Table of Contents
The MySQL™ software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle Corporation and/or its affiliates, and shall not be used by Customer without Oracle's express written authorization. Other names may be trademarks of their respective owners.
The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an Open Source product under the terms of the GNU General Public License (http://www.fsf.org/licenses/) or can purchase a standard commercial license from Oracle. See http://www.mysql.com/company/legal/licensing/ for more information on our licensing policies.
The following list describes some sections of particular interest in this manual:
For a discussion of MySQL Database Server capabilities, see Section 1.3.2, “The Main Features of MySQL”.
For an overview of new MySQL features, see Section 1.4, “What Is New in MySQL 5.6”. For information about the changes in each version, see the release notes at Appendix D, MySQL Release Notes.
For installation instructions, see Chapter 2, Installing and Upgrading MySQL. For information about upgrading MySQL, see Section 2.11.1, “Upgrading MySQL”.
For a tutorial introduction to the MySQL Database Server, see Chapter 3, Tutorial.
For information about configuring and administering MySQL Server, see Chapter 5, MySQL Server Administration.
For information about security in MySQL, see Chapter 6, Security.
For information about setting up replication servers, see Chapter 16, Replication.
For information about MySQL Enterprise, the commercial MySQL release with advanced features and management tools, see Chapter 23, MySQL Enterprise Edition.
For answers to a number of questions that are often asked concerning the MySQL Database Server and its capabilities, see Appendix B, MySQL 5.6 Frequently Asked Questions.
For a history of new features and bugfixes, see Appendix D, MySQL Release Notes.
To report problems or bugs, please use the instructions at
Section 1.7, “How to Report Bugs or Problems”. If you have found a sensitive
security bug in MySQL Server, please let us know immediately by
sending an email message to <[email protected]>
.
Exception: Support customers should report all problems, including
security bugs, to Oracle Support.
This is the Reference Manual for the MySQL Database System,
version 5.6, through release 5.6.10.
Differences between minor versions of MySQL 5.6 are
noted in the present text with reference to release numbers
(5.6.x
). For license
information, see the Legal
Notices. This product may contain third-party code. For
license information on third-party code, see
Appendix A, Licenses for Third-Party Components.
This manual is not intended for use with older versions of the MySQL software due to the many functional and other differences between MySQL 5.6 and previous versions. If you are using an earlier release of the MySQL software, please refer to the appropriate manual. For example, MySQL 5.5 Reference Manual covers the 5.5 series of MySQL software releases.
Because this manual serves as a reference, it does not provide general instruction on SQL or relational database concepts. It also does not teach you how to use your operating system or command-line interpreter.
The MySQL Database Software is under constant development, and the Reference Manual is updated frequently as well. The most recent version of the manual is available online in searchable form at http://dev.mysql.com/doc/. Other formats also are available there, including HTML, PDF, and EPUB versions.
The Reference Manual source files are written in DocBook XML format. The HTML version and other formats are produced automatically, primarily using the DocBook XSL stylesheets. For information about DocBook, see http://docbook.org/
If you have questions about using MySQL, you can ask them using our mailing lists or forums. See Section 1.6.1, “MySQL Mailing Lists”, and Section 1.6.2, “MySQL Community Support at the MySQL Forums”. If you have suggestions concerning additions or corrections to the manual itself, please send them to the http://www.mysql.com/company/contact/.
This manual was originally written by David Axmark and Michael “Monty” Widenius. It is maintained by the MySQL Documentation Team, consisting of Paul DuBois, Stefan Hinz, Philip Olson, John Russell, and Jon Stephens.
This manual uses certain typographical conventions:
Text in this style
is used for SQL
statements; database, table, and column names; program listings
and source code; and environment variables. Example: “To
reload the grant tables, use the
FLUSH
PRIVILEGES
statement.”
Text in this style
indicates input that
you type in examples.
Text in this style indicates the names of executable programs and scripts, examples being mysql (the MySQL command line client program) and mysqld (the MySQL server executable).
Text in this style
is used for
variable input for which you should substitute a value of your
own choosing.
Text in this style is used for emphasis.
Text in this style is used in table headings and to convey especially strong emphasis.
Text in this style
is used to indicate a
program option that affects how the program is executed, or that
supplies information that is needed for the program to function
in a certain way. Example: “The
--host
option (short form -h
)
tells the mysql client program the hostname
or IP address of the MySQL server that it should connect
to”.
File names and directory names are written like this: “The
global my.cnf
file is located in the
/etc
directory.”
Character sequences are written like this: “To specify a
wildcard, use the ‘%
’
character.”
When commands are shown that are meant to be executed from within a
particular program, the prompt shown preceding the command indicates
which command to use. For example, shell>
indicates a command that you execute from your login shell,
root-shell>
is similar but should be executed
as root
, and mysql>
indicates a statement that you execute from the
mysql client program:
shell>type a shell command here
root-shell>type a shell command as
mysql>root
heretype a mysql statement here
In some areas different systems may be distinguished from each other
to show that commands should be executed in two different
environments. For example, while working with replication the
commands might be prefixed with master
and
slave
:
master>type a mysql command on the replication master here
slave>type a mysql command on the replication slave here
The “shell” is your command interpreter. On Unix, this is typically a program such as sh, csh, or bash. On Windows, the equivalent program is command.com or cmd.exe, typically run in a console window.
When you enter a command or statement shown in an example, do not type the prompt shown in the example.
Database, table, and column names must often be substituted into
statements. To indicate that such substitution is necessary, this
manual uses db_name
,
tbl_name
, and
col_name
. For example, you might see a
statement like this:
mysql> SELECT col_name
FROM db_name
.tbl_name
;
This means that if you were to enter a similar statement, you would supply your own database, table, and column names, perhaps like this:
mysql> SELECT author_name FROM biblio_db.author_list;
SQL keywords are not case sensitive and may be written in any lettercase. This manual uses uppercase.
In syntax descriptions, square brackets
(“[
” and
“]
”) indicate optional words or
clauses. For example, in the following statement, IF
EXISTS
is optional:
DROP TABLE [IF EXISTS] tbl_name
When a syntax element consists of a number of alternatives, the
alternatives are separated by vertical bars
(“|
”). When one member from a set of
choices may be chosen, the alternatives are
listed within square brackets (“[
”
and “]
”):
TRIM([[BOTH | LEADING | TRAILING] [remstr
] FROM]str
)
When one member from a set of choices must be
chosen, the alternatives are listed within braces
(“{
” and
“}
”):
{DESCRIBE | DESC}tbl_name
[col_name
|wild
]
An ellipsis (...
) indicates the omission of a
section of a statement, typically to provide a shorter version of
more complex syntax. For example,
SELECT ... INTO
OUTFILE
is shorthand for the form of
SELECT
statement that has an
INTO OUTFILE
clause following other parts of the
statement.
An ellipsis can also indicate that the preceding syntax element of a
statement may be repeated. In the following example, multiple
reset_option
values may be given, with
each of those after the first preceded by commas:
RESETreset_option
[,reset_option
] ...
Commands for setting shell variables are shown using Bourne shell
syntax. For example, the sequence to set the CC
environment variable and run the configure
command looks like this in Bourne shell syntax:
shell> CC=gcc ./configure
If you are using csh or tcsh, you must issue commands somewhat differently:
shell>setenv CC gcc
shell>./configure
MySQL, the most popular Open Source SQL database management system, is developed, distributed, and supported by Oracle Corporation.
The MySQL Web site (http://www.mysql.com/) provides the latest information about MySQL software.
MySQL is a database management system.
A database is a structured collection of data. It may be anything from a simple shopping list to a picture gallery or the vast amounts of information in a corporate network. To add, access, and process data stored in a computer database, you need a database management system such as MySQL Server. Since computers are very good at handling large amounts of data, database management systems play a central role in computing, as standalone utilities, or as parts of other applications.
MySQL databases are relational.
A relational database stores data in separate tables rather than putting all the data in one big storeroom. The database structures are organized into physical files optimized for speed. The logical model, with objects such as databases, tables, views, rows, and columns, offers a flexible programming environment. You set up rules governing the relationships between different data fields, such as one-to-one, one-to-many, unique, required or optional, and “pointers” between different tables. The database enforces these rules, so that with a well-designed database, your application never sees inconsistent, duplicate, orphan, out-of-date, or missing data.
The SQL part of “MySQL” stands for “Structured Query Language”. SQL is the most common standardized language used to access databases. Depending on your programming environment, you might enter SQL directly (for example, to generate reports), embed SQL statements into code written in another language, or use a language-specific API that hides the SQL syntax.
SQL is defined by the ANSI/ISO SQL Standard. The SQL standard has been evolving since 1986 and several versions exist. In this manual, “SQL-92” refers to the standard released in 1992, “SQL:1999” refers to the standard released in 1999, and “SQL:2003” refers to the current version of the standard. We use the phrase “the SQL standard” to mean the current version of the SQL Standard at any time.
MySQL software is Open Source.
Open Source means that it is possible for anyone to use and modify the software. Anybody can download the MySQL software from the Internet and use it without paying anything. If you wish, you may study the source code and change it to suit your needs. The MySQL software uses the GPL (GNU General Public License), http://www.fsf.org/licenses/, to define what you may and may not do with the software in different situations. If you feel uncomfortable with the GPL or need to embed MySQL code into a commercial application, you can buy a commercially licensed version from us. See the MySQL Licensing Overview for more information (http://www.mysql.com/company/legal/licensing/).
The MySQL Database Server is very fast, reliable, scalable, and easy to use.
If that is what you are looking for, you should give it a try. MySQL Server can run comfortably on a desktop or laptop, alongside your other applications, web servers, and so on, requiring little or no attention. If you dedicate an entire machine to MySQL, you can adjust the settings to take advantage of all the memory, CPU power, and I/O capacity available. MySQL can also scale up to clusters of machines, networked together.
You can find a performance comparison of MySQL Server with other database managers on our benchmark page. See Section 8.12.2, “The MySQL Benchmark Suite”.
MySQL Server was originally developed to handle large databases much faster than existing solutions and has been successfully used in highly demanding production environments for several years. Although under constant development, MySQL Server today offers a rich and useful set of functions. Its connectivity, speed, and security make MySQL Server highly suited for accessing databases on the Internet.
MySQL Server works in client/server or embedded systems.
The MySQL Database Software is a client/server system that consists of a multi-threaded SQL server that supports different backends, several different client programs and libraries, administrative tools, and a wide range of application programming interfaces (APIs).
We also provide MySQL Server as an embedded multi-threaded library that you can link into your application to get a smaller, faster, easier-to-manage standalone product.
A large amount of contributed MySQL software is available.
MySQL Server has a practical set of features developed in close cooperation with our users. It is very likely that your favorite application or language supports the MySQL Database Server.
The official way to pronounce “MySQL” is “My Ess Que Ell” (not “my sequel”), but we do not mind if you pronounce it as “my sequel” or in some other localized way.
This section describes some of the important characteristics of the MySQL Database Software. See also Section 1.5, “MySQL Development History”. In most respects, the roadmap applies to all versions of MySQL. For information about features as they are introduced into MySQL on a series-specific basis, see the “In a Nutshell” section of the appropriate Manual:
MySQL 5.6: MySQL 5.6 in a Nutshell
MySQL 5.5: MySQL 5.5 in a Nutshell
MySQL 5.1: MySQL 5.1 in a Nutshell
MySQL 5.0: MySQL 5.0 in a Nutshell
Written in C and C++.
Tested with a broad range of different compilers.
Works on many different platforms. See Section 2.1.1, “Operating Systems Supported by MySQL Community Server”.
For portability, uses CMake in MySQL 5.5 and up. Previous series use GNU Automake, Autoconf, and Libtool.
Tested with Purify (a commercial memory leakage detector) as well as with Valgrind, a GPL tool (http://developer.kde.org/~sewardj/).
Uses multi-layered server design with independent modules.
Designed to be fully multi-threaded using kernel threads, to easily use multiple CPUs if they are available.
Provides transactional and nontransactional storage engines.
Uses very fast B-tree disk tables (MyISAM
)
with index compression.
Designed to make it relatively easy to add other storage engines. This is useful if you want to provide an SQL interface for an in-house database.
Uses a very fast thread-based memory allocation system.
Executes very fast joins using an optimized nested-loop join.
Implements in-memory hash tables, which are used as temporary tables.
Implements SQL functions using a highly optimized class library that should be as fast as possible. Usually there is no memory allocation at all after query initialization.
Provides the server as a separate program for use in a client/server networked environment, and as a library that can be embedded (linked) into standalone applications. Such applications can be used in isolation or in environments where no network is available.
Full operator and function support in the
SELECT
list and
WHERE
clause of queries. For example:
mysql>SELECT CONCAT(first_name, ' ', last_name)
->FROM citizen
->WHERE income/dependents > 10000 AND age > 30;
Full support for SQL GROUP BY
and
ORDER BY
clauses. Support for group
functions (COUNT()
,
AVG()
,
STD()
,
SUM()
,
MAX()
,
MIN()
, and
GROUP_CONCAT()
).
Support for LEFT OUTER JOIN
and
RIGHT OUTER JOIN
with both standard SQL and
ODBC syntax.
Support for aliases on tables and columns as required by standard SQL.
Support for DELETE
,
INSERT
,
REPLACE
, and
UPDATE
to return the number of
rows that were changed (affected), or to return the number of
rows matched instead by setting a flag when connecting to the
server.
Support for MySQL-specific SHOW
statements that retrieve information about databases, storage
engines, tables, and indexes. MySQL 5.0 adds support for the
INFORMATION_SCHEMA
database, implemented
according to standard SQL.
An EXPLAIN
statement to show
how the optimizer resolves a query.
Independence of function names from table or column names. For
example, ABS
is a valid column name. The
only restriction is that for a function call, no spaces are
permitted between the function name and the
“(
” that follows it. See
Section 9.3, “Reserved Words”.
You can refer to tables from different databases in the same statement.
A privilege and password system that is very flexible and secure, and that enables host-based verification.
Password security by encryption of all password traffic when you connect to a server.
Support for large databases. We use MySQL Server with databases that contain 50 million records. We also know of users who use MySQL Server with 200,000 tables and about 5,000,000,000 rows.
Support for up to 64 indexes per table (32 before MySQL
4.1.2). Each index may consist of 1 to 16 columns or parts of
columns. The maximum index width is 767 bytes for
InnoDB
tables, or 1000 for
MyISAM
; before MySQL 4.1.2, the limit is
500 bytes. An index may use a prefix of a column for
CHAR
,
VARCHAR
,
BLOB
, or
TEXT
column types.
Clients can connect to MySQL Server using several protocols:
Clients can connect using TCP/IP sockets on any platform.
On Windows systems in the NT family (NT, 2000, XP, 2003,
or Vista), clients can connect using named pipes if the
server is started with the
--enable-named-pipe
option.
In MySQL 4.1 and higher, Windows servers also support
shared-memory connections if started with the
--shared-memory
option.
Clients can connect through shared memory by using the
--protocol=memory
option.
On Unix systems, clients can connect using Unix domain socket files.
MySQL client programs can be written in many languages. A client library written in C is available for clients written in C or C++, or for any language that provides C bindings.
APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available, enabling MySQL clients to be written in many languages. See Chapter 21, Connectors and APIs.
The Connector/ODBC (MyODBC) interface provides MySQL support for client programs that use ODBC (Open Database Connectivity) connections. For example, you can use MS Access to connect to your MySQL server. Clients can be run on Windows or Unix. Connector/ODBC source is available. All ODBC 2.5 functions are supported, as are many others. See Section 21.1, “MySQL Connector/ODBC”.
The Connector/J interface provides MySQL support for Java client programs that use JDBC connections. Clients can be run on Windows or Unix. Connector/J source is available. See Section 21.3, “MySQL Connector/J”.
MySQL Connector/Net enables developers to easily create .NET applications that require secure, high-performance data connectivity with MySQL. It implements the required ADO.NET interfaces and integrates into ADO.NET aware tools. Developers can build applications using their choice of .NET languages. MySQL Connector/Net is a fully managed ADO.NET driver written in 100% pure C#. See Section 21.2, “MySQL Connector/Net”.
The server can provide error messages to clients in many languages. See Section 10.2, “Setting the Error Message Language”.
Full support for several different character sets, including
latin1
(cp1252), german
,
big5
, ujis
, and more.
For example, the Scandinavian characters
“å
”,
“ä
” and
“ö
” are permitted in table
and column names. Unicode support is available as of MySQL
4.1.
All data is saved in the chosen character set.
Sorting and comparisons are done according to the chosen
character set and collation (using latin1
and Swedish collation by default). It is possible to change
this when the MySQL server is started. To see an example of
very advanced sorting, look at the Czech sorting code. MySQL
Server supports many different character sets that can be
specified at compile time and runtime.
As of MySQL 4.1, the server time zone can be changed dynamically, and individual clients can specify their own time zone. Section 10.6, “MySQL Server Time Zone Support”.
MySQL includes several client and utility programs. These include both command-line programs such as mysqldump and mysqladmin, and graphical programs such as MySQL Workbench.
MySQL Server has built-in support for SQL statements to check,
optimize, and repair tables. These statements are available
from the command line through the
mysqlcheck client. MySQL also includes
myisamchk, a very fast command-line utility
for performing these operations on MyISAM
tables. See Chapter 4, MySQL Programs.
MySQL programs can be invoked with the --help
or -?
option to obtain online assistance.
We started out with the intention of using the
mSQL
database system to connect to our tables
using our own fast low-level (ISAM) routines. However, after some
testing, we came to the conclusion that mSQL
was not fast enough or flexible enough for our needs. This
resulted in a new SQL interface to our database but with almost
the same API interface as mSQL
. This API was
designed to enable third-party code that was written for use with
mSQL
to be ported easily for use with MySQL.
MySQL is named after co-founder Monty Widenius's daughter, My.
The name of the MySQL Dolphin (our logo) is “Sakila,” which was chosen from a huge list of names suggested by users in our “Name the Dolphin” contest. The winning name was submitted by Ambrose Twebaze, an Open Source software developer from Swaziland, Africa. According to Ambrose, the feminine name Sakila has its roots in SiSwati, the local language of Swaziland. Sakila is also the name of a town in Arusha, Tanzania, near Ambrose's country of origin, Uganda.
This section summarizes what has been added to and removed from MySQL 5.6.
The following features have been added to MySQL 5.6:
Security improvements. These security improvements were made:
MySQL now provides a method for storing authentication
credentials encrypted in an option file named
.mylogin.cnf
. To create the file, use
the mysql_config_editor utility. The
file can be read later by MySQL client programs to obtain
authentication credentials for connecting to a MySQL
server. mysql_config_editor writes the
.mylogin.cnf
file using encryption so
the credentials are not stored as clear text, and its
contents when decrypted by client programs are used only
in memory. In this way, passwords can be stored in a file
in non-cleartext format and used later without ever
needing to be exposed on the command line or in an
environment variable. For more information, see
Section 4.6.6, “mysql_config_editor — MySQL Configuration Utility”.
MySQL now supports stronger encryption for user account
passwords, available through an authentication plugin
named sha256_password
that implements
SHA-256 password hashing. This plugin is built in, so it
is always available and need not be loaded explicitly. For
more information, including instructions for creating
accounts that use SHA-256 passwords, see
Section 6.3.6.2, “The SHA-256 Authentication Plugin”.
The mysql.user
table now has a
password_expired
column. Its default
value is 'N'
, but can be set to
'Y'
with the new
ALTER USER
statement. After
an account's password has been expired, all operations
performed in subsequent connections to the server using
the account result in an error until the user issues a
SET PASSWORD
statement to
establish a new account password. For more information,
see Section 13.7.1.1, “ALTER USER
Syntax”.
MySQL now has provision for checking password security:
In statements that assign a password supplied as a
cleartext value, the value is checked against the
current password policy and rejected if it is weak
(the statement returns an
ER_NOT_VALID_PASSWORD
error). This affects the CREATE
USER
, GRANT
,
and SET PASSWORD
statements. Passwords given as arguments to the
PASSWORD()
and
OLD_PASSWORD()
functions are checked as well.
The strength of potential passwords can be assessed
using the new
VALIDATE_PASSWORD_STRENGTH()
SQL function, which takes a password argument and
returns an integer from 0 (weak) to 100 (strong).
Both capabilities are implemented by the
validate_password
plugin. For more
information, see
Section 6.1.2.6, “The Password Validation Plugin”.
mysql_upgrade now produces a warning if it finds user accounts with passwords hashed with the older pre-4.1 hashing method. Such accounts should be updated to use more secure password hashing. See Section 6.1.2.4, “Password Hashing in MySQL”
On Unix platforms, mysql_install_db
supports a new option,
--random-passwords
,
that provides for more secure MySQL installation. Invoking
mysql_install_db with
--random-passwords
causes it to assign a random password to the MySQL
root
accounts, set the “password
expired” flag for those accounts, and remove the
anonymous-user MySQL accounts. For additional details, see
Section 4.4.3, “mysql_install_db — Initialize MySQL Data Directory”.
Logging has been modified so that passwords do not appear in plain text in statements written to the general query log, slow query log, and binary log. See Section 6.1.2.3, “Passwords and Logging”.
The mysql client no longer logs to its history file statements that refer to passwords. See Section 4.5.1.3, “mysql History File”.
START SLAVE
syntax has been
modified to permit connection parameters to be specified
for connecting to the master. This provides an alternative
to storing the password in the
master.info
file. See
Section 13.4.2.5, “START SLAVE
Syntax”.
Changes to server defaults. Beginning with MySQL 5.6.6, several MySQL Server parameter defaults differ from the defaults in previous releases. The motivation for these changes is to provide better out-of-box performance and to reduce the need for database administrators to change settings manually. For more information, see Section 5.1.2.1, “Changes to Server Defaults”.
InnoDB
enhancements.
These InnoDB
enhancements were added:
You can create FULLTEXT
indexes on
InnoDB
tables, and query them using the
MATCH() ... AGAINST
syntax.
This feature includes a new proximity search operator
(@
) and several new configuration
options and INFORMATION_SCHEMA
tables:
See Section 14.2.4.12.3, “FULLTEXT
Indexes” for more
information.
Several ALTER TABLE
operations can be performed without copying the table,
without blocking inserts, updates, and deletes to the
table, or both. These enhancements are known collectively
as online DDL. See
Section 14.2.2.6, “Online DDL for InnoDB
Tables” for details.
You have more flexibility to move around the
.ibd files files
created in
file-per-table
mode to suit your storage devices and database servers.
When creating a table, you can designate a location
outside the MySQL data directory to hold the
.ibd
file, for example to put a busy
table on an SSD device or
a huge table on a high-capacity
HDD device. You can export
a table from one MySQL instance and import it in a
different instance, without inconsistencies or mismatches
caused by buffered data, in-progress transactions, and
internal bookkeeping details such as the
space ID and
LSN. See
Section 14.2.5.2.33, “Improved Tablespace Management” for
details.
You can now set the InnoDB
page size for
uncompressed tables to 8KB or 4KB, as an alternative to
the default 16KB. This setting is controlled by the
innodb_page_size
configuration option. You specify the size when creating
the MySQL instance. All InnoDB
tablespaces within
an instance share the same page size. Smaller page sizes
can help to avoid redundant or inefficient I/O for certain
combinations of workload and storage devices, particularly
SSD devices with small
block sizes.
Improvements to the algorithms for adaptive flushing make I/O operations more efficient and consistent under a variety of workloads. The new algorithm and default configuration values are expected to improve performance and concurrency for most users. Advanced users can fine-tune their I/O responsiveness through several configuration options. See Section 14.2.5.2.8, “Improvements to Buffer Pool Flushing” for details.
You can code MySQL applications that access
InnoDB
tables through a NoSQL-style
API. This feature uses the popular
memcached daemon to relay requests such
as ADD
, SET
, and
GET
for key-value pairs. These simple
operations to store and retrieve data avoid the SQL
overhead such as parsing and constructing a
query execution
plan. You can access the same data through the
NoSQL API and SQL. For example, you might use the NoSQL
API for fast updates and lookups, and SQL for complex
queries and compatibility with existing applications. See
Section 14.2.10, “InnoDB
Integration with memcached” for details.
Optimizer statistics for InnoDB
tables
are gathered at more predictable intervals and can persist
across server restarts, for improved
plan stability.
You can also control the amount of sampling done for
InnoDB
indexes, to make the optimizer
statistics more accurate and improve the query execution
plan. See Section 14.2.5.2.9, “Persistent Optimizer Statistics for InnoDB Tables” for
details.
New optimizations apply to read-only
transactions,
improving performance and concurrency for ad-hoc queries
and report-generating applications. These optimizations
are applied automatically when practical, or you can
specify START
TRANSACTION READ ONLY
to ensure the transaction
is read-only. See
Section 14.2.5.2.2, “Optimizations for Read-Only Transactions” for details.
You can move the InnoDB
undo log out of the
system
tablespace into one or more separate
tablespaces. The
I/O patterns for the undo log make these new tablespaces
good candidates to move to SSD storage, while keeping the
system tablespace on hard disk storage. For details, see
Section 14.2.5.2.3, “Separate Tablespaces for InnoDB Undo Logs”.
The InnoDB
redo log files now
have a maximum combined size of 512GB, increased from 4GB.
You can specify the larger values through the
innodb_log_file_size
option. The startup behavior now automatically handles the
situation where the size of the existing redo log files
does not match the size specified by
innodb_log_file_size
and
innodb_log_files_in_group
.
The --innodb-read-only
option lets you run a MySQL server in read-only mode. You
can access InnoDB
tables on read-only
media such as a DVD or CD, or set up a data warehouse with
multiple instances all sharing the same data directory.
See Section 14.2.6.1, “Support for Read-Only Media” for usage
details.
Several new InnoDB
-related
INFORMATION_SCHEMA
tables provide
information about the InnoDB
buffer
pool, metadata about tables, indexes, and foreign keys
from the InnoDB
data dictionary, and
low-level information about performance metrics that
complements the information from the Performance Schema
tables.
InnoDB
now limits the memory used to
hold table information when many tables are opened.
InnoDB
has several internal performance
enhancements, including reducing contention by splitting
the kernel mutex, moving flushing operations from the main
thread to a separate thread, enabling multiple purge
threads, and reducing contention for the buffer pool on
large-memory systems.
InnoDB
uses a new, faster algorithm to
detect deadlocks.
Information about all InnoDB
deadlocks
can be written to the MySQL server error log, to help
diagnose application issues.
To avoid a lengthy
warmup period after
restarting the server, particularly for instances with
large InnoDB
buffer pools, you
can reload pages into the buffer pool immediately after a
restart. MySQL can dump a compact data file at shutdown,
then consult that data file to find the
pages to reload on the
next restart. You can also manually dump or reload the
buffer pool at any time, for example during benchmarking
or after complex report-generation queries. See
Section 14.2.5.2.7, “Faster Restart by Preloading the InnoDB Buffer Pool” for details.
Partitioning. These table-partitioning enhancements were added:
The maximum number of partitions is increased to 8192. This number includes all partitions and all subpartitions of the table.
It is now possible to exchange a partition of a
partitioned table or a subpartition of a subpartitioned
table with a nonpartitioned table that otherwise has the
same structure using the
ALTER TABLE
... EXCHANGE PARTITION
statement. This can be
used, for example, to import and export partitions. For
more information and examples, see
Section 17.3.3, “Exchanging Partitions and Subpartitions with Tables”.
Explicit selection of one or more partitions or
subpartitions is now supported for queries, as well as for
many data modification statements, that act on partitioned
tables. For example, assume a table t
with some integer column c
has 4
partitions named p0
,
p1
, p2
, and
p3
. Then the query SELECT *
FROM t PARTITION (p0, p1) WHERE c < 5
returns
only those rows from partitions p0
and
p1
for which c
is
less than 5.
The following statements support explicit partition selection:
For syntax, see the descriptions of the individual statements. For additional information and examples, see Section 17.5, “Partition Selection”.
Partition lock pruning greatly improves performance of
many DML and DDL statements acting on tables with many
partitions by helping to eliminate locks on partitions
that are not affected by these statements. Such statements
include many SELECT
,
SELECT
... PARTITION
,
UPDATE
,
REPLACE
,
INSERT
, as well as many
other statements. For more information, including a
complete listing of the statements whose performance has
thus been improved, see
Section 17.6.4, “Partitioning and Locking”.
Performance Schema. The Performance Schema includes several new features:
Instrumentation for table input and output. Instrumented operations include row-level accesses to persistent base tables or temporary tables. Operations that affect rows are fetch, insert, update, and delete.
Event filtering by table, based on schema and/or table names.
Event filtering by thread. More information is collected for threads.
Summary tables for table and index I/O, and for table locks.
Instrumentation for statements and stages within statements.
Configuration of instruments and consumers at server startup, which previously was possible only at runtime.
Replication and logging. These replication enhancements were added:
MySQL now supports transaction-based replication using global transaction identifiers (also known as “GTIDs”). This makes it possible to identify and track each transaction when it is committed on the originating server and as it is applied by any slaves.
Enabling of GTIDs in a replication setup is done primarily
using the new --gtid-mode
and
--enforce-gtid-consistency
server options. For information about additional options
and variables introduced in support of GTIDs, see
Section 16.1.4.5, “Global Transaction ID Options and Variables”.
When using GTIDs it is not necessary to refer to log files or positions within those files when starting a new slave or failing over to a new master, which greatly simplifies these tasks.
GTID-based replication is completely transaction-based, which makes it simple to check the consistency of masters and slaves. If all transactions committed on a given master are also committed on a given slave, consistency between the two servers is guaranteed.
For more complete information about the implementation and use of GTIDs in MySQL Replication, see Section 16.1.3, “Replication with Global Transaction Identifiers”.
MySQL row-based replication now supports row image
control. By logging only those columns required for
uniquely identifying and executing changes on each row (as
opposed to all columns) for each row change, it is
possible to save disk space, network resources, and memory
usage. You can determine whether full or minimal rows are
logged by setting the
binlog_row_image
server
system variable to one of the values
minimal
(log required columns only),
full
(log all columns), or
noblob
(log all columns except for
unneeded BLOB
or
TEXT
columns). See
System variables used with the binary log, for more
information.
Binary logs written and read by the MySQL Server are now
crash-safe, because only complete events (or transactions)
are logged or read back. By default, the server logs the
length of the event as well as the event itself and uses
this information to verify that the event was written
correctly. You can also cause the server to write
checksums for the events using CRC32 checksums by setting
the binlog_checksum
system variable. To cause the server to read checksums
from the binary log, use the
master_verify_checksum
system variable. The
--slave-sql-verify-checksum
system variable causes the slave SQL thread to read
checksums from the relay log.
MySQL now supports logging of master connection
information and of slave relay log information to tables
as well as files. Use of these tables can be controlled
independently, by the
--master-info-repository
and
--relay-log-info-repository
server options. Setting
--master-info-repository
to
TABLE
causes connection information to
be logged in the slave_master_info
table; setting
--relay-log-info-repository
to TABLE
causes relay log information
to be logged to the
slave_relay_log_info
table. Both of
these tables are created automatically, in the
mysql
system database.
In order for replication to be crash-safe, the
slave_master_info
and
slave_relay_log_info
tables must each
use a transactional storage engine such as
InnoDB
. By default, both of
these tables use MyISAM
;
this means that, prior to starting replication, you must
change both of these tables to use a transactional
storage engine if you wish for replication to be
crash-safe. You can do this by means of the appropriate
ALTER TABLE
... ENGINE=...
statements. You should
not attempt to change the storage
engine used by either of these tables while replication
is actually running.
mysqlbinlog now has the capability to
back up a binary log in its original binary format. When
invoked with the
--read-from-remote-server
and --raw
options,
mysqlbinlog connects to a server,
requests the log files, and writes output files in the
same format as the originals. See
Section 4.6.8.3, “Using mysqlbinlog to Back Up Binary Log Files”.
MySQL now supports delayed replication such that a slave
server deliberately lags behind the master by at least a
specified amount of time. The default delay is 0 seconds.
Use the new MASTER_DELAY
option for
CHANGE MASTER TO
to set the
delay.
Delayed replication can be used for purposes such as protecting against user mistakes on the master (a DBA can roll back a delayed slave to the time just before the disaster) or testing how the system behaves when there is a lag. See Section 16.3.9, “Delayed Replication”.
A replication slave having multiple network interfaces can
now be caused to use only one of these (to the exclusion
of the others) by using the MASTER_BIND
option when issuing a CHANGE MASTER
TO
statement.
The log_bin_basename
system variable has been added. This variable contains the
complete filename and path to the binary log file. Whereas
the log_bin
system
variable shows only whether or not binary logging is
enabled, log_bin_basename
reflects the name set with the
--log-bin
server option.
Similarly, the
relay_log_basename
system
variable shows the filename and complete path to the relay
log file.
MySQL Replication now supports parallel execution of
transactions with multi-threading on the slave. When
parallel execution is enabled, the slave SQL thread acts
as the coordinator for a number of slave worker threads as
determined by the value of the
slave_parallel_workers
server system variable. The current implementation of
multi-threading on the slave assumes that data and updates
are partitioned on a per-database basis, and that updates
within a given database occur in the same relative order
as they do on the master. However, it is not necessary to
coordinate transactions between different databases.
Transactions can then also be distributed per database,
which means that a worker thread on the slave slave can
process successive transactions on a given database
without waiting for updates to other databases to
complete.
Since transactions on different databases can occur in a
different order on the slave than on the master, simply
checking for the most recently executed transaction is not
a guarantee that all previous transactions on the master
have been executed on the slave. This has implications for
logging and recovery when using a multi-threaded slave.
For information about how to interpret binary logging
information when using multi-threading on the slave, see
Section 13.7.5.35, “SHOW SLAVE STATUS
Syntax”.
Optimizer enhancements. These query optimizer improvements were implemented:
The optimizer now more efficiently handles queries (and subqueries) of the following form:
SELECT ... FROMsingle_table
... ORDER BYnon_index_column
[DESC] LIMIT [M
,]N
;
That type of query is common in web applications that display only a few rows from a larger result set. For example:
SELECT col1, ... FROM t1 ... ORDER BY name LIMIT 10; SELECT col1, ... FROM t1 ... ORDER BY RAND() LIMIT 15;
The sort buffer has a size of
sort_buffer_size
. If the
sort elements for N
rows are
small enough to fit in the sort buffer
(M
+N
rows if M
was specified), the
server can avoid using a merge file and perform the sort
entirely in memory. For details, see
Section 8.2.1.3, “Optimizing LIMIT
Queries”.
The optimizer implements Disk-Sweep Multi-Range Read. Reading rows using a range scan on a secondary index can result in many random disk accesses to the base table when the table is large and not stored in the storage engine's cache. With the Disk-Sweep Multi-Range Read (MRR) optimization, MySQL tries to reduce the number of random disk access for range scans by first scanning the index only and collecting the keys for the relevant rows. Then the keys are sorted and finally the rows are retrieved from the base table using the order of the primary key. The motivation for Disk-sweep MRR is to reduce the number of random disk accesses and instead achieve a more sequential scan of the base table data. For more information, see Section 8.13.10, “Multi-Range Read Optimization”.
The optimizer implements Index Condition Pushdown (ICP),
an optimization for the case where MySQL retrieves rows
from a table using an index. Without ICP, the storage
engine traverses the index to locate rows in the base
table and returns them to the MySQL server which evaluates
the WHERE
condition for the rows. With
ICP enabled, and if parts of the WHERE
condition can be evaluated by using only fields from the
index, the MySQL server pushes this part of the
WHERE
condition down to the storage
engine. The storage engine then evaluates the pushed index
condition by using the index entry and only if this is
satisfied is base row be read. ICP can reduce the number
of accesses the storage engine has to do against the base
table and the number of accesses the MySQL server has to
do against the storage engine. For more information, see
Section 8.13.4, “Index Condition Pushdown Optimization”.
The EXPLAIN
statement now
provides execution plan information for
DELETE
,
INSERT
,
REPLACE
, and
UPDATE
statements.
Previously, EXPLAIN
provided information only for
SELECT
statements. In
addition, the EXPLAIN
statement now can produce output in JSON format. See
Section 13.8.2, “EXPLAIN
Syntax”.
The optimizer more efficiently handles subqueries in the
FROM
clause (that is, derived tables).
Materialization of subqueries in the
FROM
clause is postponed until their
contents are needed during query execution, which improves
performance. In addition, during query execution, the
optimizer may add an index to a derived table to speed up
row retrieval from it. For more information, see
Section 8.13.15.3, “Optimizing Subqueries in the FROM
Clause (Derived
Tables)”.
The optimizer uses semi-join and materialization strategies to optimize subquery execution. See Section 8.13.15.1, “Optimizing Subqueries with Semi-Join Transformations”, and Section 8.13.15.2, “Optimizing Subqueries with Subquery Materialization”.
A Batched Key Access (BKA) join algorithm is now available that uses both index access to the joined table and a join buffer. The BKA algorithm supports inner join, outer join, and semi-join operations, including nested outer joins and nested semi-joins. Benefits of BKA include improved join performance due to more efficient table scanning. For more information, see Section 8.13.11, “Block Nested-Loop and Batched Key Access Joins”.
The optimizer now has a tracing capability, primarily for
use by developers. The interface is provided by a set of
optimizer_trace_
system variables and the
xxx
INFORMATION_SCHEMA.OPTIMIZER_TRACE
table. For details, see
MySQL
Internals: Tracing the Optimizer.
Condition handling.
MySQL now supports the GET
DIAGNOSTICS
statement. GET
DIAGNOSTICS
provides applications a standardized
way to obtain information from the diagnostics area, such as
whether the previous SQL statement produced an exception and
what it was. For more information, see
Section 13.6.7.3, “GET DIAGNOSTICS
Syntax”.
In addition, several deficiencies in condition handler processing rules were corrected so that MySQL behavior is more like standard SQL:
Block scope is used in determining which handler to select. Previously, a stored program was treated as having a single scope for handler selection.
Condition precedence is more accurately resolved.
Diagnostics area clearing has changed. Bug #55843 caused
handled conditions to be cleared from the diagnostics area
before activating the handler. This made condition
information unavailable within the handler. Now condition
information is available to the handler, which can inspect
it with the GET DIAGNOSTICS
statement. The condition information is cleared when the
handler exits, if it has not already been cleared during
handler execution.
Previously, handlers were activated as soon as a condition occurred. Now they are not activated until the statement in which the condition occurred finishes execution, at which point the most appropriate handler is chosen. This can make a difference for statements that raise multiple conditions, if a condition raised later during statement execution has higher precedence than an earlier condition and there are handlers in the same scope for both conditions. Previously, the handler for the first condition raised would be chosen, even if it had a lower precedence than other handlers. Now the handler for the condition with highest precedence is chosen, even if it is not the first condition raised by the statement.
For more information, see Section 13.6.7.6, “Scope Rules for Handlers”.
Data types. These data type changes have been implemented:
MySQL now permits fractional seconds for
TIME
, DATETIME
, and
TIMESTAMP
values, with up to
microseconds (6 digits) precision. See
Section 11.3.6, “Fractional Seconds in Time Values”.
Previously, at most one
TIMESTAMP
column per table
could be automatically initialized or updated to the
current date and time. This restriction has been lifted.
Any TIMESTAMP
column
definition can have any combination of DEFAULT
CURRENT_TIMESTAMP
and ON UPDATE
CURRENT_TIMESTAMP
clauses. In addition, these
clauses now can be used with
DATETIME
column
definitions. For more information, see
Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP
and
DATETIME
”.
In MySQL, the TIMESTAMP
data type differs in nonstandard ways from other data
types in terms of default value and assignment of
automatic initialization and update attributes. These
behaviors remain the default but now are deprecated, and
can be turned off by enableing the
explicit_defaults_for_timestamp
system variable at server startup. See
Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP
and
DATETIME
”, and
Section 5.1.4, “Server System Variables”.
The YEAR(2)
data type is
now deprecated. YEAR(2)
columns in
existing tables are treated as before, but
YEAR(2)
in new or altered tables are
converted to YEAR(4)
. For more
information, see Section 11.3.4, “YEAR(2)
Limitations and Migrating to
YEAR(4)
”.
Host cache. MySQL now provides more information about the causes of errors that occur when clients connect to the server, as well as improved access to the host cache, which contains client IP address and host name information and is used to avoid DNS lookups. These changes have been implemented:
New
Connection_errors_
status variables provide information about connection
errors that do not apply to specific client IP addresses.
xxx
Counters have been added to the host cache to track errors
that do apply to specific IP addresses, and a new
host_cache
Performance Schema
table exposes the contents of the host cache so that it
can be examined using
SELECT
statements. Access
to host cache contents makes it possible to answer
questions such as how many hosts are cached, what kinds of
connection errors are occurring for which hosts, or how
close host error counts are to reaching the
max_connect_errors
system
variable limit.
The host cache size now is configurable using the
host_cache_size
system
variable.
For more information, see Section 8.11.5.2, “DNS Lookup Optimization and the Host Cache”, and
Section 20.9.9.1, “The host_cache
Table”.
OpenGIS.
The OpenGIS specification defines functions that test the
relationship between two geometry values. MySQL originally
implemented these functions such that they used object
bounding rectangles and returned the same result as the
corresponding MBR-based functions. Corresponding versions
are now available that use precise object shapes. These
versions are named with an ST_
prefix.
For example, Contains()
uses
object bounding rectangles, whereas
ST_Contains()
uses object
shapes. For more information, see
Section 12.17.5.4.2, “Functions That Test Spatial Relationships Between Geometries”.
The following constructs are obsolete and have been removed in MySQL 5.6. Where alternatives are shown, applications should be updated to use them.
The --log
server option and the
log
system variable. Instead, use the
--general_log
option to enable
the general query log and the
--general_log_file=
option to set the general query log file name.
file_name
The --log-slow-queries
server option and the
log_slow_queries
system variable. Instead,
use the --slow_query_log
option
to enable the slow query log and the
--slow_query_log_file=
option to set the slow query log file name.
file_name
The --one-thread
server option. Use
--thread_handling=no-threads
instead.
The --safe-mode
server option.
The --skip-thread-priority
server option.
The --table-cache
server option. Use the
table_open_cache
system
variable instead.
The --init-rpl-role
and
--rpl-recovery-rank
options, the
rpl_recovery_rank
system variable, and the
Rpl_status
status variable.
The engine_condition_pushdown
system
variable. Use the engine_condition_pushdown
flag of the optimizer_switch
variable instead.
The have_csv
,
have_innodb
,
have_ndbcluster
, and
have_partitioning
system variables. Use
SHOW ENGINES
instead.
The sql_big_tables
system variable. Use
big_tables
instead.
The sql_low_priority_updates
system
variable. Use
low_priority_updates
instead.
The sql_max_join_size
system variable. Use
max_join_size
instead.
The max_long_data_size
system variable. Use
max_allowed_packet
instead.
The FLUSH MASTER
and FLUSH
SLAVE
statements. Use the RESET
MASTER
and RESET
SLAVE
statements instead.
The SLAVE START
and SLAVE
STOP
statements. Use The START
SLAVE
and STOP SLAVE
statements.
The SHOW AUTHORS
and SHOW
CONTRIBUTORS
statements.
The OPTION
and ONE_SHOT
modifiers for the SET
statement.
It is explicitly disallowed to assign the value
DEFAULT
to stored procedure or function
parameters or stored program local variables (for example with
a SET
statement). It remains permissible to assign
var_name
=
DEFAULTDEFAULT
to system variables, as before.
This section describes the general MySQL development history, provides an overview about features that have been implemented in previous series and that are new in MySQL 5.6, the release series covered in this manual. The maturity level this release series is rc. Information about maturity levels can be found in Section 2.1.2.1, “Choosing Which Version of MySQL to Install”.
Before upgrading from one release series to the next, please see the notes in Section 2.11.1, “Upgrading MySQL”.
The most requested features and the versions in which they were implemented are summarized in the following table.
Feature | MySQL Series |
---|---|
Unions | 4.0 |
Subqueries | 4.1 |
R-trees | 4.1 (for the MyISAM storage engine) |
Stored procedures and functions | 5.0 |
Views | 5.0 |
Cursors | 5.0 |
XA transactions | 5.0 |
Triggers | 5.0 and 5.1 |
Event scheduler | 5.1 |
Partitioning | 5.1 |
Pluggable storage engine API | 5.1 |
Plugin API | 5.1 |
Row-based replication | 5.1 |
Server log tables | 5.1 |
Scalability and performance improvements | 5.1 (with InnoDB Plugin) |
DTrace support | 5.5 |
Semisynchronous replication | 5.5 |
SIGNAL/RESIGNAL support in stored routines | 5.5 |
Performance Schema | 5.5 |
Supplementary Unicode characters | 5.5 |
This section lists sources of additional information that you may find helpful, such as the MySQL mailing lists and user forums, and Internet Relay Chat.
This section introduces the MySQL mailing lists and provides guidelines as to how the lists should be used. When you subscribe to a mailing list, you receive all postings to the list as email messages. You can also send your own questions and answers to the list.
To subscribe to or unsubscribe from any of the mailing lists described in this section, visit http://lists.mysql.com/. For most of them, you can select the regular version of the list where you get individual messages, or a digest version where you get one large message per day.
Please do not send messages about subscribing or unsubscribing to any of the mailing lists, because such messages are distributed automatically to thousands of other users.
Your local site may have many subscribers to a MySQL mailing list.
If so, the site may have a local mailing list, so that messages
sent from lists.mysql.com
to your site are
propagated to the local list. In such cases, please contact your
system administrator to be added to or dropped from the local
MySQL list.
To have traffic for a mailing list go to a separate mailbox in
your mail program, set up a filter based on the message headers.
You can use either the List-ID:
or
Delivered-To:
headers to identify list
messages.
The MySQL mailing lists are as follows:
announce
The list for announcements of new versions of MySQL and related programs. This is a low-volume list to which all MySQL users should subscribe.
mysql
The main list for general MySQL discussion. Please note that some topics are better discussed on the more-specialized lists. If you post to the wrong list, you may not get an answer.
bugs
The list for people who want to stay informed about issues reported since the last release of MySQL or who want to be actively involved in the process of bug hunting and fixing. See Section 1.7, “How to Report Bugs or Problems”.
internals
The list for people who work on the MySQL code. This is also the forum for discussions on MySQL development and for posting patches.
mysqldoc
The list for people who work on the MySQL documentation.
benchmarks
The list for anyone interested in performance issues. Discussions concentrate on database performance (not limited to MySQL), but also include broader categories such as performance of the kernel, file system, disk system, and so on.
packagers
The list for discussions on packaging and distributing MySQL. This is the forum used by distribution maintainers to exchange ideas on packaging MySQL and on ensuring that MySQL looks and feels as similar as possible on all supported platforms and operating systems.
java
The list for discussions about the MySQL server and Java. It is mostly used to discuss JDBC drivers such as MySQL Connector/J.
win32
The list for all topics concerning the MySQL software on Microsoft operating systems, such as Windows 9x, Me, NT, 2000, XP, and 2003.
myodbc
The list for all topics concerning connecting to the MySQL server with ODBC.
gui-tools
The list for all topics concerning MySQL graphical user interface tools such as MySQL Workbench.
cluster
The list for discussion of MySQL Cluster.
dotnet
The list for discussion of the MySQL server and the .NET platform. It is mostly related to MySQL Connector/Net.
plusplus
The list for all topics concerning programming with the C++ API for MySQL.
perl
The list for all topics concerning Perl support for MySQL with
DBD::mysql
.
If you're unable to get an answer to your questions from a MySQL mailing list or forum, one option is to purchase support from Oracle. This puts you in direct contact with MySQL developers.
The following MySQL mailing lists are in languages other than English. These lists are not operated by Oracle.
A French mailing list.
A Korean mailing list. To subscribe, email subscribe
mysql [email protected]
to this list.
A German mailing list. To subscribe, email subscribe
mysql-de [email protected]
to this list. You can
find information about this mailing list at
http://www.4t2.com/mysql/.
A Portuguese mailing list. To subscribe, email
subscribe mysql-br [email protected]
to
this list.
A Spanish mailing list. To subscribe, email subscribe
mysql [email protected]
to this list.
Please do not post mail messages from your browser with HTML mode turned on. Many users do not read mail with a browser.
When you answer a question sent to a mailing list, if you consider your answer to have broad interest, you may want to post it to the list instead of replying directly to the individual who asked. Try to make your answer general enough that people other than the original poster may benefit from it. When you post to the list, please make sure that your answer is not a duplication of a previous answer.
Try to summarize the essential part of the question in your reply. Do not feel obliged to quote the entire original message.
When answers are sent to you individually and not to the mailing list, it is considered good etiquette to summarize the answers and send the summary to the mailing list so that others may have the benefit of responses you received that helped you solve your problem.
The forums at http://forums.mysql.com are an important community resource. Many forums are available, grouped into these general categories:
Migration
MySQL Usage
MySQL Connectors
Programming Languages
Tools
3rd-Party Applications
Storage Engines
MySQL Technology
SQL Standards
Business
In addition to the various MySQL mailing lists and forums, you can find experienced community people on Internet Relay Chat (IRC). These are the best networks/channels currently known to us:
freenode (see http://www.freenode.net/ for servers)
#mysql
is primarily for MySQL questions,
but other database and general SQL questions are welcome.
Questions about PHP, Perl, or C in combination with MySQL are
also common.
If you are looking for IRC client software to connect to an IRC
network, take a look at xChat
(http://www.xchat.org/). X-Chat (GPL licensed) is
available for Unix as well as for Windows platforms (a free
Windows build of X-Chat is available at
http://www.silverex.org/download/).
Oracle offers technical support in the form of MySQL Enterprise. For organizations that rely on the MySQL DBMS for business-critical production applications, MySQL Enterprise is a commercial subscription offering which includes:
MySQL Enterprise Server
MySQL Enterprise Monitor
Monthly Rapid Updates and Quarterly Service Packs
MySQL Knowledge Base
24x7 Technical and Consultative Support
MySQL Enterprise is available in multiple tiers, giving you the flexibility to choose the level of service that best matches your needs. For more information, see MySQL Enterprise.
Before posting a bug report about a problem, please try to verify that it is a bug and that it has not been reported already:
Start by searching the MySQL online manual at http://dev.mysql.com/doc/. We try to keep the manual up to date by updating it frequently with solutions to newly found problems. The change history (http://dev.mysql.com/doc/mysql/en/news.html) can be particularly useful since it is quite possible that a newer version contains a solution to your problem.
If you get a parse error for an SQL statement, please check your syntax closely. If you cannot find something wrong with it, it is extremely likely that your current version of MySQL Server doesn't support the syntax you are using. If you are using the current version and the manual doesn't cover the syntax that you are using, MySQL Server doesn't support your statement.
If the manual covers the syntax you are using, but you have an older version of MySQL Server, you should check the MySQL change history to see when the syntax was implemented. In this case, you have the option of upgrading to a newer version of MySQL Server.
For solutions to some common problems, see Section C.5, “Problems and Common Errors”.
Search the bugs database at http://bugs.mysql.com/ to see whether the bug has been reported and fixed.
Search the MySQL mailing list archives at http://lists.mysql.com/. See Section 1.6.1, “MySQL Mailing Lists”.
You can also use http://www.mysql.com/search/ to search all the Web pages (including the manual) that are located at the MySQL Web site.
If you cannot find an answer in the manual, the bugs database, or the mailing list archives, check with your local MySQL expert. If you still cannot find an answer to your question, please use the following guidelines for reporting the bug.
The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs database. This database is public and can be browsed and searched by anyone. If you log in to the system, you can enter new reports.
Bugs posted in the bugs database at http://bugs.mysql.com/ that are corrected for a given release are noted in the change history.
If you have found a sensitive security bug in MySQL, you can send
email to <[email protected]>
.
To discuss problems with other users, you can use one of the MySQL mailing lists. Section 1.6.1, “MySQL Mailing Lists”.
Writing a good bug report takes patience, but doing it right the first time saves time both for us and for yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix the bug in the next release. This section helps you write your report correctly so that you do not waste your time doing things that may not help us much or at all. Please read this section carefully and make sure that all the information described here is included in your report.
Preferably, you should test the problem using the latest production
or development version of MySQL Server before posting. Anyone should
be able to repeat the bug by just using mysql test <
script_file
on your test case or by running the shell or
Perl script that you include in the bug report. Any bug that we are
able to repeat has a high chance of being fixed in the next MySQL
release.
It is most helpful when a good description of the problem is included in the bug report. That is, give a good example of everything you did that led to the problem and describe, in exact detail, the problem itself. The best reports are those that include a full example showing how to reproduce the bug or problem. See MySQL Internals: Porting to Other Systems.
Remember that it is possible for us to respond to a report containing too much information, but not to one containing too little. People often omit facts because they think they know the cause of a problem and assume that some details do not matter. A good principle to follow is that if you are in doubt about stating something, state it. It is faster and less troublesome to write a couple more lines in your report than to wait longer for the answer if we must ask you to provide information that was missing from the initial report.
The most common errors made in bug reports are (a) not including the version number of the MySQL distribution that you use, and (b) not fully describing the platform on which the MySQL server is installed (including the platform type and version number). These are highly relevant pieces of information, and in 99 cases out of 100, the bug report is useless without them. Very often we get questions like, “Why doesn't this work for me?” Then we find that the feature requested wasn't implemented in that MySQL version, or that a bug described in a report has been fixed in newer MySQL versions. Errors often are platform-dependent. In such cases, it is next to impossible for us to fix anything without knowing the operating system and the version number of the platform.
If you compiled MySQL from source, remember also to provide information about your compiler if it is related to the problem. Often people find bugs in compilers and think the problem is MySQL-related. Most compilers are under development all the time and become better version by version. To determine whether your problem depends on your compiler, we need to know what compiler you used. Note that every compiling problem should be regarded as a bug and reported accordingly.
If a program produces an error message, it is very important to include the message in your report. If we try to search for something from the archives, it is better that the error message reported exactly matches the one that the program produces. (Even the lettercase should be observed.) It is best to copy and paste the entire error message into your report. You should never try to reproduce the message from memory.
If you have a problem with Connector/ODBC (MyODBC), please try to generate a trace file and send it with your report. See Section 21.1.8.2, “How to Report Connector/ODBC Problems or Bugs”.
If your report includes long query output lines from test cases that
you run with the mysql command-line tool, you can
make the output more readable by using the
--vertical
option or the
\G
statement terminator. The
EXPLAIN SELECT
example later in this section demonstrates the use of
\G
.
Please include the following information in your report:
The version number of the MySQL distribution you are using (for
example, MySQL 5.0.19). You can find out which version you are
running by executing mysqladmin version. The
mysqladmin program can be found in the
bin
directory under your MySQL installation
directory.
The manufacturer and model of the machine on which you experience the problem.
The operating system name and version. If you work with Windows,
you can usually get the name and version number by
double-clicking your My Computer icon and pulling down the
“Help/About Windows” menu. For most Unix-like
operating systems, you can get this information by executing the
command uname -a
.
Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include these values.
If you are using a source distribution of the MySQL software, include the name and version number of the compiler that you used. If you have a binary distribution, include the distribution name.
If the problem occurs during compilation, include the exact error messages and also a few lines of context around the offending code in the file where the error occurs.
If mysqld died, you should also report the statement that crashed mysqld. You can usually get this information by running mysqld with query logging enabled, and then looking in the log after mysqld crashes. See MySQL Internals: Porting to Other Systems.
If a database table is related to the problem, include the
output from the SHOW CREATE TABLE
statement in the bug report. This is a very easy way to get the
definition of any table in a database. The information helps us
create a situation matching the one that you have experienced.
db_name
.tbl_name
The SQL mode in effect when the problem occurred can be
significant, so please report the value of the
sql_mode
system variable. For
stored procedure, stored function, and trigger objects, the
relevant sql_mode
value is the
one in effect when the object was created. For a stored
procedure or function, the SHOW CREATE
PROCEDURE
or SHOW CREATE
FUNCTION
statement shows the relevant SQL mode, or you
can query INFORMATION_SCHEMA
for the
information:
SELECT ROUTINE_SCHEMA, ROUTINE_NAME, SQL_MODE FROM INFORMATION_SCHEMA.ROUTINES;
For triggers, you can use this statement:
SELECT EVENT_OBJECT_SCHEMA, EVENT_OBJECT_TABLE, TRIGGER_NAME, SQL_MODE FROM INFORMATION_SCHEMA.TRIGGERS;
For performance-related bugs or problems with
SELECT
statements, you should
always include the output of EXPLAIN SELECT
...
, and at least the number of rows that the
SELECT
statement produces. You
should also include the output from SHOW CREATE TABLE
for each table
that is involved. The more information you provide about your
situation, the more likely it is that someone can help you.
tbl_name
The following is an example of a very good bug report. The
statements are run using the mysql
command-line tool. Note the use of the \G
statement terminator for statements that would otherwise provide
very long output lines that are difficult to read.
mysql>SHOW VARIABLES;
mysql>SHOW COLUMNS FROM ...\G
<output from SHOW COLUMNS>
mysql>EXPLAIN SELECT ...\G
<output from EXPLAIN>
mysql>FLUSH STATUS;
mysql>SELECT ...;
<A short version of the output from SELECT, including the time taken to run the query>
mysql>SHOW STATUS;
<output from SHOW STATUS>
If a bug or problem occurs while running mysqld, try to provide an input script that reproduces the anomaly. This script should include any necessary source files. The more closely the script can reproduce your situation, the better. If you can make a reproducible test case, you should upload it to be attached to the bug report.
If you cannot provide a script, you should at least include the output from mysqladmin variables extended-status processlist in your report to provide some information on how your system is performing.
If you cannot produce a test case with only a few rows, or if
the test table is too big to be included in the bug report (more
than 10 rows), you should dump your tables using
mysqldump and create a
README
file that describes your problem.
Create a compressed archive of your files using
tar and gzip or
zip, and use FTP to transfer the archive to
ftp://ftp.mysql.com/pub/mysql/upload/. Then enter the problem into
our bugs database at http://bugs.mysql.com/.
If you believe that the MySQL server produces a strange result from a statement, include not only the result, but also your opinion of what the result should be, and an explanation describing the basis for your opinion.
When you provide an example of the problem, it is better to use the table names, variable names, and so forth that exist in your actual situation than to come up with new names. The problem could be related to the name of a table or variable. These cases are rare, perhaps, but it is better to be safe than sorry. After all, it should be easier for you to provide an example that uses your actual situation, and it is by all means better for us. If you have data that you do not want to be visible to others in the bug report, you can use FTP to transfer it to ftp://ftp.mysql.com/pub/mysql/upload/. If the information is really top secret and you do not want to show it even to us, go ahead and provide an example using other names, but please regard this as the last choice.
Include all the options given to the relevant programs, if
possible. For example, indicate the options that you use when
you start the mysqld server, as well as the
options that you use to run any MySQL client programs. The
options to programs such as mysqld and
mysql, and to the
configure script, are often key to resolving
problems and are very relevant. It is never a bad idea to
include them. If your problem involves a program written in a
language such as Perl or PHP, please include the language
processor's version number, as well as the version for any
modules that the program uses. For example, if you have a Perl
script that uses the DBI
and
DBD::mysql
modules, include the version
numbers for Perl, DBI
, and
DBD::mysql
.
If your question is related to the privilege system, please
include the output of mysqlaccess, the output
of mysqladmin reload, and all the error
messages you get when trying to connect. When you test your
privileges, you should first run mysqlaccess.
After this, execute mysqladmin reload version
and try to connect with the program that gives you trouble.
mysqlaccess can be found in the
bin
directory under your MySQL installation
directory.
If you have a patch for a bug, do include it. But do not assume that the patch is all we need, or that we can use it, if you do not provide some necessary information such as test cases showing the bug that your patch fixes. We might find problems with your patch or we might not understand it at all. If so, we cannot use it.
If we cannot verify the exact purpose of the patch, we will not use it. Test cases help us here. Show that the patch handles all the situations that may occur. If we find a borderline case (even a rare one) where the patch will not work, it may be useless.
Guesses about what the bug is, why it occurs, or what it depends on are usually wrong. Even the MySQL team cannot guess such things without first using a debugger to determine the real cause of a bug.
Indicate in your bug report that you have checked the reference manual and mail archive so that others know you have tried to solve the problem yourself.
If your data appears corrupt or you get errors when you access a
particular table, first check your tables with
CHECK TABLE
. If that statement
reports any errors:
The InnoDB
crash recovery mechanism
handles cleanup when the server is restarted after being
killed, so in typical operation there is no need to
“repair” tables. If you encounter an error with
InnoDB
tables, restart the server and see
whether the problem persists, or whether the error affected
only cached data in memory. If data is corrupted on disk,
consider restarting with the
innodb_force_recovery
option enabled so that you can dump the affected tables.
For non-transactional tables, try to repair them with
REPAIR TABLE
or with
myisamchk. See
Chapter 5, MySQL Server Administration.
If you are running Windows, please verify the value of
lower_case_table_names
using
the SHOW VARIABLES LIKE
'lower_case_table_names'
statement. This variable
affects how the server handles lettercase of database and table
names. Its effect for a given value should be as described in
Section 9.2.2, “Identifier Case Sensitivity”.
If you often get corrupted tables, you should try to find out
when and why this happens. In this case, the error log in the
MySQL data directory may contain some information about what
happened. (This is the file with the .err
suffix in the name.) See Section 5.2.2, “The Error Log”. Please
include any relevant information from this file in your bug
report. Normally mysqld should
never crash a table if nothing killed it in
the middle of an update. If you can find the cause of
mysqld dying, it is much easier for us to
provide you with a fix for the problem. See
Section C.5.1, “How to Determine What Is Causing a Problem”.
If possible, download and install the most recent version of MySQL Server and check whether it solves your problem. All versions of the MySQL software thoroughly tested and should work without problems. We believe in making everything as backward-compatible as possible, and you should be able to switch MySQL versions without difficulty. See Section 2.1.2, “Choosing Which MySQL Distribution to Install”.
This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server has many extensions to the SQL standard, and here you can find out what they are and how to use them. You can also find information about functionality missing from MySQL Server, and how to work around some of the differences.
The SQL standard has been evolving since 1986 and several versions exist. In this manual, “SQL-92” refers to the standard released in 1992, “SQL:1999” refers to the standard released in 1999, “SQL:2003” refers to the standard released in 2003, and “SQL:2008” refers to the most recent version of the standard, released in 2008. We use the phrase “the SQL standard” or “standard SQL” to mean the current version of the SQL Standard at any time.
One of our main goals with the product is to continue to work
toward compliance with the SQL standard, but without sacrificing
speed or reliability. We are not afraid to add extensions to SQL
or support for non-SQL features if this greatly increases the
usability of MySQL Server for a large segment of our user base.
The HANDLER
interface is an example
of this strategy. See Section 13.2.4, “HANDLER
Syntax”.
We continue to support transactional and nontransactional databases to satisfy both mission-critical 24/7 usage and heavy Web or logging usage.
MySQL Server was originally designed to work with medium-sized databases (10-100 million rows, or about 100MB per table) on small computer systems. Today MySQL Server handles terabyte-sized databases, but the code can also be compiled in a reduced version suitable for hand-held and embedded devices. The compact design of the MySQL server makes development in both directions possible without any conflicts in the source tree.
Currently, we are not targeting real-time support, although MySQL replication capabilities offer significant functionality.
MySQL supports high-availability database clustering using the
NDBCLUSTER
storage engine. See
MySQL Cluster NDB 7.2.
We are implementing XML functionality beginning in MySQL 5.1, which supports most of the W3C XPath standard. We plan to increase support for XML as part of future MySQL development. See Section 12.11, “XML Functions”.
Our aim is to support the full ANSI/ISO SQL standard, but without making concessions to speed and quality of the code.
ODBC levels 0 to 3.51.
The MySQL server can operate in different SQL modes, and can apply these modes differentially for different clients. This capability enables each application to tailor the server's operating mode to its own requirements.
SQL modes control aspects of server operation such as what SQL syntax MySQL should support and what kind of data validation checks it should perform. This makes it easier to use MySQL in different environments and to use MySQL together with other database servers.
You can set the default SQL mode by starting
mysqld with the
--sql-mode="
option. You can also change the mode at runtime by setting the
mode_value
"sql_mode
system variable with a
SET
[GLOBAL|SESSION]
sql_mode='
statement.
mode_value
'
For more information on setting the SQL mode, see Section 5.1.7, “Server SQL Modes”.
You can tell mysqld to run in ANSI mode with
the --ansi
startup option.
Running the server in ANSI mode is the same as starting it with
the following options:
--transaction-isolation=SERIALIZABLE --sql-mode=ANSI
You can achieve the same effect at runtime by executing these two statements:
SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE; SET GLOBAL sql_mode = 'ANSI';
You can see that setting the
sql_mode
system variable to
'ANSI'
enables all SQL mode options that are
relevant for ANSI mode as follows:
mysql>SET GLOBAL sql_mode='ANSI';
mysql>SELECT @@global.sql_mode;
-> 'REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ANSI'
Running the server in ANSI mode with
--ansi
is not quite the same as
setting the SQL mode to 'ANSI'
. The
--ansi
option affects the SQL
mode and also sets the transaction isolation level. Setting the
SQL mode to 'ANSI'
has no effect on the
isolation level.
See Section 5.1.3, “Server Command Options”, and Section 1.8.2, “Selecting SQL Modes”.
MySQL Server supports some extensions that you probably won't find in other SQL DBMSs. Be warned that if you use them, your code won't be portable to other SQL servers. In some cases, you can write code that includes MySQL extensions, but is still portable, by using comments of the following form:
/*! MySQL-specific code
*/
In this case, MySQL Server parses and executes the code within
the comment as it would any other SQL statement, but other SQL
servers will ignore the extensions. For example, MySQL Server
recognizes the STRAIGHT_JOIN
keyword in the
following statement, but other servers will not:
SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...
If you add a version number after the
“!
” character, the syntax within
the comment is executed only if the MySQL version is greater
than or equal to the specified version number. The
TEMPORARY
keyword in the following comment is
executed only by servers from MySQL 3.23.02 or higher:
CREATE /*!32302 TEMPORARY */ TABLE t (a INT);
The following descriptions list MySQL extensions, organized by category.
Organization of data on disk
MySQL Server maps each database to a directory under the MySQL data directory, and maps tables within a database to file names in the database directory. This has a few implications:
Database and table names are case sensitive in MySQL Server on operating systems that have case-sensitive file names (such as most Unix systems). See Section 9.2.2, “Identifier Case Sensitivity”.
You can use standard system commands to back up, rename,
move, delete, and copy tables that are managed by the
MyISAM
storage engine. For example,
it is possible to rename a MyISAM
table by renaming the .MYD
,
.MYI
, and .frm
files to which the table corresponds. (Nevertheless, it
is preferable to use RENAME
TABLE
or ALTER TABLE ...
RENAME
and let the server rename the files.)
General language syntax
By default, strings can be enclosed by either
“"
” or
“'
”, not just by
“'
”. (If the
ANSI_QUOTES
SQL mode
is enabled, strings can be enclosed only by
“'
” and the server
interprets strings enclosed by
“"
” as identifiers.)
“\
” is the escape
character in strings.
In SQL statements, you can access tables from different
databases with the
db_name.tbl_name
syntax. Some
SQL servers provide the same functionality but call this
User space
. MySQL Server doesn't
support tablespaces such as used in statements like
this: CREATE TABLE ralph.my_table ... IN
my_tablespace
.
SQL statement syntax
The ANALYZE TABLE
,
CHECK TABLE
,
OPTIMIZE TABLE
, and
REPAIR TABLE
statements.
The CREATE DATABASE
,
DROP DATABASE
, and
ALTER DATABASE
statements. See Section 13.1.8, “CREATE DATABASE
Syntax”,
Section 13.1.17, “DROP DATABASE
Syntax”, and
Section 13.1.1, “ALTER DATABASE
Syntax”.
The DO
statement.
EXPLAIN
SELECT
to obtain a description of how tables
are processed by the query optimizer.
The
SET
statement. See Section 13.7.4, “SET
Syntax”.
The SHOW
statement. See
Section 13.7.5, “SHOW
Syntax”. The information produced by many
of the MySQL-specific
SHOW
statements can be
obtained in more standard fashion by using
SELECT
to query
INFORMATION_SCHEMA
. See
Chapter 19, INFORMATION_SCHEMA
Tables.
Use of LOAD
DATA INFILE
. In many cases, this syntax is
compatible with Oracle's
LOAD DATA
INFILE
. See Section 13.2.6, “LOAD DATA INFILE
Syntax”.
Use of RENAME TABLE
. See
Section 13.1.26, “RENAME TABLE
Syntax”.
Use of REPLACE
instead of
DELETE
plus
INSERT
. See
Section 13.2.8, “REPLACE
Syntax”.
Use of CHANGE
,
col_name
DROP
, or
col_name
DROP INDEX
,
IGNORE
or RENAME
in ALTER TABLE
statements. Use of multiple ADD
,
ALTER
, DROP
, or
CHANGE
clauses in an
ALTER TABLE
statement.
See Section 13.1.6, “ALTER TABLE
Syntax”.
Use of index names, indexes on a prefix of a column, and
use of INDEX
or
KEY
in CREATE
TABLE
statements. See
Section 13.1.14, “CREATE TABLE
Syntax”.
Use of TEMPORARY
or IF NOT
EXISTS
with CREATE
TABLE
.
Use of IF EXISTS
with
DROP TABLE
and
DROP DATABASE
.
The capability of dropping multiple tables with a single
DROP TABLE
statement.
The ORDER BY
and
LIMIT
clauses of the
UPDATE
and
DELETE
statements.
INSERT INTO
syntax.
tbl_name
SET col_name
= ...
The LOW_PRIORITY
clause of the
INSERT
,
REPLACE
,
DELETE
, and
UPDATE
statements.
Use of INTO OUTFILE
or INTO
DUMPFILE
in
SELECT
statements. See
Section 13.2.9, “SELECT
Syntax”.
Options such as STRAIGHT_JOIN
or
SQL_SMALL_RESULT
in
SELECT
statements.
You don't need to name all selected columns in the
GROUP BY
clause. This gives better
performance for some very specific, but quite normal
queries. See
Section 12.16, “Functions and Modifiers for Use with GROUP BY
Clauses”.
You can specify ASC
and
DESC
with GROUP
BY
, not just with ORDER BY
.
The ability to set variables in a statement with the
:=
assignment operator. See
Section 9.4, “User-Defined Variables”.
Data types
Functions and operators
To make it easier for users who migrate from other SQL environments, MySQL Server supports aliases for many functions. For example, all string functions support both standard SQL syntax and ODBC syntax.
MySQL Server understands the
||
and
&&
operators to mean logical OR and AND, as in the C
programming language. In MySQL Server,
||
and
OR
are
synonyms, as are
&&
and AND
.
Because of this nice syntax, MySQL Server doesn't
support the standard SQL
||
operator
for string concatenation; use
CONCAT()
instead. Because
CONCAT()
takes any number
of arguments, it is easy to convert use of the
||
operator
to MySQL Server.
Use of COUNT(DISTINCT
where
value_list
)value_list
has more than one
element.
String comparisons are case-insensitive by default, with
sort ordering determined by the collation of the current
character set, which is latin1
(cp1252 West European) by default. If you don't like
this, you should declare your columns with the
BINARY
attribute or use the
BINARY
cast, which causes comparisons
to be done using the underlying character code values
rather than a lexical ordering.
The %
operator is a synonym for
MOD()
. That is,
is equivalent to
N
%
M
MOD(
.
N
,M
)%
is
supported for C programmers and for compatibility with
PostgreSQL.
The =
,
<>
,
<=
,
<
,
>=
,
>
,
<<
,
>>
,
<=>
,
AND
,
OR
, or
LIKE
operators may be used in expressions in the output
column list (to the left of the FROM
)
in SELECT
statements. For
example:
mysql> SELECT col1=1 AND col2=2 FROM my_table;
The LAST_INSERT_ID()
function returns the most recent
AUTO_INCREMENT
value. See
Section 12.14, “Information Functions”.
LIKE
is permitted on
numeric values.
The REGEXP
and
NOT REGEXP
extended regular
expression operators.
CONCAT()
or
CHAR()
with one argument
or more than two arguments. (In MySQL Server, these
functions can take a variable number of arguments.)
The BIT_COUNT()
,
CASE
,
ELT()
,
FROM_DAYS()
,
FORMAT()
,
IF()
,
PASSWORD()
,
ENCRYPT()
,
MD5()
,
ENCODE()
,
DECODE()
,
PERIOD_ADD()
,
PERIOD_DIFF()
,
TO_DAYS()
, and
WEEKDAY()
functions.
Use of TRIM()
to trim
substrings. Standard SQL supports removal of single
characters only.
The GROUP BY
functions
STD()
,
BIT_OR()
,
BIT_AND()
,
BIT_XOR()
, and
GROUP_CONCAT()
. See
Section 12.16, “Functions and Modifiers for Use with GROUP BY
Clauses”.
We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL standard, but MySQL Server performs operations differently in some cases:
There are several differences between the MySQL and standard
SQL privilege systems. For example, in MySQL, privileges for
a table are not automatically revoked when you delete a
table. You must explicitly issue a
REVOKE
statement to revoke
privileges for a table. For more information, see
Section 13.7.1.6, “REVOKE
Syntax”.
The CAST()
function does not
support cast to REAL
or
BIGINT
. See
Section 12.10, “Cast Functions and Operators”.
MySQL Server doesn't support the SELECT ... INTO
TABLE
Sybase SQL extension. Instead, MySQL Server
supports the
INSERT INTO ...
SELECT
standard SQL syntax, which is basically the
same thing. See Section 13.2.5.1, “INSERT ...
SELECT
Syntax”. For example:
INSERT INTO tbl_temp2 (fld_id) SELECT tbl_temp1.fld_order_id FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;
Alternatively, you can use
SELECT ... INTO
OUTFILE
or
CREATE TABLE ...
SELECT
.
You can use SELECT ...
INTO
with user-defined variables. The same syntax
can also be used inside stored routines using cursors and
local variables. See Section 13.2.9.1, “SELECT ... INTO
Syntax”.
If you access a column from the table to be updated in an
expression, UPDATE
uses the
current value of the column. The second assignment in the
following statement sets col2
to the
current (updated) col1
value, not the
original col1
value. The result is that
col1
and col2
have the
same value. This behavior differs from standard SQL.
UPDATE t1 SET col1 = col1 + 1, col2 = col1;
MySQL Server (version 3.23-max and all versions 4.0 and above)
supports transactions with the
InnoDB
transactional storage
engine. In MySQL 5.5 and up, newly created tables use
InnoDB
by default, as explained in
Section 14.2.1.1, “InnoDB
as the Default MySQL Storage Engine”. By default,
InnoDB
provides full
ACID compliance; see Section 14.2.9, “MySQL and the ACID Model” for ways
that you can adjust settings to balance ACID compliance with
raw performance. For information about
InnoDB
differences from standard SQL with
regard to treatment of transaction errors, see
Section 14.2.4.14, “InnoDB
Error Handling”.
The nontransactional storage engines in MySQL Server (such as
MyISAM
) follow a different paradigm for
data integrity called “atomic operations”.
MyISAM
tables effectively always operate in
autocommit = 1
mode. Because
changed data is written to disk one statement at a time, it is
harder to guarantee the consistency of a sequence of related
DML operations, which could be interrupted partway through.
Thus, this mode is suitable for read-mostly workloads. In
transactional terms, while each specific update is running, no
other user can interfere with it, there can never be an
automatic rollback, and there are no dirty reads. However,
these features apply to single operations, not related updates
that succeed or fail as a unit. Workarounds such as the
LOCK TABLES
statement limit
concurrent write access to nontransactional tables.
You can choose which paradigm to use, even for different tables within the same application: transactional features for reliability combined with high performance, or atomic operations for non-critical, read-mostly data (for example, on replication slave servers).
Transactional storage engines such as
InnoDB
offer many significant features to
support high reliability for heavy read/write workloads. As a
result, transactional tables can have higher memory and disk
space requirements, and more CPU overhead. MySQL Server's
modular design enables the concurrent use of different storage
engines to suit different requirements and deliver optimum
performance in all situations.
But how do you use the features of MySQL Server to maintain
integrity even with the nontransactional
MyISAM
tables, and how do these features
compare with the transactional storage engines?
If your applications are written in a way that is
dependent on being able to call
ROLLBACK
rather than COMMIT
in
critical situations, transactions are more convenient.
Transactions also ensure that unfinished updates or
corrupting activities are not committed to the database;
the server is given the opportunity to do an automatic
rollback and your database is saved.
If you use nontransactional tables, you must resolve potential problems at the application level by including checks before updates and by running scripts that check the databases for inconsistencies and automatically repair or warn if such an inconsistency occurs. You can normally fix tables with no data integrity loss by using the MySQL log or even adding one extra log.
Sometimes, critical transactional updates can be rewritten
to be atomic. Multiple DML operations can be done with
LOCK TABLES
or atomic
updates, ensuring that there are no deadlocks by limiting
concurrent write access. If you obtain a READ
LOCAL
lock (as opposed to a write lock) for a
table that enables concurrent inserts at the end of the
table, reads are permitted, as are inserts by other
clients. The newly inserted records are not be seen by the
client that has the read lock until it releases the lock.
With INSERT DELAYED
, you
can write inserts that go into a local queue until the
locks are released, without having the client wait for the
insert to complete. See
Section 8.10.3, “Concurrent Inserts”, and
Section 13.2.5.2, “INSERT DELAYED
Syntax”.
To be safe with MySQL Server, regardless of what kinds of tables you use, make regular backups and have binary logging turned on. It is always good to have backups, regardless of which database system you use.
Following are some techniques for working with nontransactional tables:
Loops that need transactions normally can be coded with
the help of LOCK TABLES
,
and you don't need cursors to update records on the fly.
To avoid using
ROLLBACK
,
you can employ the following strategy:
Use LOCK TABLES
to lock
all the tables you want to access.
Test the conditions that must be true before performing the update.
Update if the conditions are satisfied.
Use
UNLOCK
TABLES
to release your locks.
This solution does not handle the situation when someone kills the threads in the middle of an update. In that case, all locks are released but some of the updates may not have been executed.
You can also use functions to update records in a single operation, using the following techniques:
Modify columns relative to their current value. This makes the update correct even if another client has changed the column values in the meantime.
Update only those columns that actually have changed. This is a good database practice in general.
When managing unique identifiers, you can avoid statements
such as LOCK TABLES
or
ROLLBACK
by using an AUTO_INCREMENT
column and
either the LAST_INSERT_ID()
SQL function or the
mysql_insert_id()
C API
function. See Section 12.14, “Information Functions”, and
Section 21.9.3.37, “mysql_insert_id()
”.
For situations that require row-level locking, use
InnoDB
tables. Otherwise,
with MyISAM
tables, you can
use a flag column in the table and do something like the
following:
UPDATE tbl_name
SET row_flag=1 WHERE id=ID;
MySQL returns 1
for the number of
affected rows if the row was found and
row_flag
wasn't 1
in
the original row. You can think of this as though MySQL
Server changed the preceding statement to:
UPDATE tbl_name
SET row_flag=1 WHERE id=ID AND row_flag <> 1;
The InnoDB
storage engine supports checking
of foreign key constraints, including
CASCADE
, ON DELETE
, and
ON UPDATE
. See
Section 14.2.2.5, “FOREIGN KEY
Constraints”.
For storage engines other than InnoDB
,
MySQL Server parses the FOREIGN KEY
syntax
in CREATE TABLE
statements, but
does not use or store it. In the future, the implementation
will be extended to store this information in the table
specification file so that it may be retrieved by
mysqldump and ODBC. At a later stage,
foreign key constraints will be implemented for
MyISAM
tables as well.
Foreign key enforcement offers several benefits to database developers:
Assuming proper design of the relationships, foreign key constraints make it more difficult for a programmer to introduce an inconsistency into the database.
Centralized checking of constraints by the database server makes it unnecessary to perform these checks on the application side. This eliminates the possibility that different applications may not all check the constraints in the same way.
Using cascading updates and deletes can simplify the application code.
Properly designed foreign key rules aid in documenting relationships between tables.
Do keep in mind that these benefits come at the cost of additional overhead for the database server to perform the necessary checks. Additional checking by the server affects performance, which for some applications may be sufficiently undesirable as to be avoided if possible. (Some major commercial applications have coded the foreign key logic at the application level for this reason.)
MySQL gives database developers the choice of which approach
to use. If you don't need foreign keys and want to avoid the
overhead associated with enforcing referential integrity, you
can choose another storage engine instead, such as
MyISAM
. (For example, the
MyISAM
storage engine offers very fast
performance for applications that perform only
INSERT
and
SELECT
operations. In this
case, the table has no holes in the middle and the inserts can
be performed concurrently with retrievals. See
Section 8.10.3, “Concurrent Inserts”.)
If you choose not to take advantage of referential integrity checks, keep the following considerations in mind:
In the absence of server-side foreign key relationship checking, the application itself must handle relationship issues. For example, it must take care to insert rows into tables in the proper order, and to avoid creating orphaned child records. It must also be able to recover from errors that occur in the middle of multiple-record insert operations.
If ON DELETE
is the only referential
integrity capability an application needs, you can achieve
a similar effect as of MySQL Server 4.0 by using
multiple-table DELETE
statements to delete rows from many tables with a single
statement. See Section 13.2.2, “DELETE
Syntax”.
A workaround for the lack of ON DELETE
is to add the appropriate
DELETE
statements to your
application when you delete records from a table that has
a foreign key. In practice, this is often as quick as
using foreign keys and is more portable.
Be aware that the use of foreign keys can sometimes lead to problems:
Foreign key support addresses many referential integrity issues, but it is still necessary to design key relationships carefully to avoid circular rules or incorrect combinations of cascading deletes.
It is not uncommon for a DBA to create a topology of
relationships that makes it difficult to restore
individual tables from a backup. (MySQL alleviates this
difficulty by enabling you to temporarily disable foreign
key checks when reloading a table that depends on other
tables. See
Section 14.2.2.5, “FOREIGN KEY
Constraints”. As of
MySQL 4.1.1, mysqldump generates dump
files that take advantage of this capability automatically
when they are reloaded.)
Foreign keys in SQL are used to check and enforce referential
integrity, not to join tables. If you want to get results from
multiple tables from a SELECT
statement, you do this by performing a join between them:
SELECT * FROM t1 INNER JOIN t2 ON t1.id = t2.id;
See Section 13.2.9.2, “JOIN
Syntax”, and
Section 3.6.6, “Using Foreign Keys”.
The FOREIGN KEY
syntax without ON
DELETE ...
is often used by ODBC applications to
produce automatic WHERE
clauses.
Standard SQL uses the C syntax /* this is a comment
*/
for comments, and MySQL Server supports this
syntax as well. MySQL also support extensions to this syntax
that enable MySQL-specific SQL to be embedded in the comment,
as described in Section 9.6, “Comment Syntax”.
Standard SQL uses “--
” as a
start-comment sequence. MySQL Server uses
“#
” as the start comment
character. MySQL Server 3.23.3 and up also supports a variant
of the “--
” comment style.
That is, the “--
”
start-comment sequence must be followed by a space (or by a
control character such as a newline). The space is required to
prevent problems with automatically generated SQL queries that
use constructs such as the following, where we automatically
insert the value of the payment for
payment
:
UPDATE account SET credit=credit-payment
Consider about what happens if payment
has
a negative value such as -1
:
UPDATE account SET credit=credit--1
credit--1
is a valid expression in SQL, but
“--
” is interpreted as the
start of a comment, part of the expression is discarded. The
result is a statement that has a completely different meaning
than intended:
UPDATE account SET credit=credit
The statement produces no change in value at all. This
illustrates that permitting comments to start with
“--
” can have serious
consequences.
Using our implementation requires a space following the
“--
” for it to be recognized
as a start-comment sequence in MySQL Server 3.23.3 and newer.
Therefore, credit--1
is safe to use.
Another safe feature is that the mysql
command-line client ignores lines that start with
“--
”.
The following information is relevant only if you are running a MySQL version earlier than 3.23.3:
If you have an SQL script in a text file that contains
“--
” comments, you should use
the replace utility as follows to convert
the comments to use “#
”
characters before executing the script:
shell>replace " --" " #" < text-file-with-funny-comments.sql \
| mysql
db_name
That is safer than executing the script in the usual way:
shell> mysql db_name
< text-file-with-funny-comments.sql
You can also edit the script file “in place” to
change the “--
” comments to
“#
” comments:
shell> replace " --" " #" -- text-file-with-funny-comments.sql
Change them back with this command:
shell> replace " #" " --" -- text-file-with-funny-comments.sql
See Section 4.8.2, “replace — A String-Replacement Utility”.
MySQL enables you to work both with transactional tables that permit rollback and with nontransactional tables that do not. Because of this, constraint handling is a bit different in MySQL than in other DBMSs. We must handle the case when you have inserted or updated a lot of rows in a nontransactional table for which changes cannot be rolled back when an error occurs.
The basic philosophy is that MySQL Server tries to produce an error for anything that it can detect while parsing a statement to be executed, and tries to recover from any errors that occur while executing the statement. We do this in most cases, but not yet for all.
The options MySQL has when an error occurs are to stop the statement in the middle or to recover as well as possible from the problem and continue. By default, the server follows the latter course. This means, for example, that the server may coerce invalid values to the closest valid values.
Several SQL mode options are available to provide greater control over handling of bad data values and whether to continue statement execution or abort when errors occur. Using these options, you can configure MySQL Server to act in a more traditional fashion that is like other DBMSs that reject improper input. The SQL mode can be set globally at server startup to affect all clients. Individual clients can set the SQL mode at runtime, which enables each client to select the behavior most appropriate for its requirements. See Section 5.1.7, “Server SQL Modes”.
The following sections describe how MySQL Server handles different types of constraints.
Normally, errors occurs for data-change statements (such as
INSERT
or
UPDATE
) that would violate
primary-key, unique-key, or foreign-key constraints. If you
are using a transactional storage engine such as
InnoDB
, MySQL automatically rolls back the
statement. If you are using a nontransactional storage engine,
MySQL stops processing the statement at the row for which the
error occurred and leaves any remaining rows unprocessed.
MySQL supports an IGNORE
keyword for
INSERT
,
UPDATE
, and so forth. If you
use it, MySQL ignores primary-key or unique-key violations and
continues processing with the next row. See the section for
the statement that you are using (Section 13.2.5, “INSERT
Syntax”,
Section 13.2.11, “UPDATE
Syntax”, and so forth).
You can get information about the number of rows actually
inserted or updated with the
mysql_info()
C API function.
You can also use the SHOW
WARNINGS
statement. See
Section 21.9.3.35, “mysql_info()
”, and
Section 13.7.5.41, “SHOW WARNINGS
Syntax”.
Currently, only InnoDB
tables support
foreign keys. See
Section 14.2.2.5, “FOREIGN KEY
Constraints”.
By default, MySQL is forgiving of invalid or improper data values and coerces them to valid values for data entry. However, you can change the server SQL mode to select more traditional treatment of bad values such that the server rejects them and aborts the statement in which they occur. See Section 5.1.7, “Server SQL Modes”.
This section describes the default (forgiving) behavior of MySQL, as well as the strict SQL mode and how it differs.
If you are not using strict mode, then whenever you insert an
“incorrect” value into a column, such as a
NULL
into a NOT NULL
column or a too-large numeric value into a numeric column,
MySQL sets the column to the “best possible
value” instead of producing an error: The following
rules describe in more detail how this works:
If you try to store an out of range value into a numeric column, MySQL Server instead stores zero, the smallest possible value, or the largest possible value, whichever is closest to the invalid value.
For strings, MySQL stores either the empty string or as much of the string as can be stored in the column.
If you try to store a string that doesn't start with a number into a numeric column, MySQL Server stores 0.
Invalid values for ENUM
and
SET
columns are handled as
described in Section 1.8.6.3, “ENUM
and
SET
Constraints”.
MySQL enables you to store certain incorrect date values
into DATE
and
DATETIME
columns (such as
'2000-02-31'
or
'2000-02-00'
). The idea is that it is
not the job of the SQL server to validate dates. If MySQL
can store a date value and retrieve exactly the same
value, MySQL stores it as given. If the date is totally
wrong (outside the server's ability to store it), the
special “zero” date value
'0000-00-00'
is stored in the column
instead.
If you try to store NULL
into a column
that doesn't take NULL
values, an error
occurs for single-row
INSERT
statements. For
multiple-row INSERT
statements or for
INSERT INTO
... SELECT
statements, MySQL Server stores the
implicit default value for the column data type. In
general, this is 0
for numeric types,
the empty string (''
) for string types,
and the “zero” value for date and time types.
Implicit default values are discussed in
Section 11.5, “Data Type Default Values”.
If an INSERT
statement
specifies no value for a column, MySQL inserts its default
value if the column definition includes an explicit
DEFAULT
clause. If the definition has
no such DEFAULT
clause, MySQL inserts
the implicit default value for the column data type.
The reason for using the preceding rules in nonstrict mode is that we can't check these conditions until the statement has begun executing. We can't just roll back if we encounter a problem after updating a few rows, because the storage engine may not support rollback. The option of terminating the statement is not that good; in this case, the update would be “half done,” which is probably the worst possible scenario. In this case, it is better to “do the best you can” and then continue as if nothing happened.
In MySQL 5.0.2 and up, you can select stricter treatment of
input values by using the
STRICT_TRANS_TABLES
or
STRICT_ALL_TABLES
SQL modes:
SET sql_mode = 'STRICT_TRANS_TABLES'; SET sql_mode = 'STRICT_ALL_TABLES';
STRICT_TRANS_TABLES
enables
strict mode for transactional storage engines, and also to
some extent for nontransactional engines. It works like this:
For transactional storage engines, bad data values occurring anywhere in a statement cause the statement to abort and roll back.
For nontransactional storage engines, a statement aborts
if the error occurs in the first row to be inserted or
updated. (When the error occurs in the first row, the
statement can be aborted to leave the table unchanged,
just as for a transactional table.) Errors in rows after
the first do not abort the statement, because the table
has already been changed by the first row. Instead, bad
data values are adjusted and result in warnings rather
than errors. In other words, with
STRICT_TRANS_TABLES
, a
wrong value causes MySQL to roll back all updates done so
far, if that can be done without changing the table. But
once the table has been changed, further errors result in
adjustments and warnings.
For even stricter checking, enable
STRICT_ALL_TABLES
. This is
the same as
STRICT_TRANS_TABLES
except
that for nontransactional storage engines, errors abort the
statement even for bad data in rows following the first row.
This means that if an error occurs partway through a
multiple-row insert or update for a nontransactional table, a
partial update results. Earlier rows are inserted or updated,
but those from the point of the error on are not. To avoid
this for nontransactional tables, either use single-row
statements or else use
STRICT_TRANS_TABLES
if
conversion warnings rather than errors are acceptable. To
avoid problems in the first place, do not use MySQL to check
column content. It is safest (and often faster) to let the
application ensure that it passes only valid values to the
database.
With either of the strict mode options, you can cause errors
to be treated as warnings by using
INSERT
IGNORE
or UPDATE IGNORE
rather
than INSERT
or
UPDATE
without
IGNORE
.
ENUM
and
SET
columns provide an
efficient way to define columns that can contain only a given
set of values. See Section 11.4.4, “The ENUM
Type”, and
Section 11.4.5, “The SET
Type”. However, before MySQL 5.0.2,
ENUM
and
SET
columns do not provide true
constraints on entry of invalid data:
ENUM
columns always have a
default value. If you specify no default value, then it is
NULL
for columns that can have
NULL
, otherwise it is the first
enumeration value in the column definition.
If you insert an incorrect value into an
ENUM
column or if you force
a value into an ENUM
column
with IGNORE
, it is set to the reserved
enumeration value of 0
, which is
displayed as an empty string in string context.
If you insert an incorrect value into a
SET
column, the incorrect
value is ignored. For example, if the column can contain
the values 'a'
, 'b'
,
and 'c'
, an attempt to assign
'a,x,b,y'
results in a value of
'a,b'
.
As of MySQL 5.0.2, you can configure the server to use strict
SQL mode. See Section 5.1.7, “Server SQL Modes”. With strict
mode enabled, the definition of a
ENUM
or
SET
column does act as a
constraint on values entered into the column. An error occurs
for values that do not satisfy these conditions:
An ENUM
value must be one
of those listed in the column definition, or the internal
numeric equivalent thereof. The value cannot be the error
value (that is, 0 or the empty string). For a column
defined as
ENUM('a','b','c')
, values
such as ''
, 'd'
, or
'ax'
are invalid and are rejected.
A SET
value must be the
empty string or a value consisting only of the values
listed in the column definition separated by commas. For a
column defined as
SET('a','b','c')
, values
such as 'd'
or
'a,b,c,d'
are invalid and are rejected.
Errors for invalid values can be suppressed in strict mode if
you use INSERT
IGNORE
or UPDATE IGNORE
. In this
case, a warning is generated rather than an error. For
ENUM
, the value is inserted as
the error member (0
). For
SET
, the value is inserted as
given except that any invalid substrings are deleted. For
example, 'a,x,b,y'
results in a value of
'a,b'
.
The following sections list developers, contributors, and supporters that have helped to make MySQL what it is today.
Although Oracle Corporation and/or its affiliates own all
copyrights in the MySQL server
and the
MySQL manual
, we wish to recognize those who
have made contributions of one kind or another to the
MySQL distribution
. Contributors are listed
here, in somewhat random order:
Gianmassimo Vigazzola <[email protected]>
or
<[email protected]>
The initial port to Win32/NT.
Per Eric Olsson
For constructive criticism and real testing of the dynamic record format.
Irena Pancirov <[email protected]>
Win32 port with Borland compiler.
mysqlshutdown.exe
and
mysqlwatch.exe
.
David J. Hughes
For the effort to make a shareware SQL database. At TcX, the
predecessor of MySQL AB, we started with
mSQL
, but found that it couldn't satisfy
our purposes so instead we wrote an SQL interface to our
application builder Unireg. mysqladmin and
mysql client are programs that were largely
influenced by their mSQL
counterparts. We
have put a lot of effort into making the MySQL syntax a
superset of mSQL
. Many of the API's ideas
are borrowed from mSQL
to make it easy to
port free mSQL
programs to the MySQL API.
The MySQL software doesn't contain any code from
mSQL
. Two files in the distribution
(client/insert_test.c
and
client/select_test.c
) are based on the
corresponding (noncopyrighted) files in the
mSQL
distribution, but are modified as
examples showing the changes necessary to convert code from
mSQL
to MySQL Server.
(mSQL
is copyrighted David J. Hughes.)
Patrick Lynch
For helping us acquire http://www.mysql.com/.
Fred Lindberg
For setting up qmail to handle the MySQL mailing list and for the incredible help we got in managing the MySQL mailing lists.
Igor Romanenko <[email protected]>
mysqldump (previously
msqldump
, but ported and enhanced by
Monty).
Yuri Dario
For keeping up and extending the MySQL OS/2 port.
Tim Bunce
Author of mysqlhotcopy.
Zarko Mocnik <[email protected]>
Sorting for Slovenian language.
"TAMITO" <[email protected]>
The _MB
character set macros and the ujis
and sjis character sets.
Joshua Chamas <[email protected]>
Base for concurrent insert, extended date syntax, debugging on NT, and answering on the MySQL mailing list.
Yves Carlier <[email protected]>
mysqlaccess, a program to show the access rights for a user.
Rhys Jones <[email protected]>
(And GWE Technologies
Limited)
For one of the early JDBC drivers.
Dr Xiaokun Kelvin ZHU <[email protected]>
Further development of one of the early JDBC drivers and other MySQL-related Java tools.
James Cooper <[email protected]>
For setting up a searchable mailing list archive at his site.
Rick Mehalick <[email protected]>
For xmysql
, a graphical X client for MySQL
Server.
Doug Sisk <[email protected]>
For providing RPM packages of MySQL for Red Hat Linux.
Diemand Alexander V. <[email protected]>
For providing RPM packages of MySQL for Red Hat Linux-Alpha.
Antoni Pamies Olive <[email protected]>
For providing RPM versions of a lot of MySQL clients for Intel and SPARC.
Jay Bloodworth <[email protected]>
For providing RPM versions for MySQL 3.21.
David Sacerdote <[email protected]>
Ideas for secure checking of DNS host names.
Wei-Jou Chen <[email protected]>
Some support for Chinese(BIG5) characters.
Wei He <[email protected]>
A lot of functionality for the Chinese(GBK) character set.
Jan Pazdziora <[email protected]>
Czech sorting order.
Zeev Suraski <[email protected]>
FROM_UNIXTIME()
time
formatting, ENCRYPT()
functions, and bison advisor. Active
mailing list member.
Luuk de Boer <[email protected]>
Ported (and extended) the benchmark suite to
DBI
/DBD
. Have been of
great help with crash-me
and running
benchmarks. Some new date functions. The
mysql_setpermission script.
Alexis Mikhailov <[email protected]>
User-defined functions (UDFs); CREATE
FUNCTION
and DROP
FUNCTION
.
Andreas F. Bobak <[email protected]>
The AGGREGATE
extension to user-defined
functions.
Ross Wakelin <[email protected]>
Help to set up InstallShield for MySQL-Win32.
Jethro Wright III <[email protected]>
The libmysql.dll
library.
James Pereria <[email protected]>
Mysqlmanager, a Win32 GUI tool for administering MySQL Servers.
Curt Sampson <[email protected]>
Porting of MIT-pthreads to NetBSD/Alpha and NetBSD 1.3/i386.
Martin Ramsch <[email protected]>
Examples in the MySQL Tutorial.
Steve Harvey
For making mysqlaccess more secure.
Konark IA-64 Centre of Persistent Systems Private Limited
http://www.pspl.co.in/konark/. Help with the Win64 port of the MySQL server.
Albert Chin-A-Young.
Configure updates for Tru64, large file support and better TCP wrappers support.
John Birrell
Emulation of pthread_mutex()
for OS/2.
Benjamin Pflugmann
Extended MERGE
tables to handle
INSERTS
. Active member on the MySQL mailing
lists.
Jocelyn Fournier
Excellent spotting and reporting innumerable bugs (especially in the MySQL 4.1 subquery code).
Marc Liyanage
Maintaining the Mac OS X packages and providing invaluable feedback on how to create Mac OS X packages.
Robert Rutherford
Providing invaluable information and feedback about the QNX port.
Previous developers of NDB Cluster
Lots of people were involved in various ways summer students, master thesis students, employees. In total more than 100 people so too many to mention here. Notable name is Ataullah Dabaghi who up until 1999 contributed around a third of the code base. A special thanks also to developers of the AXE system which provided much of the architectural foundations for NDB Cluster with blocks, signals and crash tracing functionality. Also credit should be given to those who believed in the ideas enough to allocate of their budgets for its development from 1992 to present time.
Google Inc.
We wish to recognize Google Inc. for contributions to the MySQL distribution: Mark Callaghan's SMP Performance patches and other patches.
Other contributors, bugfinders, and testers: James H. Thompson,
Maurizio Menghini, Wojciech Tryc, Luca Berra, Zarko Mocnik, Wim
Bonis, Elmar Haneke, <jehamby@lightside>
,
<[email protected]>
,
<[email protected]>
, Ted Deppner
<[email protected]>
, Mike Simons, Jaakko Hyvatti.
And lots of bug report/patches from the folks on the mailing list.
A big tribute goes to those that help us answer questions on the MySQL mailing lists:
Daniel Koch <[email protected]>
Irix setup.
Luuk de Boer <[email protected]>
Benchmark questions.
Tim Sailer <[email protected]>
DBD::mysql
questions.
Boyd Lynn Gerber <[email protected]>
SCO-related questions.
Richard Mehalick <[email protected]>
xmysql
-related questions and basic
installation questions.
Zeev Suraski <[email protected]>
Apache module configuration questions (log & auth), PHP-related questions, SQL syntax-related questions and other general questions.
Francesc Guasch <[email protected]>
General questions.
Jonathan J Smith <[email protected]>
Questions pertaining to OS-specifics with Linux, SQL syntax, and other things that might need some work.
David Sklar <[email protected]>
Using MySQL from PHP and Perl.
Alistair MacDonald <[email protected]>
Is flexible and can handle Linux and perhaps HP-UX.
John Lyon <[email protected]>
Questions about installing MySQL on Linux systems, using
either .rpm
files or compiling from
source.
Lorvid Ltd. <[email protected]>
Simple billing/license/support/copyright issues.
Patrick Sherrill <[email protected]>
ODBC and VisualC++ interface questions.
Randy Harmon <[email protected]>
DBD
, Linux, some SQL syntax questions.
The following people have helped us with writing the MySQL documentation and translating the documentation or error messages in MySQL.
Paul DuBois
Ongoing help with making this manual correct and understandable. That includes rewriting Monty's and David's attempts at English into English as other people know it.
Kim Aldale
Helped to rewrite Monty's and David's early attempts at English into English.
Michael J. Miller Jr.
<[email protected]>
For the first MySQL manual. And a lot of spelling/language fixes for the FAQ (that turned into the MySQL manual a long time ago).
Yan Cailin
First translator of the MySQL Reference Manual into simplified Chinese in early 2000 on which the Big5 and HK coded (http://mysql.hitstar.com/) versions were based. Personal home page at linuxdb.yeah.net.
Jay Flaherty <[email protected]>
Big parts of the Perl
DBI
/DBD
section in the
manual.
Paul Southworth <[email protected]>
, Ray Loyzaga
<[email protected]>
Proof-reading of the Reference Manual.
Therrien Gilbert <[email protected]>
, Jean-Marc
Pouyot <[email protected]>
French error messages.
Petr Snajdr, <[email protected]>
Czech error messages.
Jaroslaw Lewandowski <[email protected]>
Polish error messages.
Miguel Angel Fernandez Roiz
Spanish error messages.
Roy-Magne Mo <[email protected]>
Norwegian error messages and testing of MySQL 3.21.xx.
Timur I. Bakeyev <[email protected]>
Russian error messages.
<[email protected]>
& Filippo Grassilli
<[email protected]>
Italian error messages.
Dirk Munzinger <[email protected]>
German error messages.
Billik Stefan <[email protected]>
Slovak error messages.
Stefan Saroiu <[email protected]>
Romanian error messages.
Peter Feher
Hungarian error messages.
Roberto M. Serqueira
Portuguese error messages.
Carsten H. Pedersen
Danish error messages.
Arjen Lentz
Dutch error messages, completing earlier partial translation (also work on consistency and spelling).
The following is a list of creators/maintainers of some of the most important API/packages/applications that a lot of people use with MySQL.
We cannot list every possible package here because the list would then be way to hard to maintain. For other packages, please refer to the software portal at http://solutions.mysql.com/software/.
Tim Bunce, Alligator Descartes
For the DBD
(Perl) interface.
Andreas Koenig <[email protected]>
For the Perl interface for MySQL Server.
Jochen Wiedmann <[email protected]>
For maintaining the Perl DBD::mysql
module.
Eugene Chan <[email protected]>
For porting PHP for MySQL Server.
Georg Richter
MySQL 4.1 testing and bug hunting. New PHP 5.0
mysqli
extension (API) for use with MySQL
4.1 and up.
Giovanni Maruzzelli <[email protected]>
For porting iODBC (Unix ODBC).
Xavier Leroy <[email protected]>
The author of LinuxThreads (used by the MySQL Server on Linux).
The following is a list of some of the tools we have used to create MySQL. We use this to express our thanks to those that has created them as without these we could not have made MySQL what it is today.
Free Software Foundation
From whom we got an excellent compiler
(gcc), an excellent debugger
(gdb and the libc
library (from which we have borrowed
strto.c
to get some code working in
Linux).
Free Software Foundation & The XEmacs development team
For a really great editor/environment.
Julian Seward
Author of valgrind
, an excellent memory
checker tool that has helped us find a lot of otherwise hard
to find bugs in MySQL.
Dorothea Lütkehaus and Andreas Zeller
For DDD
(The Data Display Debugger) which
is an excellent graphical front end to
gdb).
Although Oracle Corporation and/or its affiliates own all
copyrights in the MySQL server
and the
MySQL manual
, we wish to recognize the
following companies, which helped us finance the development of
the MySQL server
, such as by paying us for
developing a new feature or giving us hardware for development of
the MySQL server
.
VA Linux / Andover.net
Funded replication.
NuSphere
Editing of the MySQL manual.
Stork Design studio
The MySQL Web site in use between 1998-2000.
Intel
Contributed to development on Windows and Linux platforms.
Compaq
Contributed to Development on Linux/Alpha.
SWSoft
Development on the embedded mysqld version.
FutureQuest
The --skip-show-database
option.