ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6rbb Unicode version

Theorem syl6rbb 195
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
syl6rbb.1  |-  ( ph  ->  ( ps  <->  ch )
)
syl6rbb.2  |-  ( ch  <->  th )
Assertion
Ref Expression
syl6rbb  |-  ( ph  ->  ( th  <->  ps )
)

Proof of Theorem syl6rbb
StepHypRef Expression
1 syl6rbb.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
2 syl6rbb.2 . . 3  |-  ( ch  <->  th )
31, 2syl6bb 194 . 2  |-  ( ph  ->  ( ps  <->  th )
)
43bicomd 139 1  |-  ( ph  ->  ( th  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  syl6rbbr  197  bibif  646  pm5.61  740  oranabs  761  pm5.7dc  895  nbbndc  1325  resopab2  4675  xpcom  4884  f1od2  5876  ac6sfi  6379  elznn0  8366  rexuz3  9876
  Copyright terms: Public domain W3C validator