| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > alrimiv | Unicode version | ||
| Description: If one can prove |
| Ref | Expression |
|---|---|
| alrimiv.1 |
|
| Ref | Expression |
|---|---|
| alrimiv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimiv.1 |
. . . 4
| |
| 2 | 1 | ax-cb2 30 |
. . 3
|
| 3 | wtru 40 |
. . . 4
| |
| 4 | 1 | eqtru 76 |
. . . 4
|
| 5 | 3, 4 | eqcomi 70 |
. . 3
|
| 6 | 2, 5 | leq 81 |
. 2
|
| 7 | 1 | ax-cb1 29 |
. . 3
|
| 8 | 2 | wl 59 |
. . . 4
|
| 9 | 8 | alval 132 |
. . 3
|
| 10 | 7, 9 | a1i 28 |
. 2
|
| 11 | 6, 10 | mpbir 77 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 df-al 116 |
| This theorem is referenced by: exlimdv2 156 ax4e 158 exlimd 171 axgen 197 ax10 200 ax11 201 axrep 207 axpow 208 axun 209 |
| Copyright terms: Public domain | W3C validator |