ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sb5rf Unicode version

Theorem 2sb5rf 1906
Description: Reversed double substitution. (Contributed by NM, 3-Feb-2005.)
Hypotheses
Ref Expression
2sb5rf.1  |-  ( ph  ->  A. z ph )
2sb5rf.2  |-  ( ph  ->  A. w ph )
Assertion
Ref Expression
2sb5rf  |-  ( ph  <->  E. z E. w ( ( z  =  x  /\  w  =  y )  /\  [ z  /  x ] [
w  /  y ]
ph ) )
Distinct variable groups:    x, y    x, w    y, z    z, w
Allowed substitution hints:    ph( x, y, z, w)

Proof of Theorem 2sb5rf
StepHypRef Expression
1 2sb5rf.1 . . 3  |-  ( ph  ->  A. z ph )
21sb5rf 1773 . 2  |-  ( ph  <->  E. z ( z  =  x  /\  [ z  /  x ] ph ) )
3 19.42v 1827 . . . 4  |-  ( E. w ( z  =  x  /\  ( w  =  y  /\  [
w  /  y ] [ z  /  x ] ph ) )  <->  ( z  =  x  /\  E. w
( w  =  y  /\  [ w  / 
y ] [ z  /  x ] ph ) ) )
4 sbcom2 1904 . . . . . . 7  |-  ( [ z  /  x ] [ w  /  y ] ph  <->  [ w  /  y ] [ z  /  x ] ph )
54anbi2i 444 . . . . . 6  |-  ( ( ( z  =  x  /\  w  =  y )  /\  [ z  /  x ] [
w  /  y ]
ph )  <->  ( (
z  =  x  /\  w  =  y )  /\  [ w  /  y ] [ z  /  x ] ph ) )
6 anass 393 . . . . . 6  |-  ( ( ( z  =  x  /\  w  =  y )  /\  [ w  /  y ] [
z  /  x ] ph )  <->  ( z  =  x  /\  ( w  =  y  /\  [
w  /  y ] [ z  /  x ] ph ) ) )
75, 6bitri 182 . . . . 5  |-  ( ( ( z  =  x  /\  w  =  y )  /\  [ z  /  x ] [
w  /  y ]
ph )  <->  ( z  =  x  /\  (
w  =  y  /\  [ w  /  y ] [ z  /  x ] ph ) ) )
87exbii 1536 . . . 4  |-  ( E. w ( ( z  =  x  /\  w  =  y )  /\  [ z  /  x ] [ w  /  y ] ph )  <->  E. w
( z  =  x  /\  ( w  =  y  /\  [ w  /  y ] [
z  /  x ] ph ) ) )
9 2sb5rf.2 . . . . . . 7  |-  ( ph  ->  A. w ph )
109hbsbv 1858 . . . . . 6  |-  ( [ z  /  x ] ph  ->  A. w [ z  /  x ] ph )
1110sb5rf 1773 . . . . 5  |-  ( [ z  /  x ] ph 
<->  E. w ( w  =  y  /\  [
w  /  y ] [ z  /  x ] ph ) )
1211anbi2i 444 . . . 4  |-  ( ( z  =  x  /\  [ z  /  x ] ph )  <->  ( z  =  x  /\  E. w
( w  =  y  /\  [ w  / 
y ] [ z  /  x ] ph ) ) )
133, 8, 123bitr4ri 211 . . 3  |-  ( ( z  =  x  /\  [ z  /  x ] ph )  <->  E. w ( ( z  =  x  /\  w  =  y )  /\  [ z  /  x ] [ w  /  y ] ph ) )
1413exbii 1536 . 2  |-  ( E. z ( z  =  x  /\  [ z  /  x ] ph ) 
<->  E. z E. w
( ( z  =  x  /\  w  =  y )  /\  [
z  /  x ] [ w  /  y ] ph ) )
152, 14bitri 182 1  |-  ( ph  <->  E. z E. w ( ( z  =  x  /\  w  =  y )  /\  [ z  /  x ] [
w  /  y ]
ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1282   E.wex 1421   [wsb 1685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator