| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ax9 | Unicode version | ||
| Description: Axiom of Equality. Axiom scheme C8' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Axiom C7 of [Monk2] p. 105. |
| Ref | Expression |
|---|---|
| ax9.1 |
|
| Ref | Expression |
|---|---|
| ax9 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wv 58 |
. . . . . 6
| |
| 2 | ax9.1 |
. . . . . 6
| |
| 3 | 1, 2 | weqi 68 |
. . . . 5
|
| 4 | 3 | 19.8a 160 |
. . . 4
|
| 5 | wex 129 |
. . . . 5
| |
| 6 | 3 | wl 59 |
. . . . 5
|
| 7 | wv 58 |
. . . . 5
| |
| 8 | 5, 7 | ax-17 95 |
. . . . 5
|
| 9 | 3, 7 | ax-hbl1 93 |
. . . . 5
|
| 10 | 5, 6, 7, 8, 9 | hbc 100 |
. . . 4
|
| 11 | wtru 40 |
. . . . 5
| |
| 12 | 11, 7 | ax-17 95 |
. . . 4
|
| 13 | 5, 6 | wc 45 |
. . . . 5
|
| 14 | 3, 13 | eqid 73 |
. . . 4
|
| 15 | 3 | id 25 |
. . . . . 6
|
| 16 | 15 | eqtru 76 |
. . . . 5
|
| 17 | 11, 16 | eqcomi 70 |
. . . 4
|
| 18 | 4, 10, 12, 14, 17 | ax-inst 103 |
. . 3
|
| 19 | 13 | notnot1 150 |
. . 3
|
| 20 | 18, 19 | syl 16 |
. 2
|
| 21 | wnot 128 |
. . 3
| |
| 22 | wal 124 |
. . . 4
| |
| 23 | 21, 3 | wc 45 |
. . . . 5
|
| 24 | 23 | wl 59 |
. . . 4
|
| 25 | 22, 24 | wc 45 |
. . 3
|
| 26 | 3 | alnex 174 |
. . 3
|
| 27 | 21, 25, 26 | ceq2 80 |
. 2
|
| 28 | 20, 27 | mpbir 77 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 ax-eta 165 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-fal 117 df-an 118 df-im 119 df-not 120 df-ex 121 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |