![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6rbb | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6rbb.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl6rbb.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl6rbb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6rbb.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl6rbb.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl6bb 194 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | bicomd 139 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: syl6rbbr 197 bibif 646 pm5.61 740 oranabs 761 pm5.7dc 895 nbbndc 1325 resopab2 4675 xpcom 4884 f1od2 5876 ac6sfi 6379 elznn0 8366 rexuz3 9876 |
Copyright terms: Public domain | W3C validator |