| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reu3 | Unicode version | ||
| Description: A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.) |
| Ref | Expression |
|---|---|
| reu3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reurex 2567 |
. . 3
| |
| 2 | reu6 2781 |
. . . 4
| |
| 3 | bi1 116 |
. . . . . 6
| |
| 4 | 3 | ralimi 2426 |
. . . . 5
|
| 5 | 4 | reximi 2458 |
. . . 4
|
| 6 | 2, 5 | sylbi 119 |
. . 3
|
| 7 | 1, 6 | jca 300 |
. 2
|
| 8 | rexex 2410 |
. . . 4
| |
| 9 | 8 | anim2i 334 |
. . 3
|
| 10 | nfv 1461 |
. . . . 5
| |
| 11 | 10 | eu3 1987 |
. . . 4
|
| 12 | df-reu 2355 |
. . . 4
| |
| 13 | df-rex 2354 |
. . . . 5
| |
| 14 | df-ral 2353 |
. . . . . . 7
| |
| 15 | impexp 259 |
. . . . . . . 8
| |
| 16 | 15 | albii 1399 |
. . . . . . 7
|
| 17 | 14, 16 | bitr4i 185 |
. . . . . 6
|
| 18 | 17 | exbii 1536 |
. . . . 5
|
| 19 | 13, 18 | anbi12i 447 |
. . . 4
|
| 20 | 11, 12, 19 | 3bitr4i 210 |
. . 3
|
| 21 | 9, 20 | sylibr 132 |
. 2
|
| 22 | 7, 21 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-cleq 2074 df-clel 2077 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 |
| This theorem is referenced by: reu7 2787 bdreu 10646 |
| Copyright terms: Public domain | W3C validator |