| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax11ev | Unicode version | ||
| Description: Analogue to ax11v 1748 for existential quantification. (Contributed by Jim Kingdon, 9-Jan-2018.) |
| Ref | Expression |
|---|---|
| ax11ev |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a9e 1626 |
. 2
| |
| 2 | ax11e 1717 |
. . . . 5
| |
| 3 | ax-17 1459 |
. . . . . 6
| |
| 4 | 3 | 19.9h 1574 |
. . . . 5
|
| 5 | 2, 4 | syl6ib 159 |
. . . 4
|
| 6 | equequ2 1639 |
. . . . 5
| |
| 7 | 6 | anbi1d 452 |
. . . . . . 7
|
| 8 | 7 | exbidv 1746 |
. . . . . 6
|
| 9 | 8 | imbi1d 229 |
. . . . 5
|
| 10 | 6, 9 | imbi12d 232 |
. . . 4
|
| 11 | 5, 10 | mpbii 146 |
. . 3
|
| 12 | 11 | exlimiv 1529 |
. 2
|
| 13 | 1, 12 | ax-mp 7 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |