| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > axmp | Unicode version | ||
| Description: Rule of Modus Ponens. The postulated inference rule of propositional calculus. See e.g. Rule 1 of [Hamilton] p. 73. |
| Ref | Expression |
|---|---|
| axmp.1 |
|
| axmp.2 |
|
| axmp.3 |
|
| Ref | Expression |
|---|---|
| axmp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axmp.1 |
. 2
| |
| 2 | axmp.2 |
. 2
| |
| 3 | axmp.3 |
. 2
| |
| 4 | 1, 2, 3 | mpd 146 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 df-an 118 df-im 119 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |