| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equequ1 | Unicode version | ||
| Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equequ1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-8 1435 |
. 2
| |
| 2 | equtr 1635 |
. 2
| |
| 3 | 1, 2 | impbid 127 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1378 ax-ie2 1423 ax-8 1435 ax-17 1459 ax-i9 1463 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: equveli 1682 drsb1 1720 equsb3lem 1865 euequ1 2036 axext3 2064 reu6 2781 reu7 2787 cbviota 4892 dff13f 5430 poxp 5873 supmoti 6406 isoti 6420 |
| Copyright terms: Public domain | W3C validator |