![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdreu | Unicode version |
Description: Boundedness of
existential uniqueness.
Remark regarding restricted quantifiers: the formula |
Ref | Expression |
---|---|
bdreu.1 |
![]() ![]() |
Ref | Expression |
---|---|
bdreu |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdreu.1 |
. . . 4
![]() ![]() | |
2 | 1 | ax-bdex 10610 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
3 | ax-bdeq 10611 |
. . . . . 6
![]() ![]() ![]() ![]() | |
4 | 1, 3 | ax-bdim 10605 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | ax-bdal 10609 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | ax-bdex 10610 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 6 | ax-bdan 10606 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | reu3 2782 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 7, 8 | bd0r 10616 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-bd0 10604 ax-bdim 10605 ax-bdan 10606 ax-bdal 10609 ax-bdex 10610 ax-bdeq 10611 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-cleq 2074 df-clel 2077 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 |
This theorem is referenced by: bdrmo 10647 |
Copyright terms: Public domain | W3C validator |