| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axext3 | Unicode version | ||
| Description: A generalization of the
Axiom of Extensionality in which |
| Ref | Expression |
|---|---|
| axext3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 1641 |
. . . . 5
| |
| 2 | 1 | bibi1d 231 |
. . . 4
|
| 3 | 2 | albidv 1745 |
. . 3
|
| 4 | equequ1 1638 |
. . 3
| |
| 5 | 3, 4 | imbi12d 232 |
. 2
|
| 6 | ax-ext 2063 |
. 2
| |
| 7 | 5, 6 | chvarv 1853 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: axext4 2065 |
| Copyright terms: Public domain | W3C validator |