ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu3 Unicode version

Theorem reu3 2782
Description: A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.)
Assertion
Ref Expression
reu3  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) ) )
Distinct variable groups:    x, y, A    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem reu3
StepHypRef Expression
1 reurex 2567 . . 3  |-  ( E! x  e.  A  ph  ->  E. x  e.  A  ph )
2 reu6 2781 . . . 4  |-  ( E! x  e.  A  ph  <->  E. y  e.  A  A. x  e.  A  ( ph 
<->  x  =  y ) )
3 bi1 116 . . . . . 6  |-  ( (
ph 
<->  x  =  y )  ->  ( ph  ->  x  =  y ) )
43ralimi 2426 . . . . 5  |-  ( A. x  e.  A  ( ph 
<->  x  =  y )  ->  A. x  e.  A  ( ph  ->  x  =  y ) )
54reximi 2458 . . . 4  |-  ( E. y  e.  A  A. x  e.  A  ( ph 
<->  x  =  y )  ->  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) )
62, 5sylbi 119 . . 3  |-  ( E! x  e.  A  ph  ->  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) )
71, 6jca 300 . 2  |-  ( E! x  e.  A  ph  ->  ( E. x  e.  A  ph  /\  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) ) )
8 rexex 2410 . . . 4  |-  ( E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y )  ->  E. y A. x  e.  A  ( ph  ->  x  =  y ) )
98anim2i 334 . . 3  |-  ( ( E. x  e.  A  ph 
/\  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) )  -> 
( E. x  e.  A  ph  /\  E. y A. x  e.  A  ( ph  ->  x  =  y ) ) )
10 nfv 1461 . . . . 5  |-  F/ y ( x  e.  A  /\  ph )
1110eu3 1987 . . . 4  |-  ( E! x ( x  e.  A  /\  ph )  <->  ( E. x ( x  e.  A  /\  ph )  /\  E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y ) ) )
12 df-reu 2355 . . . 4  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
13 df-rex 2354 . . . . 5  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
14 df-ral 2353 . . . . . . 7  |-  ( A. x  e.  A  ( ph  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
15 impexp 259 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
1615albii 1399 . . . . . . 7  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
1714, 16bitr4i 185 . . . . . 6  |-  ( A. x  e.  A  ( ph  ->  x  =  y )  <->  A. x ( ( x  e.  A  /\  ph )  ->  x  =  y ) )
1817exbii 1536 . . . . 5  |-  ( E. y A. x  e.  A  ( ph  ->  x  =  y )  <->  E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y ) )
1913, 18anbi12i 447 . . . 4  |-  ( ( E. x  e.  A  ph 
/\  E. y A. x  e.  A  ( ph  ->  x  =  y ) )  <->  ( E. x
( x  e.  A  /\  ph )  /\  E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y ) ) )
2011, 12, 193bitr4i 210 . . 3  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. y A. x  e.  A  ( ph  ->  x  =  y ) ) )
219, 20sylibr 132 . 2  |-  ( ( E. x  e.  A  ph 
/\  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) )  ->  E! x  e.  A  ph )
227, 21impbii 124 1  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1282   E.wex 1421    e. wcel 1433   E!weu 1941   A.wral 2348   E.wrex 2349   E!wreu 2350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-cleq 2074  df-clel 2077  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356
This theorem is referenced by:  reu7  2787  bdreu  10646
  Copyright terms: Public domain W3C validator