| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bibif | Unicode version | ||
| Description: Transfer negation via an equivalence. (Contributed by NM, 3-Oct-2007.) (Proof shortened by Wolf Lammen, 28-Jan-2013.) |
| Ref | Expression |
|---|---|
| bibif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbn2 645 |
. 2
| |
| 2 | bicom 138 |
. 2
| |
| 3 | 1, 2 | syl6rbb 195 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: nbn 647 |
| Copyright terms: Public domain | W3C validator |