| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > add12d | Unicode version | ||
| Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addd.1 |
|
| addd.2 |
|
| addd.3 |
|
| Ref | Expression |
|---|---|
| add12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addd.1 |
. 2
| |
| 2 | addd.2 |
. 2
| |
| 3 | addd.3 |
. 2
| |
| 4 | add12 7266 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1169 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-addcom 7076 ax-addass 7078 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 |
| This theorem is referenced by: subsub2 7336 |
| Copyright terms: Public domain | W3C validator |