| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > notnot | Unicode version | ||
| Description: Rule of double negation. |
| Ref | Expression |
|---|---|
| exmid.1 |
|
| Ref | Expression |
|---|---|
| notnot |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid.1 |
. . 3
| |
| 2 | 1 | notnot1 150 |
. 2
|
| 3 | wnot 128 |
. . . 4
| |
| 4 | 3, 1 | wc 45 |
. . 3
|
| 5 | 2 | ax-cb2 30 |
. . . 4
|
| 6 | 1 | exmid 186 |
. . . 4
|
| 7 | 5, 6 | a1i 28 |
. . 3
|
| 8 | 5, 1 | simpr 23 |
. . 3
|
| 9 | wfal 125 |
. . . . 5
| |
| 10 | 5 | id 25 |
. . . . . 6
|
| 11 | 4 | notval 135 |
. . . . . . 7
|
| 12 | 5, 11 | a1i 28 |
. . . . . 6
|
| 13 | 10, 12 | mpbi 72 |
. . . . 5
|
| 14 | 4, 9, 13 | imp 147 |
. . . 4
|
| 15 | 1 | pm2.21 143 |
. . . 4
|
| 16 | 14, 15 | syl 16 |
. . 3
|
| 17 | 1, 4, 1, 7, 8, 16 | ecase 153 |
. 2
|
| 18 | 2, 17 | dedi 75 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 ax-ac 183 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-fal 117 df-an 118 df-im 119 df-not 120 df-or 122 |
| This theorem is referenced by: exnal 188 |
| Copyright terms: Public domain | W3C validator |