ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-sn Unicode version

Definition df-sn 3404
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of  _V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3412. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-sn  |-  { A }  =  { x  |  x  =  A }
Distinct variable group:    x, A

Detailed syntax breakdown of Definition df-sn
StepHypRef Expression
1 cA . . 3  class  A
21csn 3398 . 2  class  { A }
3 vx . . . . 5  setvar  x
43cv 1283 . . . 4  class  x
54, 1wceq 1284 . . 3  wff  x  =  A
65, 3cab 2067 . 2  class  { x  |  x  =  A }
72, 6wceq 1284 1  wff  { A }  =  { x  |  x  =  A }
Colors of variables: wff set class
This definition is referenced by:  sneq  3409  elsng  3413  csbsng  3453  rabsn  3459  pw0  3532  iunid  3733  dfiota2  4888  uniabio  4897  dfimafn2  5244  fnsnfv  5253  snec  6190  bdcsn  10661
  Copyright terms: Public domain W3C validator