ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elequ2 Unicode version

Theorem elequ2 1641
Description: An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
elequ2  |-  ( x  =  y  ->  (
z  e.  x  <->  z  e.  y ) )

Proof of Theorem elequ2
StepHypRef Expression
1 ax-14 1445 . 2  |-  ( x  =  y  ->  (
z  e.  x  -> 
z  e.  y ) )
2 ax-14 1445 . . 3  |-  ( y  =  x  ->  (
z  e.  y  -> 
z  e.  x ) )
32equcoms 1634 . 2  |-  ( x  =  y  ->  (
z  e.  y  -> 
z  e.  x ) )
41, 3impbid 127 1  |-  ( x  =  y  ->  (
z  e.  x  <->  z  e.  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-gen 1378  ax-ie2 1423  ax-8 1435  ax-14 1445  ax-17 1459  ax-i9 1463
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  elsb4  1894  dveel2  1938  axext3  2064  axext4  2065  bm1.1  2066  bm1.3ii  3899  nalset  3908  zfun  4189  fv3  5218  tfrlemisucaccv  5962  bdsepnft  10678  bdsepnfALT  10680  bdbm1.3ii  10682  bj-nalset  10686  bj-nnelirr  10748  strcollnft  10779  strcollnfALT  10781
  Copyright terms: Public domain W3C validator