ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equequ2 Unicode version

Theorem equequ2 1639
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equequ2  |-  ( x  =  y  ->  (
z  =  x  <->  z  =  y ) )

Proof of Theorem equequ2
StepHypRef Expression
1 equtrr 1636 . 2  |-  ( x  =  y  ->  (
z  =  x  -> 
z  =  y ) )
2 equtrr 1636 . . 3  |-  ( y  =  x  ->  (
z  =  y  -> 
z  =  x ) )
32equcoms 1634 . 2  |-  ( x  =  y  ->  (
z  =  y  -> 
z  =  x ) )
41, 3impbid 127 1  |-  ( x  =  y  ->  (
z  =  x  <->  z  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-gen 1378  ax-ie2 1423  ax-8 1435  ax-17 1459  ax-i9 1463
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  ax11v2  1741  ax11v  1748  ax11ev  1749  equs5or  1751  eujust  1943  euf  1946  mo23  1982  iotaval  4898  dffun4f  4938  dff13f  5430  supmoti  6406  isoti  6420
  Copyright terms: Public domain W3C validator