| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6p4e10 | Unicode version | ||
| Description: 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 6p4e10 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 8100 |
. . . 4
| |
| 2 | 1 | oveq2i 5543 |
. . 3
|
| 3 | 6cn 8121 |
. . . 4
| |
| 4 | 3cn 8114 |
. . . 4
| |
| 5 | ax-1cn 7069 |
. . . 4
| |
| 6 | 3, 4, 5 | addassi 7127 |
. . 3
|
| 7 | 2, 6 | eqtr4i 2104 |
. 2
|
| 8 | 6p3e9 8182 |
. . 3
| |
| 9 | 8 | oveq1i 5542 |
. 2
|
| 10 | 9p1e10 8479 |
. 2
| |
| 11 | 7, 9, 10 | 3eqtri 2105 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-1rid 7083 ax-0id 7084 ax-cnre 7087 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-5 8101 df-6 8102 df-7 8103 df-8 8104 df-9 8105 df-dec 8478 |
| This theorem is referenced by: 6p5e11 8549 6t5e30 8583 ex-bc 10566 |
| Copyright terms: Public domain | W3C validator |