| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ecase | Unicode version | ||
| Description: Elimination by cases. |
| Ref | Expression |
|---|---|
| ecase.1 |
|
| ecase.2 |
|
| ecase.3 |
|
| ecase.4 |
|
| ecase.5 |
|
| ecase.6 |
|
| Ref | Expression |
|---|---|
| ecase |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecase.3 |
. 2
| |
| 2 | ecase.6 |
. . 3
| |
| 3 | 2 | ex 148 |
. 2
|
| 4 | wim 127 |
. . . 4
| |
| 5 | ecase.2 |
. . . . 5
| |
| 6 | 4, 5, 1 | wov 64 |
. . . 4
|
| 7 | 4, 6, 1 | wov 64 |
. . 3
|
| 8 | ecase.5 |
. . . 4
| |
| 9 | 8 | ex 148 |
. . 3
|
| 10 | ecase.4 |
. . . . 5
| |
| 11 | 10 | ax-cb1 29 |
. . . . . 6
|
| 12 | ecase.1 |
. . . . . . 7
| |
| 13 | 12, 5 | orval 137 |
. . . . . 6
|
| 14 | 11, 13 | a1i 28 |
. . . . 5
|
| 15 | 10, 14 | mpbi 72 |
. . . 4
|
| 16 | wv 58 |
. . . . . . 7
| |
| 17 | 4, 12, 16 | wov 64 |
. . . . . 6
|
| 18 | 4, 5, 16 | wov 64 |
. . . . . . 7
|
| 19 | 4, 18, 16 | wov 64 |
. . . . . 6
|
| 20 | 4, 17, 19 | wov 64 |
. . . . 5
|
| 21 | 16, 1 | weqi 68 |
. . . . . . . 8
|
| 22 | 21 | id 25 |
. . . . . . 7
|
| 23 | 4, 12, 16, 22 | oveq2 91 |
. . . . . 6
|
| 24 | 4, 5, 16, 22 | oveq2 91 |
. . . . . . 7
|
| 25 | 4, 18, 16, 24, 22 | oveq12 90 |
. . . . . 6
|
| 26 | 4, 17, 19, 23, 25 | oveq12 90 |
. . . . 5
|
| 27 | 20, 1, 26 | cla4v 142 |
. . . 4
|
| 28 | 15, 27 | syl 16 |
. . 3
|
| 29 | 7, 9, 28 | mpd 146 |
. 2
|
| 30 | 1, 3, 29 | mpd 146 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-an 118 df-im 119 df-or 122 |
| This theorem is referenced by: exmid 186 notnot 187 ax3 192 |
| Copyright terms: Public domain | W3C validator |