![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bds | Unicode version |
Description: Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 10613; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 10613. (Contributed by BJ, 19-Nov-2019.) |
Ref | Expression |
---|---|
bds.bd |
![]() ![]() |
bds.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bds |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bds.bd |
. . . 4
![]() ![]() | |
2 | 1 | bdcab 10640 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
3 | bds.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | cbvabv 2202 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bdceqi 10634 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | bdph 10641 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-bd0 10604 ax-bdsb 10613 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-bdc 10632 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |