![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdceqi | Unicode version |
Description: A class equal to a bounded one is bounded. Note the use of ax-ext 2063. See also bdceqir 10635. (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bdceqi.min |
![]() ![]() |
bdceqi.maj |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bdceqi |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdceqi.min |
. 2
![]() ![]() | |
2 | bdceqi.maj |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | bdceq 10633 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbi 143 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 ax-bd0 10604 |
This theorem depends on definitions: df-bi 115 df-cleq 2074 df-clel 2077 df-bdc 10632 |
This theorem is referenced by: bdceqir 10635 bds 10642 bdcuni 10667 |
Copyright terms: Public domain | W3C validator |