| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > exval | Unicode version | ||
| Description: Value of the 'there exists' predicate. |
| Ref | Expression |
|---|---|
| alval.1 |
|
| Ref | Expression |
|---|---|
| exval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wex 129 |
. . 3
| |
| 2 | alval.1 |
. . 3
| |
| 3 | 1, 2 | wc 45 |
. 2
|
| 4 | df-ex 121 |
. . 3
| |
| 5 | 1, 2, 4 | ceq1 79 |
. 2
|
| 6 | wal 124 |
. . . 4
| |
| 7 | wim 127 |
. . . . . 6
| |
| 8 | wal 124 |
. . . . . . 7
| |
| 9 | wv 58 |
. . . . . . . . . 10
| |
| 10 | wv 58 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | wc 45 |
. . . . . . . . 9
|
| 12 | wv 58 |
. . . . . . . . 9
| |
| 13 | 7, 11, 12 | wov 64 |
. . . . . . . 8
|
| 14 | 13 | wl 59 |
. . . . . . 7
|
| 15 | 8, 14 | wc 45 |
. . . . . 6
|
| 16 | 7, 15, 12 | wov 64 |
. . . . 5
|
| 17 | 16 | wl 59 |
. . . 4
|
| 18 | 6, 17 | wc 45 |
. . 3
|
| 19 | 9, 2 | weqi 68 |
. . . . . . . . . . 11
|
| 20 | 19 | id 25 |
. . . . . . . . . 10
|
| 21 | 9, 10, 20 | ceq1 79 |
. . . . . . . . 9
|
| 22 | 7, 11, 12, 21 | oveq1 89 |
. . . . . . . 8
|
| 23 | 13, 22 | leq 81 |
. . . . . . 7
|
| 24 | 8, 14, 23 | ceq2 80 |
. . . . . 6
|
| 25 | 7, 15, 12, 24 | oveq1 89 |
. . . . 5
|
| 26 | 16, 25 | leq 81 |
. . . 4
|
| 27 | 6, 17, 26 | ceq2 80 |
. . 3
|
| 28 | 18, 2, 27 | cl 106 |
. 2
|
| 29 | 3, 5, 28 | eqtri 85 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-an 118 df-im 119 df-ex 121 |
| This theorem is referenced by: exlimdv2 156 ax4e 158 exlimd 171 |
| Copyright terms: Public domain | W3C validator |