| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ovl | Unicode version | ||
| Description: Evaluate a lambda expression in a binary operation. |
| Ref | Expression |
|---|---|
| ovl.1 |
|
| ovl.2 |
|
| ovl.3 |
|
| ovl.4 |
|
| ovl.5 |
|
| Ref | Expression |
|---|---|
| ovl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovl.1 |
. . . . 5
| |
| 2 | 1 | wl 59 |
. . . 4
|
| 3 | 2 | wl 59 |
. . 3
|
| 4 | ovl.2 |
. . 3
| |
| 5 | ovl.3 |
. . 3
| |
| 6 | 3, 4, 5 | wov 64 |
. 2
|
| 7 | weq 38 |
. . . 4
| |
| 8 | 3, 4 | wc 45 |
. . . . 5
|
| 9 | 8, 5 | wc 45 |
. . . 4
|
| 10 | wtru 40 |
. . . . 5
| |
| 11 | 3, 4, 5 | df-ov 65 |
. . . . 5
|
| 12 | 10, 11 | a1i 28 |
. . . 4
|
| 13 | 7, 6, 9, 12 | dfov2 67 |
. . 3
|
| 14 | 1, 4 | distrl 84 |
. . . . 5
|
| 15 | 10, 14 | a1i 28 |
. . . 4
|
| 16 | 8, 5, 15 | ceq1 79 |
. . 3
|
| 17 | 6, 13, 16 | eqtri 85 |
. 2
|
| 18 | 1 | wl 59 |
. . . 4
|
| 19 | 18, 4 | wc 45 |
. . 3
|
| 20 | wv 58 |
. . . . . 6
| |
| 21 | 20, 5 | weqi 68 |
. . . . 5
|
| 22 | ovl.4 |
. . . . . 6
| |
| 23 | 1, 4, 22 | cl 106 |
. . . . 5
|
| 24 | 21, 23 | a1i 28 |
. . . 4
|
| 25 | ovl.5 |
. . . 4
| |
| 26 | 19, 24, 25 | eqtri 85 |
. . 3
|
| 27 | 19, 5, 26 | cl 106 |
. 2
|
| 28 | 6, 17, 27 | eqtri 85 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 |
| This theorem is referenced by: imval 136 orval 137 anval 138 dfan2 144 |
| Copyright terms: Public domain | W3C validator |