* Yes; insert the new join node into the join tree */ j->larg = *jtlink2; *jtlink2 = (Node *) j; /* Recursively process pulled-up jointree nodes */ j->rarg = pull_up_sublinks_jointree_recurse(root, j->rarg, &child_rels); /* * Now recursively process the pulled-up quals. Any inserted * joins can get stacked onto either j->larg or j->rarg, * depending on which rels they reference. */ j->quals = pull_up_sublinks_qual_recurse(root, j->quals, &j->larg, available_rels2, &j->rarg, child_rels); /* Return NULL representing constant TRUE */ return NULL; } } /* Else return it unmodified */ return node; } if (not_clause(node)) { /* If the immediate argument of NOT is EXISTS, try to convert */ SubLink *sublink = (SubLink *) get_notclausearg((Expr *) node); JoinExpr *j; Relids child_rels; if (sublink && IsA(sublink, SubLink)) { if (sublink->subLinkType == EXISTS_SUBLINK) { if ((j = convert_EXISTS_sublink_to_join(root, sublink, true, available_rels1)) != NULL) { /* Yes; insert the new join node into the join tree */ j->larg = *jtlink1; *jtlink1 = (Node *) j; /* Recursively process pulled-up jointree nodes */ j->rarg = pull_up_sublinks_jointree_recurse(root, j->rarg, &child_rels); /* * Now recursively process the pulled-up quals. Because * we are underneath a NOT, we can't pull up sublinks that * reference the left-hand stuff, but it's still okay to * pull up sublinks referencing j->rarg. */ j->quals = pull_up_sublinks_qual_recurse(root, j->quals, &j->rarg, child_rels, NULL, NULL); /* Return NULL representing constant TRUE */ return NULL; } if (available_rels2 != NULL && (j = convert_EXISTS_sublink_to_join(root, sublink, true, available_rels2)) != NULL) { /* Yes; insert the new join node into the join tree */ j->larg = *jtlink2; *jtlink2 = (Node *) j; /* Recursively process pulled-up jointree nodes */ j->rarg = pull_up_sublinks_jointree_recurse(root, j->rarg, &child_rels); /* * Now recursively process the pulled-up quals. Because * we are underneath a NOT, we can't pull up sublinks that * reference the left-hand stuff, but it's still okay to * pull up sublinks referencing j->rarg. */ j->quals = pull_up_sublinks_qual_recurse(root, j->quals, &j->rarg, child_rels, NULL, NULL); /* Return NULL representing constant TRUE */ return NULL; } } } /* Else return it unmodified */ return node; } if (and_clause(node)) { /* Recurse into AND clause */ List *newclauses = NIL; ListCell *l; foreach(l, ((BoolExpr *) node)->args) { Node *oldclause = (Node *) lfirst(l); Node *newclause; newclause = pull_up_sublinks_qual_recurse(root, oldclause, jtlink1, available_rels1, jtlink2, available_rels2); if (newclause) newclauses = lappend(newclauses, newclause); } /* We might have got back fewer clauses than we started with */ if (newclauses == NIL) return NULL; else if (list_length(newclauses) == 1) return (Node *) linitial(newclauses); else return (Node *) make_andclause(newclauses); } /* Stop if not an AND */ return node; }
Node* pull_up_subqueries | ( | PlannerInfo * | root, | |
Node * | jtnode | |||
) |
Definition at line 599 of file prepjointree.c.
References NULL, and pull_up_subqueries_recurse().
Referenced by subquery_planner().
{ /* Start off with no containing join nor appendrel */ return pull_up_subqueries_recurse(root, jtnode, NULL, NULL, NULL); }
static Node * pull_up_subqueries_recurse | ( | PlannerInfo * | root, | |
Node * | jtnode, | |||
JoinExpr * | lowest_outer_join, | |||
JoinExpr * | lowest_nulling_outer_join, | |||
AppendRelInfo * | containing_appendrel | |||
) | [static] |
Definition at line 639 of file prepjointree.c.
References Assert, elog, ERROR, FromExpr::fromlist, is_safe_append_member(), is_simple_subquery(), is_simple_union_all(), IsA, JOIN_ANTI, JOIN_FULL, JOIN_INNER, JOIN_LEFT, JOIN_RIGHT, JOIN_SEMI, JoinExpr::jointype, JoinExpr::larg, lfirst, nodeTag, NULL, PlannerInfo::parse, pull_up_simple_subquery(), pull_up_simple_union_all(), JoinExpr::rarg, rt_fetch, Query::rtable, RTE_SUBQUERY, RangeTblEntry::rtekind, and RangeTblEntry::subquery.
Referenced by pull_up_simple_subquery(), pull_up_subqueries(), and pull_up_union_leaf_queries().
{ if (jtnode == NULL) return NULL; if (IsA(jtnode, RangeTblRef)) { int varno = ((RangeTblRef *) jtnode)->rtindex; RangeTblEntry *rte = rt_fetch(varno, root->parse->rtable); /* * Is this a subquery RTE, and if so, is the subquery simple enough to * pull up? * * If we are looking at an append-relation member, we can't pull it up * unless is_safe_append_member says so. */ if (rte->rtekind == RTE_SUBQUERY && is_simple_subquery(rte->subquery, rte, lowest_outer_join) && (containing_appendrel == NULL || is_safe_append_member(rte->subquery))) return pull_up_simple_subquery(root, jtnode, rte, lowest_outer_join, lowest_nulling_outer_join, containing_appendrel); /* * Alternatively, is it a simple UNION ALL subquery? If so, flatten * into an "append relation". * * It's safe to do this regardless of whether this query is itself an * appendrel member. (If you're thinking we should try to flatten the * two levels of appendrel together, you're right; but we handle that * in set_append_rel_pathlist, not here.) */ if (rte->rtekind == RTE_SUBQUERY && is_simple_union_all(rte->subquery)) return pull_up_simple_union_all(root, jtnode, rte); /* Otherwise, do nothing at this node. */ } else if (IsA(jtnode, FromExpr)) { FromExpr *f = (FromExpr *) jtnode; ListCell *l; Assert(containing_appendrel == NULL); foreach(l, f->fromlist) lfirst(l) = pull_up_subqueries_recurse(root, lfirst(l), lowest_outer_join, lowest_nulling_outer_join, NULL); } else if (IsA(jtnode, JoinExpr)) { JoinExpr *j = (JoinExpr *) jtnode; Assert(containing_appendrel == NULL); /* Recurse, being careful to tell myself when inside outer join */ switch (j->jointype) { case JOIN_INNER: j->larg = pull_up_subqueries_recurse(root, j->larg, lowest_outer_join, lowest_nulling_outer_join, NULL); j->rarg = pull_up_subqueries_recurse(root, j->rarg, lowest_outer_join, lowest_nulling_outer_join, NULL); break; case JOIN_LEFT: case JOIN_SEMI: case JOIN_ANTI: j->larg = pull_up_subqueries_recurse(root, j->larg, j, lowest_nulling_outer_join, NULL); j->rarg = pull_up_subqueries_recurse(root, j->rarg, j, j, NULL); break; case JOIN_FULL: j->larg = pull_up_subqueries_recurse(root, j->larg, j, j, NULL); j->rarg = pull_up_subqueries_recurse(root, j->rarg, j, j, NULL); break; case JOIN_RIGHT: j->larg = pull_up_subqueries_recurse(root, j->larg, j, j, NULL); j->rarg = pull_up_subqueries_recurse(root, j->rarg, j, lowest_nulling_outer_join, NULL); break; default: elog(ERROR, "unrecognized join type: %d", (int) j->jointype); break; } } else elog(ERROR, "unrecognized node type: %d", (int) nodeTag(jtnode)); return jtnode; }
static void pull_up_union_leaf_queries | ( | Node * | setOp, | |
PlannerInfo * | root, | |||
int | parentRTindex, | |||
Query * | setOpQuery, | |||
int | childRToffset | |||
) | [static] |
Definition at line 1155 of file prepjointree.c.
References PlannerInfo::append_rel_list, AppendRelInfo::child_relid, AppendRelInfo::child_reltype, elog, ERROR, IsA, lappend(), SetOperationStmt::larg, make_setop_translation_list(), makeNode, nodeTag, AppendRelInfo::parent_relid, AppendRelInfo::parent_reloid, AppendRelInfo::parent_reltype, pull_up_subqueries_recurse(), SetOperationStmt::rarg, RangeTblRef::rtindex, and AppendRelInfo::translated_vars.
Referenced by flatten_simple_union_all(), and pull_up_simple_union_all().
{ if (IsA(setOp, RangeTblRef)) { RangeTblRef *rtr = (RangeTblRef *) setOp; int childRTindex; AppendRelInfo *appinfo; /* * Calculate the index in the parent's range table */ childRTindex = childRToffset + rtr->rtindex; /* * Build a suitable AppendRelInfo, and attach to parent's list. */ appinfo = makeNode(AppendRelInfo); appinfo->parent_relid = parentRTindex; appinfo->child_relid = childRTindex; appinfo->parent_reltype = InvalidOid; appinfo->child_reltype = InvalidOid; make_setop_translation_list(setOpQuery, childRTindex, &appinfo->translated_vars); appinfo->parent_reloid = InvalidOid; root->append_rel_list = lappend(root->append_rel_list, appinfo); /* * Recursively apply pull_up_subqueries to the new child RTE. (We * must build the AppendRelInfo first, because this will modify it.) * Note that we can pass NULL for containing-join info even if we're * actually under an outer join, because the child's expressions * aren't going to propagate up to the join. */ rtr = makeNode(RangeTblRef); rtr->rtindex = childRTindex; (void) pull_up_subqueries_recurse(root, (Node *) rtr, NULL, NULL, appinfo); } else if (IsA(setOp, SetOperationStmt)) { SetOperationStmt *op = (SetOperationStmt *) setOp; /* Recurse to reach leaf queries */ pull_up_union_leaf_queries(op->larg, root, parentRTindex, setOpQuery, childRToffset); pull_up_union_leaf_queries(op->rarg, root, parentRTindex, setOpQuery, childRToffset); } else { elog(ERROR, "unrecognized node type: %d", (int) nodeTag(setOp)); } }
static Node * pullup_replace_vars | ( | Node * | expr, | |
pullup_replace_vars_context * | context | |||
) | [static] |
Definition at line 1566 of file prepjointree.c.
References pullup_replace_vars_context::outer_hasSubLinks, pullup_replace_vars_callback(), replace_rte_variables(), and pullup_replace_vars_context::varno.
Referenced by pull_up_simple_subquery(), and replace_vars_in_jointree().
{ return replace_rte_variables(expr, context->varno, 0, pullup_replace_vars_callback, (void *) context, context->outer_hasSubLinks); }
static Node * pullup_replace_vars_callback | ( | Var * | var, | |
replace_rte_variables_context * | context | |||
) | [static] |
Definition at line 1576 of file prepjointree.c.
References RowExpr::args, bms_make_singleton(), replace_rte_variables_context::callback_arg, RowExpr::colnames, contain_nonstrict_functions(), contain_vars_of_level(), copyObject(), elog, ERROR, expandRTE(), TargetEntry::expr, get_tle_by_resno(), IncrementVarSublevelsUp(), InvalidAttrNumber, IsA, list_length(), RowExpr::location, Var::location, make_placeholder_expr(), makeNode, pullup_replace_vars_context::need_phvs, NULL, RECORDOID, replace_rte_variables_mutator(), pullup_replace_vars_context::root, RowExpr::row_format, RowExpr::row_typeid, pullup_replace_vars_context::rv_cache, replace_rte_variables_context::sublevels_up, pullup_replace_vars_context::target_rte, pullup_replace_vars_context::targetlist, Var::varattno, Var::varlevelsup, pullup_replace_vars_context::varno, Var::varno, Var::vartype, and pullup_replace_vars_context::wrap_non_vars.
Referenced by pullup_replace_vars(), and pullup_replace_vars_subquery().
{ pullup_replace_vars_context *rcon = (pullup_replace_vars_context *) context->callback_arg; int varattno = var->varattno; Node *newnode; /* * If PlaceHolderVars are needed, we cache the modified expressions in * rcon->rv_cache[]. This is not in hopes of any material speed gain * within this function, but to avoid generating identical PHVs with * different IDs. That would result in duplicate evaluations at runtime, * and possibly prevent optimizations that rely on recognizing different * references to the same subquery output as being equal(). So it's worth * a bit of extra effort to avoid it. */ if (rcon->need_phvs && varattno >= InvalidAttrNumber && varattno <= list_length(rcon->targetlist) && rcon->rv_cache[varattno] != NULL) { /* Just copy the entry and fall through to adjust its varlevelsup */ newnode = copyObject(rcon->rv_cache[varattno]); } else if (varattno == InvalidAttrNumber) { /* Must expand whole-tuple reference into RowExpr */ RowExpr *rowexpr; List *colnames; List *fields; bool save_need_phvs = rcon->need_phvs; int save_sublevelsup = context->sublevels_up; /* * If generating an expansion for a var of a named rowtype (ie, this * is a plain relation RTE), then we must include dummy items for * dropped columns. If the var is RECORD (ie, this is a JOIN), then * omit dropped columns. Either way, attach column names to the * RowExpr for use of ruleutils.c. * * In order to be able to cache the results, we always generate the * expansion with varlevelsup = 0, and then adjust if needed. */ expandRTE(rcon->target_rte, var->varno, 0 /* not varlevelsup */ , var->location, (var->vartype != RECORDOID), &colnames, &fields); /* Adjust the generated per-field Vars, but don't insert PHVs */ rcon->need_phvs = false; context->sublevels_up = 0; /* to match the expandRTE output */ fields = (List *) replace_rte_variables_mutator((Node *) fields, context); rcon->need_phvs = save_need_phvs; context->sublevels_up = save_sublevelsup; rowexpr = makeNode(RowExpr); rowexpr->args = fields; rowexpr->row_typeid = var->vartype; rowexpr->row_format = COERCE_IMPLICIT_CAST; rowexpr->colnames = colnames; rowexpr->location = var->location; newnode = (Node *) rowexpr; /* * Insert PlaceHolderVar if needed. Notice that we are wrapping one * PlaceHolderVar around the whole RowExpr, rather than putting one * around each element of the row. This is because we need the * expression to yield NULL, not ROW(NULL,NULL,...) when it is forced * to null by an outer join. */ if (rcon->need_phvs) { /* RowExpr is certainly not strict, so always need PHV */ newnode = (Node *) make_placeholder_expr(rcon->root, (Expr *) newnode, bms_make_singleton(rcon->varno)); /* cache it with the PHV, and with varlevelsup still zero */ rcon->rv_cache[InvalidAttrNumber] = copyObject(newnode); } } else { /* Normal case referencing one targetlist element */ TargetEntry *tle = get_tle_by_resno(rcon->targetlist, varattno); if (tle == NULL) /* shouldn't happen */ elog(ERROR, "could not find attribute %d in subquery targetlist", varattno); /* Make a copy of the tlist item to return */ newnode = copyObject(tle->expr); /* Insert PlaceHolderVar if needed */ if (rcon->need_phvs) { bool wrap; if (newnode && IsA(newnode, Var) && ((Var *) newnode)->varlevelsup == 0) { /* Simple Vars always escape being wrapped */ wrap = false; } else if (newnode && IsA(newnode, PlaceHolderVar) && ((PlaceHolderVar *) newnode)->phlevelsup == 0) { /* No need to wrap a PlaceHolderVar with another one, either */ wrap = false; } else if (rcon->wrap_non_vars) { /* Wrap all non-Vars in a PlaceHolderVar */ wrap = true; } else { /* * If it contains a Var of current level, and does not contain * any non-strict constructs, then it's certainly nullable so * we don't need to insert a PlaceHolderVar. * * This analysis could be tighter: in particular, a non-strict * construct hidden within a lower-level PlaceHolderVar is not * reason to add another PHV. But for now it doesn't seem * worth the code to be more exact. * * Note: in future maybe we should insert a PlaceHolderVar * anyway, if the tlist item is expensive to evaluate? */ if (contain_vars_of_level((Node *) newnode, 0) && !contain_nonstrict_functions((Node *) newnode)) { /* No wrap needed */ wrap = false; } else { /* Else wrap it in a PlaceHolderVar */ wrap = true; } } if (wrap) newnode = (Node *) make_placeholder_expr(rcon->root, (Expr *) newnode, bms_make_singleton(rcon->varno)); /* * Cache it if possible (ie, if the attno is in range, which it * probably always should be). We can cache the value even if we * decided we didn't need a PHV, since this result will be * suitable for any request that has need_phvs. */ if (varattno > InvalidAttrNumber && varattno <= list_length(rcon->targetlist)) rcon->rv_cache[varattno] = copyObject(newnode); } } /* Must adjust varlevelsup if tlist item is from higher query */ if (var->varlevelsup > 0) IncrementVarSublevelsUp(newnode, var->varlevelsup, 0); return newnode; }
static Query * pullup_replace_vars_subquery | ( | Query * | query, | |
pullup_replace_vars_context * | context | |||
) | [static] |
Definition at line 1752 of file prepjointree.c.
References Assert, IsA, NULL, pullup_replace_vars_callback(), replace_rte_variables(), and pullup_replace_vars_context::varno.
Referenced by replace_vars_in_jointree().
{ Assert(IsA(query, Query)); return (Query *) replace_rte_variables((Node *) query, context->varno, 1, pullup_replace_vars_callback, (void *) context, NULL); }
void reduce_outer_joins | ( | PlannerInfo * | root | ) |
Definition at line 1897 of file prepjointree.c.
References reduce_outer_joins_state::contains_outer, elog, ERROR, Query::jointree, NIL, NULL, PlannerInfo::parse, reduce_outer_joins_pass1(), and reduce_outer_joins_pass2().
Referenced by subquery_planner().
{ reduce_outer_joins_state *state; /* * To avoid doing strictness checks on more quals than necessary, we want * to stop descending the jointree as soon as there are no outer joins * below our current point. This consideration forces a two-pass process. * The first pass gathers information about which base rels appear below * each side of each join clause, and about whether there are outer * join(s) below each side of each join clause. The second pass examines * qual clauses and changes join types as it descends the tree. */ state = reduce_outer_joins_pass1((Node *) root->parse->jointree); /* planner.c shouldn't have called me if no outer joins */ if (state == NULL || !state->contains_outer) elog(ERROR, "so where are the outer joins?"); reduce_outer_joins_pass2((Node *) root->parse->jointree, state, root, NULL, NIL, NIL); }
static reduce_outer_joins_state * reduce_outer_joins_pass1 | ( | Node * | jtnode | ) | [static] |
Definition at line 1926 of file prepjointree.c.
References bms_add_members(), bms_make_singleton(), reduce_outer_joins_state::contains_outer, elog, ERROR, FromExpr::fromlist, IS_OUTER_JOIN, IsA, JoinExpr::jointype, lappend(), JoinExpr::larg, lfirst, nodeTag, NULL, palloc(), JoinExpr::rarg, reduce_outer_joins_state::relids, and reduce_outer_joins_state::sub_states.
Referenced by reduce_outer_joins().
{ reduce_outer_joins_state *result; result = (reduce_outer_joins_state *) palloc(sizeof(reduce_outer_joins_state)); result->relids = NULL; result->contains_outer = false; result->sub_states = NIL; if (jtnode == NULL) return result; if (IsA(jtnode, RangeTblRef)) { int varno = ((RangeTblRef *) jtnode)->rtindex; result->relids = bms_make_singleton(varno); } else if (IsA(jtnode, FromExpr)) { FromExpr *f = (FromExpr *) jtnode; ListCell *l; foreach(l, f->fromlist) { reduce_outer_joins_state *sub_state; sub_state = reduce_outer_joins_pass1(lfirst(l)); result->relids = bms_add_members(result->relids, sub_state->relids); result->contains_outer |= sub_state->contains_outer; result->sub_states = lappend(result->sub_states, sub_state); } } else if (IsA(jtnode, JoinExpr)) { JoinExpr *j = (JoinExpr *) jtnode; reduce_outer_joins_state *sub_state; /* join's own RT index is not wanted in result->relids */ if (IS_OUTER_JOIN(j->jointype)) result->contains_outer = true; sub_state = reduce_outer_joins_pass1(j->larg); result->relids = bms_add_members(result->relids, sub_state->relids); result->contains_outer |= sub_state->contains_outer; result->sub_states = lappend(result->sub_states, sub_state); sub_state = reduce_outer_joins_pass1(j->rarg); result->relids = bms_add_members(result->relids, sub_state->relids); result->contains_outer |= sub_state->contains_outer; result->sub_states = lappend(result->sub_states, sub_state); } else elog(ERROR, "unrecognized node type: %d", (int) nodeTag(jtnode)); return result; }
static void reduce_outer_joins_pass2 | ( | Node * | jtnode, | |
reduce_outer_joins_state * | state, | |||
PlannerInfo * | root, | |||
Relids | nonnullable_rels, | |||
List * | nonnullable_vars, | |||
List * | forced_null_vars | |||
) | [static] |
Definition at line 1998 of file prepjointree.c.
References Assert, bms_add_members(), bms_free(), bms_overlap(), reduce_outer_joins_state::contains_outer, elog, ERROR, find_forced_null_vars(), find_nonnullable_rels(), find_nonnullable_vars(), forboth, FromExpr::fromlist, IsA, JOIN_ANTI, JOIN_FULL, JOIN_INNER, JOIN_LEFT, JOIN_RIGHT, JOIN_SEMI, RangeTblEntry::jointype, JoinExpr::jointype, JoinExpr::larg, lfirst, linitial, list_concat(), list_intersection(), list_length(), lsecond, NIL, nodeTag, NULL, PlannerInfo::parse, pull_varnos(), JoinExpr::quals, FromExpr::quals, JoinExpr::rarg, reduce_outer_joins_state::relids, rt_fetch, Query::rtable, RTE_JOIN, RangeTblEntry::rtekind, JoinExpr::rtindex, and reduce_outer_joins_state::sub_states.
Referenced by reduce_outer_joins().
{ /* * pass 2 should never descend as far as an empty subnode or base rel, * because it's only called on subtrees marked as contains_outer. */ if (jtnode == NULL) elog(ERROR, "reached empty jointree"); if (IsA(jtnode, RangeTblRef)) elog(ERROR, "reached base rel"); else if (IsA(jtnode, FromExpr)) { FromExpr *f = (FromExpr *) jtnode; ListCell *l; ListCell *s; Relids pass_nonnullable_rels; List *pass_nonnullable_vars; List *pass_forced_null_vars; /* Scan quals to see if we can add any constraints */ pass_nonnullable_rels = find_nonnullable_rels(f->quals); pass_nonnullable_rels = bms_add_members(pass_nonnullable_rels, nonnullable_rels); /* NB: we rely on list_concat to not damage its second argument */ pass_nonnullable_vars = find_nonnullable_vars(f->quals); pass_nonnullable_vars = list_concat(pass_nonnullable_vars, nonnullable_vars); pass_forced_null_vars = find_forced_null_vars(f->quals); pass_forced_null_vars = list_concat(pass_forced_null_vars, forced_null_vars); /* And recurse --- but only into interesting subtrees */ Assert(list_length(f->fromlist) == list_length(state->sub_states)); forboth(l, f->fromlist, s, state->sub_states) { reduce_outer_joins_state *sub_state = lfirst(s); if (sub_state->contains_outer) reduce_outer_joins_pass2(lfirst(l), sub_state, root, pass_nonnullable_rels, pass_nonnullable_vars, pass_forced_null_vars); } bms_free(pass_nonnullable_rels); /* can't so easily clean up var lists, unfortunately */ } else if (IsA(jtnode, JoinExpr)) { JoinExpr *j = (JoinExpr *) jtnode; int rtindex = j->rtindex; JoinType jointype = j->jointype; reduce_outer_joins_state *left_state = linitial(state->sub_states); reduce_outer_joins_state *right_state = lsecond(state->sub_states); List *local_nonnullable_vars = NIL; bool computed_local_nonnullable_vars = false; /* Can we simplify this join? */ switch (jointype) { case JOIN_INNER: break; case JOIN_LEFT: if (bms_overlap(nonnullable_rels, right_state->relids)) jointype = JOIN_INNER; break; case JOIN_RIGHT: if (bms_overlap(nonnullable_rels, left_state->relids)) jointype = JOIN_INNER; break; case JOIN_FULL: if (bms_overlap(nonnullable_rels, left_state->relids)) { if (bms_overlap(nonnullable_rels, right_state->relids)) jointype = JOIN_INNER; else jointype = JOIN_LEFT; } else { if (bms_overlap(nonnullable_rels, right_state->relids)) jointype = JOIN_RIGHT; } break; case JOIN_SEMI: case JOIN_ANTI: /* * These could only have been introduced by pull_up_sublinks, * so there's no way that upper quals could refer to their * righthand sides, and no point in checking. */ break; default: elog(ERROR, "unrecognized join type: %d", (int) jointype); break; } /* * Convert JOIN_RIGHT to JOIN_LEFT. Note that in the case where we * reduced JOIN_FULL to JOIN_RIGHT, this will mean the JoinExpr no * longer matches the internal ordering of any CoalesceExpr's built to * represent merged join variables. We don't care about that at * present, but be wary of it ... */ if (jointype == JOIN_RIGHT) { Node *tmparg; tmparg = j->larg; j->larg = j->rarg; j->rarg = tmparg; jointype = JOIN_LEFT; right_state = linitial(state->sub_states); left_state = lsecond(state->sub_states); } /* * See if we can reduce JOIN_LEFT to JOIN_ANTI. This is the case if * the join's own quals are strict for any var that was forced null by * higher qual levels. NOTE: there are other ways that we could * detect an anti-join, in particular if we were to check whether Vars * coming from the RHS must be non-null because of table constraints. * That seems complicated and expensive though (in particular, one * would have to be wary of lower outer joins). For the moment this * seems sufficient. */ if (jointype == JOIN_LEFT) { List *overlap; local_nonnullable_vars = find_nonnullable_vars(j->quals); computed_local_nonnullable_vars = true; /* * It's not sufficient to check whether local_nonnullable_vars and * forced_null_vars overlap: we need to know if the overlap * includes any RHS variables. */ overlap = list_intersection(local_nonnullable_vars, forced_null_vars); if (overlap != NIL && bms_overlap(pull_varnos((Node *) overlap), right_state->relids)) jointype = JOIN_ANTI; } /* Apply the jointype change, if any, to both jointree node and RTE */ if (rtindex && jointype != j->jointype) { RangeTblEntry *rte = rt_fetch(rtindex, root->parse->rtable); Assert(rte->rtekind == RTE_JOIN); Assert(rte->jointype == j->jointype); rte->jointype = jointype; } j->jointype = jointype; /* Only recurse if there's more to do below here */ if (left_state->contains_outer || right_state->contains_outer) { Relids local_nonnullable_rels; List *local_forced_null_vars; Relids pass_nonnullable_rels; List *pass_nonnullable_vars; List *pass_forced_null_vars; /* * If this join is (now) inner, we can add any constraints its * quals provide to those we got from above. But if it is outer, * we can pass down the local constraints only into the nullable * side, because an outer join never eliminates any rows from its * non-nullable side. Also, there is no point in passing upper * constraints into the nullable side, since if there were any * we'd have been able to reduce the join. (In the case of upper * forced-null constraints, we *must not* pass them into the * nullable side --- they either applied here, or not.) The upshot * is that we pass either the local or the upper constraints, * never both, to the children of an outer join. * * Note that a SEMI join works like an inner join here: it's okay * to pass down both local and upper constraints. (There can't be * any upper constraints affecting its inner side, but it's not * worth having a separate code path to avoid passing them.) * * At a FULL join we just punt and pass nothing down --- is it * possible to be smarter? */ if (jointype != JOIN_FULL) { local_nonnullable_rels = find_nonnullable_rels(j->quals); if (!computed_local_nonnullable_vars) local_nonnullable_vars = find_nonnullable_vars(j->quals); local_forced_null_vars = find_forced_null_vars(j->quals); if (jointype == JOIN_INNER || jointype == JOIN_SEMI) { /* OK to merge upper and local constraints */ local_nonnullable_rels = bms_add_members(local_nonnullable_rels, nonnullable_rels); local_nonnullable_vars = list_concat(local_nonnullable_vars, nonnullable_vars); local_forced_null_vars = list_concat(local_forced_null_vars, forced_null_vars); } } else { /* no use in calculating these */ local_nonnullable_rels = NULL; local_forced_null_vars = NIL; } if (left_state->contains_outer) { if (jointype == JOIN_INNER || jointype == JOIN_SEMI) { /* pass union of local and upper constraints */ pass_nonnullable_rels = local_nonnullable_rels; pass_nonnullable_vars = local_nonnullable_vars; pass_forced_null_vars = local_forced_null_vars; } else if (jointype != JOIN_FULL) /* ie, LEFT or ANTI */ { /* can't pass local constraints to non-nullable side */ pass_nonnullable_rels = nonnullable_rels; pass_nonnullable_vars = nonnullable_vars; pass_forced_null_vars = forced_null_vars; } else { /* no constraints pass through JOIN_FULL */ pass_nonnullable_rels = NULL; pass_nonnullable_vars = NIL; pass_forced_null_vars = NIL; } reduce_outer_joins_pass2(j->larg, left_state, root, pass_nonnullable_rels, pass_nonnullable_vars, pass_forced_null_vars); } if (right_state->contains_outer) { if (jointype != JOIN_FULL) /* ie, INNER/LEFT/SEMI/ANTI */ { /* pass appropriate constraints, per comment above */ pass_nonnullable_rels = local_nonnullable_rels; pass_nonnullable_vars = local_nonnullable_vars; pass_forced_null_vars = local_forced_null_vars; } else { /* no constraints pass through JOIN_FULL */ pass_nonnullable_rels = NULL; pass_nonnullable_vars = NIL; pass_forced_null_vars = NIL; } reduce_outer_joins_pass2(j->rarg, right_state, root, pass_nonnullable_rels, pass_nonnullable_vars, pass_forced_null_vars); } bms_free(local_nonnullable_rels); } } else elog(ERROR, "unrecognized node type: %d", (int) nodeTag(jtnode)); }
static void replace_vars_in_jointree | ( | Node * | jtnode, | |
pullup_replace_vars_context * | context, | |||
JoinExpr * | lowest_nulling_outer_join | |||
) | [static] |
Definition at line 1470 of file prepjointree.c.
References Assert, elog, ERROR, FromExpr::fromlist, RangeTblEntry::funcexpr, IsA, JoinExpr::larg, RangeTblEntry::lateral, lfirst, pullup_replace_vars_context::need_phvs, nodeTag, NULL, PlannerInfo::parse, pullup_replace_vars(), pullup_replace_vars_subquery(), JoinExpr::quals, FromExpr::quals, JoinExpr::rarg, pullup_replace_vars_context::root, rt_fetch, Query::rtable, RTE_CTE, RTE_FUNCTION, RTE_JOIN, RTE_RELATION, RTE_SUBQUERY, RTE_VALUES, RangeTblEntry::rtekind, RangeTblEntry::subquery, pullup_replace_vars_context::target_rte, RangeTblEntry::values_lists, and pullup_replace_vars_context::varno.
Referenced by pull_up_simple_subquery().
{ if (jtnode == NULL) return; if (IsA(jtnode, RangeTblRef)) { /* * If the RangeTblRef refers to a LATERAL subquery (that isn't the * same subquery we're pulling up), it might contain references to the * target subquery, which we must replace. We drive this from the * jointree scan, rather than a scan of the rtable, for a couple of * reasons: we can avoid processing no-longer-referenced RTEs, and we * can use the appropriate setting of need_phvs depending on whether * the RTE is above possibly-nulling outer joins or not. */ int varno = ((RangeTblRef *) jtnode)->rtindex; if (varno != context->varno) /* ignore target subquery itself */ { RangeTblEntry *rte = rt_fetch(varno, context->root->parse->rtable); Assert(rte != context->target_rte); if (rte->lateral) { switch (rte->rtekind) { case RTE_SUBQUERY: rte->subquery = pullup_replace_vars_subquery(rte->subquery, context); break; case RTE_FUNCTION: rte->funcexpr = pullup_replace_vars(rte->funcexpr, context); break; case RTE_VALUES: rte->values_lists = (List *) pullup_replace_vars((Node *) rte->values_lists, context); break; case RTE_RELATION: case RTE_JOIN: case RTE_CTE: /* these shouldn't be marked LATERAL */ Assert(false); break; } } } } else if (IsA(jtnode, FromExpr)) { FromExpr *f = (FromExpr *) jtnode; ListCell *l; foreach(l, f->fromlist) replace_vars_in_jointree(lfirst(l), context, lowest_nulling_outer_join); f->quals = pullup_replace_vars(f->quals, context); } else if (IsA(jtnode, JoinExpr)) { JoinExpr *j = (JoinExpr *) jtnode; bool save_need_phvs = context->need_phvs; if (j == lowest_nulling_outer_join) { /* no more PHVs in or below this join */ context->need_phvs = false; lowest_nulling_outer_join = NULL; } replace_vars_in_jointree(j->larg, context, lowest_nulling_outer_join); replace_vars_in_jointree(j->rarg, context, lowest_nulling_outer_join); j->quals = pullup_replace_vars(j->quals, context); /* * We don't bother to update the colvars list, since it won't be used * again ... */ context->need_phvs = save_need_phvs; } else elog(ERROR, "unrecognized node type: %d", (int) nodeTag(jtnode)); }
Definition at line 2336 of file prepjointree.c.
References query_or_expression_tree_walker(), substitute_multiple_relids_context::sublevels_up, substitute_multiple_relids_context::subrelids, substitute_multiple_relids_walker(), and substitute_multiple_relids_context::varno.
Referenced by fix_append_rel_relids(), and pull_up_simple_subquery().
{ substitute_multiple_relids_context context; context.varno = varno; context.sublevels_up = 0; context.subrelids = subrelids; /* * Must be prepared to start with a Query or a bare expression tree. */ query_or_expression_tree_walker(node, substitute_multiple_relids_walker, (void *) &context, 0); }
static bool substitute_multiple_relids_walker | ( | Node * | node, | |
substitute_multiple_relids_context * | context | |||
) | [static] |
Definition at line 2293 of file prepjointree.c.
References Assert, bms_del_member(), bms_is_member(), bms_union(), expression_tree_walker(), IsA, NULL, PlaceHolderVar::phlevelsup, PlaceHolderVar::phrels, query_tree_walker(), substitute_multiple_relids_context::sublevels_up, substitute_multiple_relids_context::subrelids, and substitute_multiple_relids_context::varno.
Referenced by substitute_multiple_relids().
{ if (node == NULL) return false; if (IsA(node, PlaceHolderVar)) { PlaceHolderVar *phv = (PlaceHolderVar *) node; if (phv->phlevelsup == context->sublevels_up && bms_is_member(context->varno, phv->phrels)) { phv->phrels = bms_union(phv->phrels, context->subrelids); phv->phrels = bms_del_member(phv->phrels, context->varno); } /* fall through to examine children */ } if (IsA(node, Query)) { /* Recurse into subselects */ bool result; context->sublevels_up++; result = query_tree_walker((Query *) node, substitute_multiple_relids_walker, (void *) context, 0); context->sublevels_up--; return result; } /* Shouldn't need to handle planner auxiliary nodes here */ Assert(!IsA(node, SpecialJoinInfo)); Assert(!IsA(node, LateralJoinInfo)); Assert(!IsA(node, AppendRelInfo)); Assert(!IsA(node, PlaceHolderInfo)); Assert(!IsA(node, MinMaxAggInfo)); return expression_tree_walker(node, substitute_multiple_relids_walker, (void *) context); }